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PREFACE.



The preceding editions of this work were published in 1830, 1832,
1835, and 1840. This fifth edition differs from the three preceding,
as to the body of the work, in nothing which need prevent the four,
or any two of them, from being used together in a class. But it is
considerably augmented by the addition of eleven new
Appendixes,[1]
relating to matters on which it is most desirable that the advanced
student should possess information. The first Appendix,
on Computation, and the sixth, on Decimal Money,
should be read and practised by every student with as much attention
as any part of the work. The mastery of the rules for instantaneous
conversion of the usual fractions of a pound sterling into decimal
fractions, gives the possessor the greater part of the advantage which
he would derive from the introduction of a decimal coinage.

At the time when this work was first published, the importance
of establishing arithmetic in the young mind upon reason and
demonstration, was not admitted by many. The case is now altered:

schools exist in which rational arithmetic is taught, and mere rules
are made to do no more than their proper duty. There is no necessity
to advocate a change which is actually in progress, as the works which
are published every day sufficiently shew. And my principal reason for
alluding to the subject here, is merely to warn those who want nothing
but routine, that this is not the book for their purpose.

A. De Morgan.

London, May 1, 1846.
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ELEMENTS OF ARITHMETIC.





BOOK I.



PRINCIPLES OF ARITHMETIC.

SECTION I.

NUMERATION.

1. Imagine a multitude of objects of the same kind assembled together;
for example, a company of horsemen. One of the first things that must
strike a spectator, although unused to counting, is, that to each man
there is a horse. Now, though men and horses are things perfectly
unlike, yet, because there is one of the first kind to every one of
the second, one man to every horse, a new notion will be formed in the
mind of the observer, which we express in words by saying that there
is the same number of men as of horses. A savage, who had no
other way of counting, might remember this number by taking a pebble
for each man. Out of a method as rude as this has sprung our system
of calculation, by the steps which are pointed out in the following
articles. Suppose that there are two companies of horsemen, and a
person wishes to know in which of them is the greater number, and also
to be able to recollect how many there are in each.

2. Suppose that while the first company passes by, he drops a pebble
into a basket for each man whom he sees. There is no connexion between

the pebbles and the horsemen but this, that for every horseman there is
a pebble; that is, in common language, the number of pebbles and
of horsemen is the same. Suppose that while the second company passes,
he drops a pebble for each man into a second basket: he will then have
two baskets of pebbles, by which he will be able to convey to any
other person a notion of how many horsemen there were in each company.
When he wishes to know which company was the larger, or contained most
horsemen, he will take a pebble out of each basket, and put them aside.
He will go on doing this as often as he can, that is, until one of the
baskets is emptied. Then, if he also find the other basket empty, he
says that both companies contained the same number of horsemen; if the
second basket still contain some pebbles, he can tell by them how many
more were in the second than in the first.

3. In this way a savage could keep an account of any numbers in which
he was interested. He could thus register his children, his cattle,
or the number of summers and winters which he had seen, by means
of pebbles, or any other small objects which could be got in large
numbers. Something of this sort is the practice of savage nations at
this day, and it has in some places lasted even after the invention
of better methods of reckoning. At Rome, in the time of the republic,
the prætor, one of the magistrates, used to go every year in great
pomp, and drive a nail into the door of the temple of Jupiter; a way of
remembering the number of years which the city had been built, which
probably took its rise before the introduction of writing.

4. In process of time, names would be given to those collections of
pebbles which are met with most frequently. But as long as small
numbers only were required, the most convenient way of reckoning them
would be by means of the fingers. Any person could make with his
two hands the little calculations which would be necessary for his
purposes, and would name all the different collections of the fingers.
He would thus get words in his own language answering to one, two,
three, four, five, six, seven, eight, nine, and ten. As his wants
increased, he would find it necessary to give names to larger numbers;

but here he would be stopped by the immense quantity of words which
he must have, in order to express all the numbers which he would be
obliged to make use of. He must, then, after giving a separate name
to a few of the first numbers, manage to express all other numbers by
means of those names.

5. I now shew how this has been done in our own language. The English
names of numbers have been formed from the Saxon: and in the following
table each number after ten is written down in one column, while another
shews its connexion with those which have preceded it.



	One
	 
	eleven
	ten and one[2]
	 


	two
	 
	twelve
	ten and two
	 


	three
	 
	thirteen
	ten and three
	 


	four
	 
	fourteen
	ten and four
	 


	five
	 
	fifteen
	ten and five
	 


	six
	 
	sixteen
	ten and six
	 


	seven
	 
	seventeen
	ten and seven
	 


	eight
	 
	eighteen
	ten and eight
	 


	nine
	 
	nineteen
	ten and nine
	 


	ten
	 
	twenty
	two tens
	 


	 


	twenty-one
	two tens and one
	 
	fifty
	five tens


	twenty-two
	two tens and two
	 
	sixty
	six tens


	&c. &c.
	&c. &c.
	 
	seventy
	seven tens


	thirty
	three tens
	 
	eighty
	eight tens


	  &c.
	 &c.
	 
	ninety
	nine tens


	forty
	four tens
	 
	a hundred
	ten tens


	  &c.
	 &c.
	 
	 
	 


	 
	a hundred and one
	ten tens and one
	 


	 
	&c. &c.
	 
	 
	 


	 
	a thousand
	ten hundreds
	


	 
	 ten thousand
	 
	 
	 


	 
	a hundred thousand
	 
	 


	 
	a million
	ten hundred thousand
	 


	 
	or one thousand thousand


	 
	ten millions


	 
	 a hundred millions


	 
	&c.
	 





6. Words, written down in ordinary language,
would very soon be too long for such continual repetition as takes
place in calculation. Short signs would then be substituted for words;
but it would be impossible to have a distinct sign for every number:
so that when some few signs had been chosen, it would be convenient to
invent others for the rest out of those already made. The signs which
we use areas follow:



	0 
	1 
	2 
	3 
	4 
	5 
	6 
	7 
	8 
	9 


	nought
	one
	two
	three
	four
	five
	six
	seven
	eight
	nine





I now proceed to explain the way in which these
signs are made to represent other numbers.

7. Suppose a man first to hold up one finger, then two, and so on,
until he has held up every finger, and suppose a number of men to do
the same thing. It is plain that we may thus distinguish one number
from another, by causing two different sets of persons to hold up each
a certain number of fingers, and that we may do this in many different
ways. For example, the number fifteen might be indicated either by
fifteen men each holding up one finger, or by four men each holding up
two fingers and a fifth holding up seven, and so on. The question is,
of all these contrivances for expressing the number, which is the most
convenient? In the choice which is made for this purpose consists what
is called the method of numeration.

8. I have used the foregoing explanation because it is very probable
that our system of numeration, and almost every other which is used in
the world, sprung from the practice of reckoning on the fingers, which
children usually follow when first they begin to count. The method

which I have described is the rudest possible; but, by a little
alteration, a system may be formed which will enable us to express
enormous numbers with great ease.

9. Suppose that you are going to count some large number, for example,
to measure a number of yards of cloth. Opposite to yourself suppose a
man to be placed, who keeps his eye upon you, and holds up a finger for
every yard which he sees you measure. When ten yards have been measured
he will have held up ten fingers, and will not be able to count any
further unless he begin again, holding up one finger at the eleventh
yard, two at the twelfth, and so on. But to know how many have been
counted, you must know, not only how many fingers he holds up, but also
how many times he has begun again. You may keep this in view by placing
another man on the right of the former, who directs his eye towards his
companion, and holds up one finger the moment he perceives him ready
to begin again, that is, as soon as ten yards have been measured. Each
finger of the first man stands only for one yard, but each finger of
the second stands for as many as all the fingers of the first together,
that is, for ten. In this way a hundred may be counted, because the
first may now reckon his ten fingers once for each finger of the second
man, that is, ten times in all, and ten tens is one
hundred (5).[3]
Now place a third man at the right of the second, who shall hold up
a finger whenever he perceives the second ready to begin again. One
finger of the third man counts as many as all the ten fingers of the
second, that is, counts one hundred. In this way we may proceed until
the third has all his fingers extended, which will signify that ten
hundred or one thousand have been counted (5). A fourth man would
enable us to count as far as ten thousand, a fifth as far as one
hundred thousand, a sixth as far as a million, and so on.

10. Each new person placed himself towards your left in the rank
opposite to you. Now rule columns as in the next page, and to the right
of them all place in words the number which you wish to represent; in

the first column on the right, place the number of fingers
which the first man will be holding up when that number of yards has
been measured. In the next column, place the fingers which the second
man will then be holding up; and so on.



	 
	 7th. 
	 6th. 
	 5th. 
	 4th. 
	 3rd. 
	 2nd. 
	 1st. 
	 


	I.
	 
	 
	 
	 
	 
	5
	7
	fifty-seven


	II.
	 
	 
	 
	 
	1
	0
	4
	one hundred and four.


	III.
	 
	 
	 
	 
	1
	1
	0
	one hundred and ten.


	IV.
	 
	 
	 
	2
	3
	4
	8
	two thousand three hundred


	 
	 
	 
	 
	 
	 
	 
	 
	 and forty-eight.


	V.
	 
	 
	1
	5
	9
	0
	6
	fifteen thousand nine


	 
	 
	 
	 
	 
	 
	 
	 
	 hundred and six.


	VI.
	 
	1
	8
	7
	0
	0
	4
	one hundred and eighty-seven


	 
	 
	 
	 
	 
	 
	 
	 
	 thousand and four.


	VII.
	3
	6
	9
	7
	2
	8
	5
	three million, six hundred and


	 
	 
	 
	 
	 
	 
	 
	 
	 ninety-seven thousand,


	 
	 
	 
	 
	 
	 
	 
	 
	 two hundred and eighty-five.





11. In I. the number fifty-seven is expressed. This means (5) five tens
and seven. The first has therefore counted all his fingers five times,
and has counted seven fingers more. This is shewn by five fingers of
the second man being held up, and seven of the first. In II. the number
one hundred and four is represented. This number is (5) ten tens and
four. The second person has therefore just reckoned all his fingers
once, which is denoted by the third person holding up one finger;
but he has not yet begun again, because he does not hold up a finger
until the first has counted ten, of which ten only four are completed.
When all the last-mentioned ten have been counted, he then holds up
one finger, and the first being ready to begin again, has no fingers
extended, and the number obtained is eleven tens, or ten tens and one
ten, or one hundred and ten. This is the case in III. You will now find
no difficulty with the other numbers in the table.

12. In all these numbers a figure in the first column stands for only
as many yards as are written under that figure in (6). A figure in
the second column stands, not for as many yards, but for as many tens
of yards; a figure in the third column stands for as many hundreds of
yards; in the fourth column for as many thousands of yards; and so on:

that is, if we suppose a figure to move from any column to the one on
its left, it stands for ten times as many yards as before. Recollect
this, and you may cease to draw the lines between the columns, because
each figure will be sufficiently well known by the place in
which it is; that is, by the number of figures which come upon the
right hand of it.

13. It is important to recollect that this way of writing numbers,
which has become so familiar as to seem the natural method, is
not more natural than any other. For example, we might agree to signify
one ten by the figure of one with an accent, thus, 1′; twenty or two
tens by 2′; and so on: one hundred or ten tens by 1″; two hundred by
2″; one thousand by 1‴; and so on: putting Roman figures for accents
when they become too many to write with convenience. The fourth number
in the table would then be written 2‴ 3′ 4′ 8, which might also be
expressed by 8 4′ 3″ 2‴, 4′ 8 3″ 2‴; or the order of the figures
might be changed in any way, because their meaning depends upon the
accents which are attached to them, and not upon the place in which
they stand. Hence, a cipher would never be necessary; for 104 would be
distinguished from 14 by writing for the first 1″ 4, and for the second
1′ 4. The common method is preferred, not because it is more exact than
this, but because it is more simple.

14. The distinction between our method of numeration and that of the
ancients, is in the meaning of each figure depending partly upon the
place in which it stands. Thus, in 44444 each four stands for four of
something; but in the first column on the right it signifies
only four of the pebbles which are counted; in the second, it means
four collections of ten pebbles each; in the third, four of one hundred
each; and so on.

15. The things measured in (11) were yards of cloth. In this case one
yard of cloth is called the unit. The first figure on the right
is said to be in the units’ place, because it only stands for
so many units as are in the number that is written under it in (6).
The second figure is said to be in the tens’ place, because it
stands for a number of tens of units. The third, fourth, and fifth
figures are in the places of the hundreds, thousands, and
tens of thousands, for a similar reason.


16. If the quantity measured had been acres of land, an acre of land
would have been called the unit, for the unit is one of
the things which are measured. Quantities are of two sorts; those which
contain an exact number of units, as 47 yards, and those which do not,
as 47 yards and a half. Of these, for the present, we only consider the
first.

17. In most parts of arithmetic, all quantities must have the same
unit. You cannot say that 2 yards and 3 feet make 5 yards
or 5 feet, because 2 and 3 make 5; yet you may say that 2
yards and 3 yards make 5 yards, and that 2
feet and 3 feet make 5 feet. It would be absurd to
try to measure a quantity of one kind with a unit which is a quantity
of another kind; for example, to attempt to tell how many yards there
are in a gallon, or how many bushels of corn there are in a barrel of wine.

18. All things which are true of some numbers of one unit are true of
the same numbers of any other unit. Thus, 15 pebbles and 7 pebbles
together make 22 pebbles; 15 acres and 7 acres together make 22 acres,
and so on. From this we come to say that 15 and 7 make 22, meaning that
15 things of the same kind, and 7 more of the same kind as the first,
together make 22 of that kind, whether the kind mentioned be pebbles,
horsemen, acres of land, or any other. For these it is but necessary to
say, once for all, that 15 and 7 make 22. Therefore, in future, on this
part of the subject I shall cease to talk of any particular units, such
as pebbles or acres, and speak of numbers only. A number, considered
without intending to allude to any particular things, is called an
abstract number: and it then merely signifies repetitions of a
unit, or the number of times a unit is repeated.

19. I will now repeat the principal things which have been mentioned in
this chapter.

I. Ten signs are used, one to stand for nothing, the rest for the first
nine numbers. They are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The first of these
is called a cipher.

II. Higher numbers have not signs for themselves, but are signified
by placing the signs already mentioned by the side of each other, and
agreeing that the first figure on the right hand shall keep the value

which it has when it stands alone; that the second on the right hand
shall mean ten times as many as it does when it stands alone; that the
third figure shall mean one hundred times as many as it does when it
stands alone; the fourth, one thousand times as many; and so on.

III. The right hand figure is said to be in the units’ place,
the next to that in the tens’ place, the third in the
hundreds’ place, and so on.

IV. When a number is itself an exact number of tens, hundreds, or
thousands, &c., as many ciphers must be placed on the right of it as
will bring the number into the place which is intended for it. The
following are examples:

Fifty, or five tens, 50: seven hundred, 700. 

Five hundred and twenty-eight thousand, 528000.

If it were not for the ciphers, these numbers would be mistaken for 5,
7, and 528.

V. A cipher in the middle of a number becomes necessary when any one of
the denominations, units, tens, &c. is wanting. Thus, twenty thousand
and six is 20006, two hundred and six is 206. Ciphers might be placed
at the beginning of a number, but they would have no meaning. Thus 026
is the same as 26, since the cipher merely shews that there are no
hundreds, which is evident from the number itself.

20. If we take out of a number, as 16785, any of those figures which
come together, as 67, and ask, what does this sixty-seven mean? of what
is it sixty-seven? the answer is, sixty-seven of the same collections
as the 7, when it was in the number; that is, 67 hundreds. For the 6
is 6 thousands, or 6 ten hundreds, or sixty hundreds; which, with the
7, or 7 hundreds, is 67 hundreds: similarly, the 678 is 678 tens. This
number may then be expressed either as


	1 ten thousand 6 thousands 7 hundreds 8 tens and 5;

	or  16 thousands 78 tens and 5; or 1 ten thousand 678 tens and 5;

	or  167 hundreds 8 tens and 5; or 1678 tens and 5, and so on.



21. EXERCISES.



I. Write down the signs for—four hundred and seventy-six; two thousand
and ninety-seven; sixty-four thousand three hundred and fifty; two
millions seven hundred and four; five hundred and seventy-eight
millions of millions.

II. Write at full length 53, 1805, 1830, 66707, 180917324, 66713721,
90976390, 25000000.

III. What alteration takes place in a number made up entirely of nines,
such as 99999, by adding one to it?

IV. Shew that a number which has five figures in it must be greater
than one which has four, though the first have none but small figures
in it, and the second none but large ones. For example, that 10111 is
greater than 9879.

22. You now see that the convenience of our method of numeration arises
from a few simple signs being made to change their value as they
change the column in which they are placed. The same advantage arises
from counting in a similar way all the articles which are used in
every-day life. For example, we count money by dividing it into pounds,
shillings, and pence, of which a shilling is 12 pence, and a pound 20
shillings, or 240 pence. We write a number of pounds, shillings, and
pence in three columns, generally placing points between the columns.
Thus, 263 pence would not be written as 263, but as £1. 1. 11, where
£ shews that the 1 in the first column is a pound. Here is a system
of numeration in which a number in the second column on the right
means 12 times as much as the same number in the first; and one in the
third column is twenty times as great as the same in the second, or
240 times as great as the same in the first. In each of the tables of
measures which you will hereafter meet with, you will see a separate
system of numeration, but the methods of calculation for all will be
the same.

23. In order to make the language of arithmetic shorter, some other
signs are used. They are as follow:

I. 15 + 38 means that 38 is to be added to 15, and is the same thing
as 53. This is the sum of 15 and 38, and is read fifteen
plus thirty-eight (plus is the Latin for more).


II. 64-12 means that 12 is to be taken away from 64, and is the
same thing as 52. This is the difference of 64 and 12, and is
read sixty-four minus twelve (minus is the Latin for
less).

III. 9 × 8 means that 8 is to be taken 9 times, and is the same
thing as 72. This is the product of 9 and 8, and is read nine
into eight.

IV. 108/6 means that 108 is to be divided by 6, or that you must find
out how many sixes there are in 108; and is the same thing as 18. This
is the quotient of 108 and 6; and is read a hundred and eight by six.

V. When two numbers, or collections of numbers, with the foregoing
signs, are the same, the sign = is put between them. Thus, that 7
and 5 make 12, is written in this way, 7 + 5 = 12. This is called an
equation, and is read, seven plus five equals
twelve. It is plain that we may construct as many equations as we
please. Thus:



	 
	12
	 


	7 + 9 - 3 = 12 + 1; 
	—
	 - 1 + 3 × 2 = 11,


	 
	2
	 





and so on.

24. It often becomes necessary to speak of something which is true not
of any one number only, but of all numbers. For example, take 10 and 7;
their sum[4]
is 17, their difference is 3. If this sum and difference
be added together, we get 20, which is twice the greater of the two
numbers first chosen. If from 17 we take 3, we get 14, which is twice
the less of the two numbers. The same thing will be found to hold good
of any two numbers, which gives this general proposition,—If the sum
and difference of two numbers be added together, the result is twice
the greater of the two; if the difference be taken from the sum, the
result is twice the lesser of the two. If, then, we take any
numbers, and call them the first number and the second number, and let
the first number be the greater; we have

(1st No. + 2d No.) + (1st No. - 2d No.) = twice 1st No. 

(1st No. + 2d No.) - (1st No. - 2d No.) = twice 2d No.

The brackets here enclose the things which must be first done, before

the signs which join the brackets are made use of. Thus, 8-(2 + 1)
× (1 + 1) signifies that 2 + 1 must be taken 1 + 1 times, and the
product must be subtracted from 8. In the same manner, any result made
from two or more numbers, which is true whatever numbers are taken,
may be represented by using first No., second No., &c., to stand for
them, and by the signs in (23). But this may be much shortened; for as
first No., second No., &c., may mean any numbers, the letters a
and b may be used instead of these words; and it must now be
recollected that a and b stand for two numbers, provided
only that a is greater than b. Let twice a
be represented by 2a, and twice b by 2b. The
equations then become

  (a + b) + (a - b) = 2a,

and (a + b) - (a - b) = 2b.

This may be explained still further, as follows:

25. Suppose a number of sealed packets, marked a, b,
c, d, &c., on the outside, each of which contains a
distinct but unknown number of counters. As long as we do not know
how many counters each contains, we can make the letter which belongs
to each stand for its number, so as to talk of the number a,
instead of the number in the packet marked a. And because we do
not know the numbers, it does not therefore follow that we know nothing
whatever about them; for there are some connexions which exist between
all numbers, which we call general properties of numbers. For
example, take any number, multiply it by itself, and subtract one from
the result; and then subtract one from the number itself. The first
of these will always contain the second exactly as many times as the
original number increased by one. Take the number 6; this multiplied
by itself is 36, which diminished by one is 35; again, 6 diminished
by 1 is 5; and 35 contains 5, 7 times, that is, 6 + 1 times. This
will be found to be true of any number, and, when proved, may be said
to be true of the number contained in the packet marked a, or
of the number a. If we represent a multiplied by itself by
aa,[5]
we have, by (23)



	aa - 1
	 
	 


	———
	 = 
	a + 1.


	a - 1
	 
	 






26. When, therefore, we wish to talk of a number without specifying
any one in particular, we use a letter to represent it. Thus: Suppose
we wish to reason upon what will follow from dividing a number into
three parts, without considering what the number is, or what are the
parts into which it is divided. Let a stand for the number,
and b, c, and d, for the parts into which it is
divided. Then, by our supposition,

a = b + c + d.

On this we can reason, and produce results which
do not belong to any particular number, but are true of all. Thus, if
one part be taken away from the number, the other two will remain,
or

a - b = c + d.

If each part be doubled, the whole number will be doubled, or

2a = 2b + 2c + 2d.

If we diminish one of the parts, as d, by a number x, we
diminish the whole number just as much, or

a - x = b + c + (d - x).

27. EXERCISES.

What is a + 2b - c, where a = 12, b = 18,
c = 7?—Answer, 41.



	What is  
	aa - bb


	 
	———


	 
	a - b





where a = 6 and b = 2?—Ans. 8.

What is the difference between (a + b)(c + d)
and a + bc + d, for the following values of
a, b, c, and d?



	  a  
	  b  
	  c  
	  d  
	 Ans. 


	1
	2
	3
	4
	10


	2
	12
	7
	1
	25


	1
	1
	1
	1
	1









SECTION II.

ADDITION AND SUBTRACTION.



28. There is no process in arithmetic which does not consist entirely
in the increase or diminution of numbers. There is then nothing which
might not be done with collections of pebbles. Probably, at first,
either these or the fingers were used. Our word calculation
is derived from the Latin word calculus, which means a
pebble. Shorter ways of counting have been invented, by which many
calculations, which would require long and tedious reckoning if pebbles
were used, are made at once with very little trouble. The four great
methods are, Addition, Subtraction, Multiplication, and Division; of
which, the last two are only ways of doing several of the first and
second at once.

29. When one number is increased by others, the number which is
as large as all the numbers together is called their sum.
The process of finding the sum of two or more numbers is called
Addition, and, as was said before, is denoted by
placing a cross (+) between the numbers which are to be added together.

Suppose it required to find the sum of 1834 and 2799. In order to add
these numbers, take them to pieces, dividing each into its units, tens,
hundreds, and thousands:

1834 is 1 thous. 8 hund. 3 tens and 4;

2799 is 2 thous. 7 hund. 9 tens and 9.

Each number is thus broken up into four parts. If to each part of the
first you add the part of the second which is under it, and then put
together what you get from these additions, you will have added 1834
and 2799. In the first number are 4 units, and in the second 9: these
will, when the numbers are added together, contribute 13 units to
the sum. Again, the 3 tens in the first and the 9 tens in the second
will contribute 12 tens to the sum. The 8 hundreds in the first and
the 7 hundreds in the second will add 15 hundreds to the sum; and the

thousand in the first with the 2 thousands in the second will
contribute 3 thousands to the sum; therefore the sum required is

3 thousands, 15 hundreds, 12 tens, and 13 units.

To simplify this result, you must recollect that—



	13 units are
	 
	 
	1 ten and 3 units.


	12 tens are
	 
	1 hund. and
	2 tens.


	15 hund. are
	1 thous. and
	5 hund.
	 


	3 thous. are
	3 thous.
	 
	 





Now collect the numbers on the right hand side together, as was done
before, and this will give, as the sum of 1834 and 2799,

4 thousands, 6 hundreds, 3 tens, and 3 units,

which (19) is written 4633.

30. The former process, written with the signs of (23) is as follows:

1834 = 1 × 1000 + 8 × 100 + 3 × 10 + 4

2799 = 2 × 1000 + 7 × 100 + 9 × 10 + 9

Therefore,

1834 + 2799 = 3 × 1000 + 15 × 100 + 12 × 10 + 13

But



	13 =
	 
	 
	1 × 10 + 3


	12 × 10 =
	 
	1 × 100 +
	2 × 10


	15 × 100 =
	1 × 1000 +
	5 × 100
	 


	3 × 1000 =
	3 × 1000
	  Therefore,


	1834 + 2799 =
	4 × 1000 +
	6 × 100 +
	3 × 10 +  3


	=
	4633.





31. The same process is to be followed in all cases, but not at the
same length. In order to be able to go through it, you must know how to
add together the simple numbers. This can only be done by memory; and
to help the memory you should make the following table three or four
times for yourself:




	      
	   1  
	   2  
	   3  
	   4  
	   5  
	   6  
	   7  
	   8  
	   9  


	1 	2
	3 	4
	5 	6
	7 	8
	9 	10


	2 	3
	4 	5
	6 	7
	8 	9
	10 	11


	3 	4
	5 	6
	7 	8
	9 	10
	11 	12


	4 	5
	6 	7
	8 	9
	10 	11
	12 	13


	5 	6
	7 	8
	9 	10
	11 	12
	13 	14


	6 	7
	8 	9
	10 	11
	12 	13
	14 	15


	7 	8
	9 	10
	11 	12
	13 	14
	15 	16


	8 	9
	10 	11
	12 	13
	14 	15
	16 	17


	9 	10
	11 	12
	13 	14
	15 	16
	17 	18





The use of this table is as follows: Suppose you want to find the sum
of 8 and 7. Look in the left-hand column for either of them, 8, for
example; and look in the top column for 7. On the same line as 8, and
underneath 7, you find 15, their sum.

32. When this table has been thoroughly committed to memory, so that
you can tell at once the sum of any two numbers, neither of which
exceeds 9, you should exercise yourself in adding and subtracting two
numbers, one of which is greater than 9 and the other less. You should
write down a great number of such sentences as the following, which
will exercise you at the same time in addition, and in the use of the
signs mentioned in (23).



	12 + 6 = 18
	22 + 6 = 28
	19 + 8 = 27
	


	54 + 9 = 63
	56 + 7 = 63
	22 + 8 = 30
	


	100 - 9 = 91
	27 - 8 = 19
	44 - 6 = 38,
	&c.





33. When the last two articles have been thoroughly studied, you will
be able to find the sum of any numbers by the following process,[6]
which is the same as that in (29).


Rule I. Place the numbers under one another, units under
units, tens under tens, and so on.

II. Add together the units of all, and part the whole number
thus obtained into units and tens. Thus, if 85 be the number, part it
into 8 tens and 5 units; if 136 be the number, part it into 13 tens and
6 units (20).

III. Write down the units of this number under the units of the rest,
and keep in memory the number of tens.

IV. Add together all the numbers in the column of tens, remembering
to take in (or carry, as it is called) the tens which you were told
to recollect in III., and divide this number of tens into tens and
hundreds. Thus, if 335 tens be the number obtained, part this into 33
hundreds and 5 tens.

V. Place the number of tens under the tens, and remember the number of
hundreds.

VI. Proceed in this way through every column, and at the last column,
instead of separating the number you obtain into two parts, write it
all down before the rest.

Example.—What is

1805 + 36 + 19727 + 3 + 1474 + 2008


	  1805

	  36

	19727

	3

	  1474

	  2008

	——-

	25053



The addition of the units’ line, or 8 + 4 + 3 + 7 + 6 + 5, gives
33, that is, 3 tens and 3 units. Put 3 in the units’ place, and add
together the line of tens, taking in at the beginning the 3 tens which
were created by the addition of the units’ line. That is, find 3 + 0
+ 7 + 2 + 3 + 0, which gives 15 for the number of tens; that is, 1
hundred and 5 tens. Add the line of hundreds together, taking care to
add the 1 hundred which arose in the addition of the line of tens;
that is, find 1 + 0 + 4 + 7 + 8, which gives exactly 20 hundreds,
or 2 thousands and no hundreds. Put a cipher in the hundreds’ place
(because, if you do not, the next figure will be taken for hundreds
instead of thousands), and add the figures in the thousands’ line
together, remembering the 2 thousands which arose from the hundreds’

line; that is, find 2 + 2 + 1 + 9 + 1, which gives 15 thousands, or 1
ten thousand and 5 thousand. Write 5 under the line of thousands, and
collect the figures in the line of tens of thousands, remembering the
ten thousand which arose out of the thousands’ line; that is, find 1 +
1, or 2 ten thousands. Write 2 under the ten thousands’ line, and the
operation is completed.

34. As an exercise in addition, you may satisfy yourself that what I
now say of the following square is correct. The numbers in every row,
whether reckoned upright, or from right to left, or from corner to
corner, when added together give the number 24156.



	 


	 2016  	 4212 
	 1656  	 3852 
	 1296  	 3492 
	  936  	 3132 
	  576  	2772 
	  216 


	 252 	2052
	4248 	1692
	3888 	1332
	3528 	 972
	3168 	 612
	2412


	2448 	 288
	2088 	4284
	1728 	3924
	1368 	3564
	1008 	2808
	 648


	 684 	2484
	 324 	2124
	4320 	1764
	3960 	1404
	3204 	1044
	2844


	2880 	 720
	2520 	 360
	2160 	4356
	1800 	3600
	1440 	3240
	1080


	1116 	2916
	 756 	2556
	 396 	2196
	3996 	1836
	3636 	1476
	3276


	3312 	1152
	2952 	 792
	2592 	  36
	2232 	4032
	1872 	3672
	1512


	1548 	3348
	1188 	2988
	 432 	2628
	  72 	2268
	4068 	1908
	3708


	3744 	1584
	3384 	 828
	3024 	 468
	2664 	 108
	2304 	4104
	1944


	1980 	3780
	1224 	3420
	 864 	3060
	 504 	2700
	 144 	2340
	4140


	4176 	1620
	3816 	1260
	3456 	 900
	3096 	 540
	2736 	 180
	2376


	 





35. If two numbers must be added together, it will not alter the sum if
you take away a part of one, provided you put on as much to the other.
It is plain that you will not alter the whole number of a collection
of pebbles in two baskets by taking any number out of one, and putting
them into the other. Thus, 15 + 7 is the same as 12 + 10, since 12 is 3
less than 15, and 10 is three more than 7. This was the principle upon
which the whole of the process in (29) was conducted.

36. Let a and b stand for two numbers, as in (24). It is
impossible to tell what their sum will be until the numbers themselves
are known. In the mean while a + b stands for this sum.

To say, in algebraical language, that the sum of a and b
is not altered by adding c to a, provided we take away
c from b, we have the following equation:

(a + c) + (b - c) = a + b;

which may be written without brackets, thus,

a + c + b - c = a + b.

For the meaning of these two equations will appear
to be the same, on consideration.

37. If a be taken twice, three times, &c., the results are
represented in algebra by 2a, 3a, 4a, &c. The sum
of any two of this series may be expressed in a shorter form than by
writing the sign + between them; for though we do not know what number
a stands for, we know that, be it what it may, 2a +
2a = 4a, 3a + 2a = 5a, 4a +
9a = 13a; and generally, if a taken m times
be added to a taken n times, the result is a taken
m + n times, or

ma + na = (m + n)a.

38. The use of the brackets must here be noticed. They mean, that the
expression contained inside them must be used exactly as a single
letter would be used in the same place. Thus, pa signifies that
a is taken p times, and (m + n)a,
that a is taken m + n times. It is, therefore, a
different thing from m + na, which means that a,
after being taken n times, is added to m. Thus (3 + 4) ×
2 is 7 × 2 or 14; while 3 + 4 × 2 is 3 + 8, or 11.

39. When one number is taken away from another, the number which is
left is called the difference or remainder. The process
of finding the difference is called subtraction.
The number which is to be taken away must be of course the lesser of the two.

40. The process of subtraction depends upon these two principles.

I. The difference of two numbers is not altered by adding a number to
the first, if you add the same number to the second; or by subtracting
a number from the first, if you subtract the same number from the
second. Conceive two baskets with pebbles in them, in the first of
which are 100 pebbles more than in the second. If I put 50 more pebbles

into each of them, there are still only 100 more in the first than in
the second, and the same if I take 50 from each. Therefore, in finding
the difference of two numbers, if it should be convenient, I may add
any number I please to both of them, because, though I alter the
numbers themselves by so doing, I do not alter their difference.


	II. Since   6 exceeds  4 by  2,

	and   3 exceeds  2 by  1,

	and 12 exceeds  5 by  7,



6, 3, and 12 together, or 21, exceed 4, 2, and 5
together, or 11, by 2, 1, and 7 together, or 10: the same thing may be
said of any other numbers.

41. If a, b, and c be three numbers, of which
a is greater than b (40), I. leads to the following,

(a + c) - (b + c) = a - b.

Again, if c be less than a and b,

(a - c) - (b - c) = a - b.

The brackets cannot be here removed as in (36). That is, p-
(q-r) is not the same thing as p-q-
r. For, in the first, the difference of q and r is
subtracted from p; but in the second, first q and then
r are subtracted from p, which is the same as subtracting
as much as q and r together, or q + r.
Therefore p-q-r is p-(q +
r). In order to shew how to remove the brackets from p
-(q-r) without altering the value of the result, let
us take the simple instance 12-(8-5). If we subtract 8 from 12, or
form 12-8, we subtract too much; because it is not 8 which is to be
taken away, but as much of 8 as is left after diminishing it by 5. In
forming 12-8 we have therefore subtracted 5 too much. This must be
set right by adding 5 to the result, which gives 12-8 + 5 for the
value of 12-(8-5). The same reasoning applies to every case, and we
have therefore,

p - (q + r) = p - q - r.

p - (q - r) = p - q + r.



By the same kind of reasoning,

a - (b + c - d - e) = a - b - c + d + e.

2a + 3b - (a - 2b) = 2a + 3b - a + 2b = a + 5b.

4x + y - (17x - 9y) = 4x + y - 17x + 9y = 10y - 13x.

42. I want to find the difference of the numbers 57762 and 34631. Take
these to pieces as in (29) and

57762 is 5 ten-th. 7 th. 7 hund. 6 tens and 2 units.

34631 is 3 ten-th. 4 th. 6 hund. 3 tens and 1 unit.



	Now 2 units exceed
	1 unit
	by 1 unit.


	6 tens
	3 tens
	3 tens.


	7 hundreds
	6 hundreds
	1 hundred.


	7 thousands
	4 thousands
	3 thousands.


	5 ten-thousands  
	3 ten-thous.
	2 ten-thous.





Therefore, by (40, Principle II.) all the first column together
exceeds all the second column by all the third column, that is, by

2 ten-th. 3 th. 1 hund. 3 tens and 1 unit,

which is 23131. Therefore the difference of 57762 and 34631 is 23131,
or 57762-34631 = 23131.

43. Suppose I want to find the difference between 61274 and 39628.
Write them at length, and

61274 is 6 ten-th. 1 th. 2 hund. 7 tens and 4 units.

39628 is 3 ten-th. 9 th. 6 hund. 2 tens and 8 units.

If we attempt to do the same as in the last article, there is a
difficulty immediately, since 8, being greater than 4, cannot be
taken from it. But from (40) it appears that we shall not alter the
difference of two numbers if we add the same number to both
of them. Add ten to the first number, that is, let there be 14 units
instead of four, and add ten also to the second number, but instead of
adding ten to the number of units, add one to the number of tens, which
is the same thing. The numbers will then stand thus,

6 ten-thous. 1 thous. 2 hund. 7 tens and 14 units.[7]
3 ten-thous. 9 thous. 6 hund. 3 tens and 8 units.


You now see that the units and tens in the lower can be subtracted from
those in the upper line, but that the hundreds cannot. To remedy this,
add one thousand or 10 hundred to both numbers, which will not alter
their difference, and remember to increase the hundreds in the upper
line by 10, and the thousands in the lower line by 1, which are the
same things. And since the thousands in the lower cannot be subtracted
from the thousands in the upper line, add 1 ten thousand or 10 thousand
to both numbers, and increase the thousands in the upper line by 10,
and the ten thousands in the lower line by 1, which are the same
things; and at the close the numbers which we get will be,

6 ten-thous. 11 thous. 12 hund. 7 tens and 14 units.

4 ten-thous. 10 thous. 6 hund. 3 tens and 8 units.

These numbers are not, it is true, the same as those given at the
beginning of this article, but their difference is the same, by (40).
With the last-mentioned numbers proceed in the same way as in (42),
which will give, as their difference,

2 ten-thous. 1 thous. 6 hund. 4 tens, and 6 units, which is 21646.

44. From this we deduce the following rules for subtraction:


I. Write the number which is to be subtracted (which is, of
course, the lesser of the two, and is called the subtrahend)
under the other, so that its units shall fall under the units of the
other, and so on.

II. Subtract each figure of the lower line from the one above it, if
that can be done. Where that cannot be done, add ten to the upper
figure, and then subtract the lower figure; but recollect in this case
always to increase the next figure in the lower line by 1, before you
begin to subtract it from the upper one.



45. If there should not be as many figures in the lower line as in
the upper one, proceed as if there were as many ciphers at the beginning
of the lower line as will make the number of figures equal. You
do not alter a number by placing ciphers at the beginning of it. For
example, 00818 is the same number as 818, for it means

0 ten-thous. 0 thous. 8 hunds. 1 ten and 8 units;


the first two signs are nothing, and the rest is

8 hundreds, 1 ten, and 8 units, or 818.

The second does not differ from the first, except in its being said
that there are no thousands and no tens of thousands in the number,
which may be known without their being mentioned at all. You may ask,
perhaps, why this does not apply to a cipher placed in the middle of
a number, or at the right of it, as, for example, in 28007 and 39700?
But you must recollect, that if it were not for the two ciphers in the
first, the 8 would be taken for 8 tens, instead of 8 thousands; and if
it were not for the ciphers in the second, the 7 would be taken for 7
units, instead of 7 hundreds.

46. EXAMPLE.



	What is the difference between  
	3708291640030174


	and  
	30813649276188


	Difference  
	3677477990753986





EXERCISES.

I. What is 18337 + 149263200 - 6472902?—Answer 142808635.

What is 1000 - 464 + 3279 - 646?—Ans. 3169.

II. Subtract

64 + 76 + 144 - 18 from 33 - 2 + 100037.—Ans. 99802.

III. What shorter rule might be made for subtraction when all the figures
in the upper line are ciphers except the first? for example, in finding

10000000 - 2731634.

IV. Find 18362 + 2469 and 18362-2469, add the second result to the
first, and then subtract 18362; subtract the second from the first, and
then subtract 2469.—Answer 18362 and 2469.

V. There are four places on the same line in the order a,
b, c, and d. From a to d
it is 1463 miles; from a to c it is 728 miles; and
from b to d it is 1317 miles. How far is it from
a to b, from b to c, and from
c to d?—Answer. From a to b
146, from b to c 582, and from c to
d 735 miles.


VI. In the following table subtract b from a, and
b from the remainder, and so on until b can be no
longer subtracted. Find how many times b can be subtracted
from a, and what is the last remainder.



	  A
	  B
	 No. of 

times.
	 Remainder.




	23604
	9999
	2
	3606


	209961
	37173
	5
	24096


	74712
	6792
	11
	0


	4802469
	654321
	7
	222222


	18849747
	3141592
	6
	195


	987654321
	  123456789
	8
	9







SECTION III.

MULTIPLICATION.



47. I have said that all questions in arithmetic require nothing but
addition and subtraction. I do not mean by this that no rule should
ever be used except those given in the last section, but that all
other rules only shew shorter ways of finding what might be found,
if we pleased, by the methods there deduced. Even the last two rules
themselves are only short and convenient ways of doing what may be done
with a number of pebbles or counters.

48. I want to know the sum of five seventeens, or I ask the following
question: There are five heaps of pebbles, and seventeen pebbles in
each heap; how many are there in all? Write five seventeens in a
column, and make the addition, which gives 85. In this case 85 is
called the product of 5 and 17, and the process of finding the
product is called multiplication, which gives nothing more
than the addition of a number of the same quantities. Here 17 is called
the multiplicand, and 5 is called the multiplier.


	17

	17

	17

	17

	17

	85



49. If no question harder than this were ever proposed, there would be
no occasion for a shorter way than the one here followed. But if there

were 1367 heaps of pebbles, and 429 in each heap, the whole number is
then 1367 times 429, or 429 multiplied by 1367. I should have to write
429 1367 times, and then to make an addition of enormous length. To
avoid this, a shorter rule is necessary, which I now proceed to explain.

50. The student must first make himself acquainted with the products of
all numbers as far as 10 times 10 by means of the following table,[8]
which must be committed to memory.



	 


	 1 	 2
	 3 	 4
	 5 	 6
	 7 	 8
	9 	10
	11 	12


	 2 	 4
	 6 	 8
	10 	12
	14 	16
	18 	20
	22 	24


	 3 	 6
	 9 	12
	15 	18
	21 	24
	27 	30
	33 	36


	 4 	 8
	12 	16
	20 	24
	28 	32
	36 	40
	44 	48


	 5 	10
	15 	20
	25 	30
	35 	40
	45 	50
	55 	60


	 6 	12
	18 	24
	30 	36
	42 	48
	54 	60
	66 	72


	 7 	14
	21 	28
	35 	42
	49 	56
	63 	70
	77 	84


	 8 	16
	24 	32
	40 	48
	56 	64
	72 	80
	88 	96


	 9 	18
	27 	36
	45 	54
	63 	72
	81 	90
	99 	108


	10 	20
	30 	40
	50 	60
	70 	80
	90 	100
	110 	120


	11 	22
	33 	44
	55 	66
	77 	88
	99 	110
	121 	132


	12 	24
	36 	48
	60 	72
	84 	96
	108 	120
	132 	144


	 





If from this table you wish to know what is 7 times 6, look in the
first upright column on the left for either of them; 6 for example.
Proceed to the right until you come into the column marked 7 at the
top. You there find 42, which is the product of 6 and 7.

51. You may find, in this way, either 6 times 7, or 7 times 6, and for
both you find 42. That is, six sevens is the same number as seven sixes.

This may be shewn as follows: Place seven counters in a line, and
repeat that line in all six times. The number of counters in the whole
is 6 times 7, or six sevens, if I reckon the rows from the top to the
bottom; but if I count the rows that stand side by side, I find seven
of them, and six in each row, the whole number of which is 7 times 6,
or seven sixes. And the whole number is 42, whichever way I count. The
same method may be applied to any other two numbers. If the signs of
(23) were used, it would be said that 7 × 6 = 6 × 7.



	● 	●
	● 	●
	● 	●
	●


	● 	●
	● 	●
	● 	●
	●


	● 	●
	● 	●
	● 	●
	●


	● 	●
	● 	●
	● 	●
	●


	● 	●
	● 	●
	● 	●
	●


	● 	●
	● 	●
	● 	●
	●





52. To take any quantity a number of times, it will be enough to take
every one of its parts the same number of times. Thus, a sack of corn
will be increased fifty-fold, if each bushel which it contains be
replaced by 50 bushels. A country will be doubled by doubling every
acre of land, or every county, which it contains. Simple as this
may appear, it is necessary to state it, because it is one of the
principles on which the rule of multiplication depends.

53. In order to multiply by any number, you may multiply separately
by any parts into which you choose to divide that number, and add the
results. For example, 4 and 2 make 6. To multiply 7 by 6 first multiply
7 by 4, and then by 2, and add the products. This will give 42, which
is the product of 7 and 6. Again, since 57 is made up of 32 and 25, 57
times 50 is made up of 32 times 50 and 25 times 50, and so on. If the
signs were used, these would be written thus:

7 × 6 = 7 × 4 + 7 × 2.

  50 × 57 = 50 × 32 + 50 × 25.

54. The principles in the last two articles may be expressed thus: If
a be made up of the parts x, y, and x,
ma is made up of mx, my, and mz; or,

ifa = x + y + z.

ma = mx + my + mz,

or,m(x + y + z) = mx + my + mz.


A similar result may be obtained if a, instead of being made
up of x, y, and z, is made by combined additions
and subtractions, such as x + y-z, x-
y + z, x-y-z, &c. To take the
first as an instance:

Leta = x + y - z,

thenma = mx + my - mz.

For, if a had been x + y, ma would have
been mx + my. But since a is less than x
+ y by z, too much by z has been repeated every
time that x + y has been repeated;—that is, mz
too much has been taken; consequently, ma is not mx +
my, but mx + my-mz. Similar reasoning may
be applied to other cases, and the following results may be obtained:

m(a + b + c - d) = ma + mb + mc - md.



	a(a - b)
	  =  
	aa - ab.


	b(a - b)
	=
	ba - bb.


	3(2a - 4b)
	=
	6a - 12b.


	7a(7 + 2b)
	=
	49a + 14ab.


	(aa + a + 1)a
	=
	aaa + aa + a.


	(3ab - 2c)4abc
	=
	12aabbc - 8abcc.





55. There is another way in which two numbers may be multiplied
together. Since 8 is 4 times 2, 7 times 8 may be made by multiplying
7 and 4, and then multiplying that product by 2. To shew this,
place 7 counters in a line, and repeat that line in all 8 times, as in
figures I. and II.



	I.


	A 
	● 	●
	● 	●
	● 	●
	●


	● 	●
	● 	●
	● 	●
	●


	● 	●
	● 	●
	● 	●
	●


	● 	●
	● 	●
	● 	●
	●


	 


	B 
	● 	●
	● 	●
	● 	●
	●


	● 	●
	● 	●
	● 	●
	●


	● 	●
	● 	●
	● 	●
	●


	● 	●
	● 	●
	● 	●
	●





 



	II.


	● 	●
	● 	●
	● 	●
	●


	● 	●
	● 	●
	● 	●
	●


	 


	● 	●
	● 	●
	● 	●
	●


	● 	●
	● 	●
	● 	●
	●


	 


	● 	●
	● 	●
	● 	●
	●


	● 	●
	● 	●
	● 	●
	●


	 


	● 	●
	● 	●
	● 	●
	●


	● 	●
	● 	●
	● 	●
	●





The number of counters in all is 8 times 7, or 56. But (as in fig. I.)
enclose each four rows in oblong figures, such as a

and b. The number in each oblong is
4 times 7, or 28, and there are two of those oblongs; so that in
the whole the number of counters is twice 28, or 28 x 2, or 7 first
multiplied by 4, and that product multiplied by 2. In figure II. it
is shewn that 7 multiplied by 8 is also 7 first multiplied by 2, and
that product multiplied by 4. The same method may be applied to other
numbers. Thus, since 80 is 8 times 10, 256 times 80 is 256 multiplied
by 8, and that product multiplied by 10. If we use the signs, the
foregoing assertions are made thus:

7 × 8 =   7 × 4 × 2  = 7 × 2 × 4.

256 × 80 = 256 × 8 × 10 = 256 × 10 × 8.

EXERCISES.

Shew that 2 × 3 × 4 × 5 = 2 × 4 × 3 × 5 = 5 × 4 × 2 × 3, &c.

Shew that 18 × 100 = 18 × 57 + 18 × 43.

56. Articles (51) and (55) may be expressed in
the following way, where by ab we mean a taken b
times; by abc, a taken b times, and the result
taken c times.

ab = ba.  

abc = acb = bca = bac, &c.

abc = a × (bc) = b × (ca) = c × (ab).

If we would say that the same results are produced by multiplying by
b, c, and d, one after the other, and by the
product bcd at once, we write the following:

a × b × c × d = a × bcd.

The fact is, that if any numbers are to be multiplied together, the
product of any two or more may be formed, and substituted instead of
those two or more; thus, the product abcdef may be formed by
multiplying



	 ab
	cde
	f


	abf
	 de
	c


	abc
	def
	&c.





57. In order to multiply by 10, annex a cipher to the right hand of the
multiplicand. Thus, 10 times 2356 is 23560. To shew this, write 2356 at
length which is


2 thousands, 3 hundreds, 5 tens, and 6 units.

Take each of these parts ten times, which, by
(52), is the same as multiplying the whole number by 10, and it will
then become

2 tens of thou. 3 tens of hun. 5 tens of tens, and 6 tens,

which is

2 ten-thou. 3 thous. 5 hun. and 6 tens.

This must be written 23560, because 6 is not to be
6 units, but 6 tens. Therefore 2356 × 10 = 23560.

In the same way you may shew, that in order to multiply by 100 you
must affix two ciphers to the right; to multiply by 1000 you must
affix three ciphers, and so on. The rule will be best caught from the
following table:



	13 ×
	10 =
	130


	13 ×
	100 =
	1300


	13 ×
	1000 =
	13000


	13 ×
	10000 =
	130000


	142 ×
	1000 =
	142000


	23700 ×
	10 =
	237000


	3040 ×
	1000 =
	3040000


	10000 ×
	100000 =
	1000000000





58. I now shew how to multiply by one of the numbers, 2, 3, 4, 5, 6, 7,
8, or 9. I do not include 1, because multiplying by 1, or taking the
number once, is what is meant by simply writing down the number. I want
to multiply 1368 by 8. Write the first number at full length, which is

1 thousand, 3 hundreds, 6 tens, and 8 units.

To multiply this by 8, multiply each of these parts by 8 (50) and (52),
which will give

8 thousands, 24 hundreds, 48 tens, and 64 units.



	Now
	64 units are written thus
	64


	 
	48 tens
	480


	 
	24 hundreds
	2400


	 
	 8 thousands
	8000





Add these together, which gives 10944 as the
product of 1368 and 8, or 1368 × 8 = 10944. By working a few examples
in this way you will see for following rule.


59. I. Multiply the first figure of the multiplicand by the multiplier,
write down the units’ figure, and reserve the tens.

II. Do the same with the second figure of the multiplicand, and add
to the product the number of tens from the first; put down the units’
figure of this, and reserve the tens.

III. Proceed in this way till you come to the last figure, and then
write down the whole number obtained from that figure.

IV. If there be a cipher in the multiplicand, treat it as if it were a
number, observing that 0 × 1 = 0, 0 × 2 = 0, &c.

60. In a similar way a number can be multiplied by a figure which is
accompanied by ciphers, as, for example, 8000. For 8000 is 8 × 1000,
and therefore (55) you must first multiply by 8 and then by 1000, which
last operation (57) is done by placing 3 ciphers on the right. Hence
the rule in this case is, multiply by the simple number, and place the
number of ciphers which follow it at the right of the product.

EXAMPLE.



	Multiply
	1679423800872


	by
	60000


	 
	100765428052320000





61. EXERCISES.

What is 1007360 × 7?   Answer, 7051520.

123456789 × 9 + 10 and 123 × 9 + 4?—Ans. 1111111111 and 1111.

What is 136 × 3 + 129 × 4 + 147 × 8 + 27 × 3000?—Ans. 83100.

An army is made up of 33 regiments of infantry, each containing 800
men; 14 of cavalry, each containing 600 men; and 2 of artillery, each
containing 300 men. The enemy has 6 more regiments of infantry, each
containing 100 more men; 3 more regiments of cavalry, each containing
100 men less; and 4 corps of artillery of the same magnitude as those
of the first: two regiments of cavalry and one of infantry desert from
the former to the latter. How many men has the second army more than
the first?—Answer, 13400.


62. Suppose it is required to multiply 23707 by
4567. Since 4567 is made up of 4000, 500, 60, and 7, by (53) we must
multiply 23707 by each of these, and add the products.



	Now (58)
	23707 ×
	7
	 is 
	165949


	(60)
	23707 ×
	60
	is
	1422420


	 
	23707 ×
	500
	is
	11853500


	 
	23707 ×
	4000
	is
	94828000


	The sum of these
	is
	108269869





which is the product required.

It will do as well if, instead of writing the ciphers at the end of
each line, we keep the other figures in their places without them. If
we take away the ciphers, the second line is one place to the left of
the first, the third one place to the left of the second, and so on.
Write the multiplier and the multiplicand over these lines, and the
process will stand thus:


	23707

	 4567

	165949

	142242

	118535

	94828

	108269869



63. There is one more case to be noticed; that is, where there is a
cipher in the middle of the multiplier. The following example will shew
that in this case nothing more is necessary than to keep the first
figure of each line in the column under the figure of the multiplier
from which that line arises. Suppose it required to multiply 365 by
101001. The multiplier is made up of 100000, 1000 and 1. Proceed as
before, and



	 
	365 × 1
	 is 
	365


	(57)
	365 × 1000
	 is 
	365000


	 
	365 × 100000
	 is 
	36500000


	The sum of which
	 is 
	36865365





and the whole process with the ciphers struck off is:


	 365

	101001

	 365

	365

	 365

	36865365



64. The following is the rule in all cases:

I. Place the multiplier under the multiplicand, so that the units of
one may be under those of the other.

II. Multiply the whole multiplicand by each figure of the multiplier
(59), and place the unit of each line in the column under the figure of
the multiplier from which it came.


III. Add together the lines obtained by II. column by column.

65. When the multiplier or multiplicand, or both, have ciphers on the
right hand, multiply the two together without the ciphers, and then
place on the right of the product all the ciphers that are on the right
both of the multiplier and multiplicand. For example, what is 3200 ×
3000? First, 3200 is 32 × 100, or one hundred times as great as 32.
Again, 32 × 13000 is 32 × 13, with three ciphers affixed, that is 416,
with three ciphers affixed, or 416000. But the product required must
be 100 times as great as this, or must have two ciphers affixed. It is
therefore 41600000, having as many ciphers as are in both multiplier
and multiplicand.

66. When any number is multiplied by itself any number of times, the
result is called a power of that number. Thus:



	6 is called the
	first power
	of 6


	6 × 6
	second power
	of 6


	6 × 6 × 6
	third power
	of 6


	6 × 6 × 6 × 6
	fourth power
	of 6


	&c.
	&c.
	 





The second and third powers are usually called the square and
cube, which are incorrect names, derived from certain connexions
of the second and third power with the square and cube in geometry. As
exercises in multiplication, the following powers are to be found.



	Number

proposed.
	Square.
	Cube.




	 972
	944784
	918330048


	1008
	1016064
	1024192512


	3142
	9872164
	31018339288


	3163
	10004569
	31644451747


	5555
	30858025
	171416328875


	6789
	46090521
	312908547069


	The fifth
	power of 36 is
	60466176


	fourth
	50   
	6250000


	fourth
	108   
	136048896


	fourth
	277   
	5887339441






67. It is required to multiply a + b by c +
d, that is, to take a + b as many times as there
are units in c + d. By (53) a + b must be
taken c times, and d times, or the product required is
(a + b)c + (a + b)d. But (52)
(a + b)c is ac + bc, and (a +
b)d is ad + bd; whence the product required
is ac + bc + ad + bd; or,

(a + b)(c + d) = ac + bc + ad + bd.

By similar reasoning

(a - b)(c + d) is (a - b)c + (a - b)d; or,

(a - b)(c + d) = ac - bc + ad - bd.

To multiply a-b by c-d, first take
a-b c times, which gives ac-bc.
This is not correct; for in taking it c times instead of
c-d times, we have taken it d times too many;
or have made a result which is (a-b)d too
great. The real result is therefore ac-bc-(a
-b)d. But (a-b)d is ad-
bd, and therefore

(a - b)(c - d) = ac - bc - ad - bd

 = ac - bc - ad + bd  (41)

From these three examples may be collected the following rule for
the multiplication of algebraic quantities: Multiply each term of the
multiplicand by each term of the multiplier; when the two terms have
both + or both-before them, put + before their product; when one has
+ and the other-, put-before their product. In using the first terms,
which have no sign, apply the rule as if they had the sign +.

68. For example, (a + b)(a + b)
gives aa + ab + ab + bb. But ab
+ ab is 2ab; hence the square of a +
b is aa + 2ab + bb. Again (a-
b)(a-b) gives aa-ab-ab
+ bb. But two subtractions of ab are equivalent
to subtracting 2ab; hence the square of a-
b is aa-2ab + bb. Again, (a +
b)(a-b) gives aa + ab-ab
-bb. But the addition and subtraction of ab makes no
change; hence the product of a + b and a- b
is aa-bb.

Again, the square of a + b + c + d
or (a + b + c + d)(a + b
+ c + d) will be found to be aa + 2ab
+ 2ac + 2ad + bb + 2bc + 2bd +
cc + 2cd + dd; or the rule for squaring such
a quantity is: Square the first term, and multiply all that come
after by twice that term; do the same with the second, and so on
to the end.



SECTION IV.

DIVISION.

69. Suppose I ask whether 156 can be divided into a number of parts
each of which is 13, or how many thirteens 156 contains; I propose a
question, the solution of which is called DIVISION. In this
case, 156 is called the dividend, 13 the divisor, and the
number of parts required is the quotient; and when I find the
quotient, I am said to divide 156 by 13.

70. The simplest method of doing this is to subtract 13 from 156,
and then to subtract 13 from the remainder, and so on; or, in common
language, to tell off 156 by thirteens. A similar process has
already occurred in the exercises on subtraction, Art. (46). Do this,
and mark one for every subtraction that is made, to remind you that
each subtraction takes 13 once from 156, which operations will stand as
follows:


	156

	13  1

	———

	143

	13  1

	———

	130

	13  1

	———

	117

	13  1

	———

	104

	13  1

	———

	91

	13  1

	———

	78

	13  1

	———

	65

	13  1

	———

	52

	13  1

	———

	39

	13  1

	———

	26

	13  1

	———

	13

	13  1

	———

	0



Begin by subtracting 13 from 156, which leaves 143. Subtract 13 from
143, which leaves 130; and so on. At last 13 only remains, from which
when 13 is subtracted, there remains nothing. Upon counting the number
of times which you have subtracted 13, you find that this number is 12;
or 156 contains twelve thirteens, or contains 13 twelve times.

This method is the most simple possible, and might be done with
pebbles. Of these you would first count 156. You would then take 13
from the heap, and put them into one heap by themselves. You would
then take another 13 from the heap, and place them in another heap by
themselves; and so on until there were none left. You would then count
the number of heaps, which you would find to be 12.

71. Division is the opposite of multiplication. In multiplication you
have a number of heaps, with the same number of pebbles in each, and
you want to know how many pebbles there are in all. In division

you know how many there are in all, and how many there are to be in
each heap, and you want to know how many heaps there are.

72. In the last example a number was taken which contains an exact
number of thirteens. But this does not happen with every number. Take,
for example, 159. Follow the process of (70), and it will appear that
after having subtracted 13 twelve times, there remains 3, from which
13 cannot be subtracted. We may say then that 159 contains twelve
thirteens and 3 over; or that 159, when divided by 13, gives a
quotient 12, and a remainder 3. If we use signs,

159 = 13 × 12 + 3.

EXERCISES.



	146
	 = 
	24 × 6 + 2, or 146 contains six twenty-fours and 2 over.


	146
	=
	6 × 24 + 2, or 146 contains twenty-four sixes and 2 over.


	300
	=
	42 × 7 + 6, or 300 contains seven forty-twos and 6 over.


	39624
	=
	 7277 × 5 + 3239.





73. If a contain b q times with a remainder
r, a must be greater than bq by r; that is,

a = bq + r.

If there be no remainder, a = bq.
Here a is the dividend, b the divisor, q the
quotient, and r the remainder. In order to say that a
contains b q times, we write,

a/b = q, or a : b = q,

which in old books is often found written thus:

a ÷ b = q.

74. If I divide 156 into several parts, and find how often 13 is
contained in each of them, it is plain that 156 contains 13 as often as
all its parts together. For example, 156 is made up of 91, 39, and 26.
Of these



	91
	contains 13
	7 times,


	39
	contains 13
	3 times,


	26
	contains 13
	2 times;





therefore 91 + 39 + 26 contains 13 7 + 3 + 2 times, or 12 times.

Again, 156 is made up of 100, 50, and 6.




	Now
	100 contains
	13  7 times
	and  9 over,


	 
	50 contains
	13  3 times
	and 11 over,


	 
	6 contains
	13  0 times[9]
	and 6 over.





Therefore 100 + 50 + 6 contains 13 7 + 3 + 0 times and 9 + 11 + 6 over;
or 156 contains 13 10 times and 26 over. But 26 is itself 2 thirteens;
therefore 156 contains 10 thirteens and 2 thirteens, or 12 thirteens.

75. The result of the last article is expressed by saying, that if

a = b + c + d, then



	a
	=
	b
	+
	c
	+
	d


	m
	m
	m
	m





76. In the first example I did not take away 13 more than once at a
time, in order that the method might be as simple as possible. But
if I know what is twice 13, 3 times 13, &c., I can take away as many
thirteens at a time as I please, if I take care to mark at each step
how many I take away. For example, take away 13 ten times at once from
156, that is, take away 130, and afterwards take away 13 twice, or take
away 26, and the process is as follows:


	156

	130  10 times 13.

	 26

	 26   2 times 13.

	  0



Therefore 156 contains 13 10 + 2, or 12 times.

Again, to divide 3096 by 18.


	3096

	1800  100 times 18.

	1296

	  900 50 times 18.

	  396

	  360

	   36

	   36

	    0



Therefore 3096 contains 18 100 + 50 + 20 + 2, or 172 times.

77. You will now understand the following sentences, and be able to
make similar assertions of other numbers.

450 is 75 × 6; it therefore contains any number, as 5, 6 times as often
as 75 contains it.




	135
	 contains  3 more than
	26
	times; therefore,


	Twice 135
	”3”
	52
	or twice 26


	10 times 135
	”3”
	260
	or 10 times 26


	50 times 135
	”3”
	1300
	or 50 times 26


	472
	contains 18 more than
	21
	times; therefore,


	4720
	contains 18 more than
	210
	times,


	47200
	contains 18 more than
	2100
	times,


	472000
	contains 18 more than
	21000
	times,


	32
	contains 12 more than
	2
	times, and less than 3 times.


	320
	”12”
	20
	times,  ”  ” 30 times.


	3200
	”12 ”
	200
	times,  ”  ” 300 times.


	32000
	”12”
	2000
	times,  ”  ” 3000 times.


	&c.
	 
	&c.
	&c.  





78. The foregoing articles contain the principles of division. The
question now is, to apply them in the shortest and most convenient way.
Suppose it required to divide 4068 by 18, or to find 4068/18 (23).

If we divide 4068 into any number of parts, we may, by the process
followed in (74), find how many times 18 is contained in each of these
parts, and from thence how many times it is contained in the whole.
Now, what separation of 4068 into parts will be most convenient?
Observe that 4, the first figure of 4068, does not contain 18; but that
40, the first and second figures together, does contain 18 more than
twice, but less than three times.[10]
But 4068 (20) is made up of 40 hundreds, and 68; of which, 40 hundreds
(77) contains 18 more than 200 times, and less than 300 times.
Therefore, 4068 also contains more than 200 times 18, since it must
contain 18 more times than 4000 does. It also contains 18 less than
300 times, because 300 times 18 is 5400, a greater number than 4068.
Subtract 18 200 times from 4068; that is, subtract 3600, and there
remains 468. Therefore, 4068 contains 18 200 times, and as many more
times as 468 contains 18.


It remains, then, to find how many times 468 contains 18. Proceed
exactly as before. Observe that 46 contains 18 more than twice, and
less than 3 times; therefore, 460 contains it more than 20, and less
than 30 times (77); as does also 468. Subtract 18 20 times from 468,
that is, subtract 360; the remainder is 108. Therefore, 468 contains
18 20 times, and as many more as 108 contains it. Now, 108 is found to
contain 18 6 times exactly; therefore, 468 contains it 20 + 6 times,
and 4068 contains it 200 + 20 + 6 times, or 226 times. If we write down
the process that has been followed, without any explanation, putting
the divisor, dividend, and quotient, in a line separated by parentheses
it will stand, as in example(A).

Let it be required to divide 36326599 by 1342 (B).



	A. 
	B. 


	18)
	4068
	 (200 + 20 + 6 
	1342)
	36326599
	 (20000 + 7000 + 60 + 9


	 
	3600
	 
	 
	26840000
	 


	 
	468
	 
	 
	9486599
	 


	 
	360
	 
	 
	9394000
	 


	 
	108
	 
	 
	92599
	 


	 
	108
	 
	 
	80520
	 


	 
	0
	 
	 
	12079
	 


	 
	 
	 
	 
	12078
	 


	 
	 
	 
	 
	1
	 





As in the previous example, 36326599 is separated into 36320000 and
6599; the first four figures 3632 being separated from the rest,
because it takes four figures from the left of the dividend to make
a number which is greater than the divisor. Again, 36320000 is found
to contain 1342 more than 20000, and less than 30000 times; and 1342
× 20000 is subtracted from the dividend, after which the remainder is
9486599. The same operation is repeated again and again, and the result
is found to be, that there is a quotient 20000 + 7000 + 60 + 9, or
27069, and a remainder 1.

Before you proceed, you should now repeat the foregoing article at
length in the solution of the following questions. What are



	10093874
	 , 
	66779922
	 , 
	2718218
	 ?


	3207
	114433
	13352






the quotients of which are 3147, 583, 203; and the remainders 1445, 65483, 7762.

79. In the examples of the last article, observe, 1st, that it is
useless to write down the ciphers which are on the right of each
subtrahend, provided that without them you keep each of the other
figures in its proper place: 2d, that it is useless to put down the
right hand figures of the dividend so long as they fall over ciphers,
because they do not begin to have any share in the making of the
quotient until, by continuing the process, they cease to have ciphers
under them: 3d, that the quotient is only a number written at length,
instead of the usual way. For example, the first quotient is 200 + 20
+ 6, or 226; the second is 20000 + 7000 + 60 + 9, or 27069. Strike
out, therefore, all the ciphers and the numbers which come above them,
except those in the first line, and put the quotient in one line; and
the two examples of the last article will stand thus:



	18)
	4068
	 (226 
	1342)
	36326599
	 (27069


	 
	36  
	 
	 
	2684  
	 


	 
	46 
	 
	 
	9486  
	 


	 
	36 
	 
	 
	9394  
	 


	 
	108
	 
	 
	9259 
	 


	 
	108
	 
	
	8052 
	 


	 
	0
	 
	 
	12079
	 


	 
	 
	 
	 
	12078
	 


	 
	 
	 
	 
	1
	 





80. Hence the following rule is deduced:

I. Write the divisor and dividend in one line, and place parentheses on
each side of the dividend.

II. Take off from the left-hand of the dividend the least number of
figures which make a number greater than the divisor; find what number
of times the divisor is contained in these, and write this number as
the first figure of the quotient.

III. Multiply the divisor by the last-mentioned figure, and subtract
the product from the number which was taken off at the left of the dividend.


IV. On the right of the remainder place the figure of the dividend
which comes next after those already separated in II.: if the remainder
thus increased be greater than the divisor, find how many times the
divisor is contained in it; put this number at the right of the first
figure of the quotient, and repeat the process: if not, on the right
place the next figure of the dividend, and the next, and so on until it
is greater; but remember to place a cipher in the quotient for every
figure of the dividend which you are obliged to take, except the first.

V. Proceed in this way until all the figures of the dividend are
exhausted.

In judging how often one large number is contained in another, a first
and rough guess may be made by striking off the same number of figures
from both, and using the results instead of the numbers themselves.
Thus, 4,732 is contained in 14,379 about the same number of times
that 4 is contained in 14, or about 3 times. The reason is, that 4
being contained in 14 as often as 4000 is in 14000, and these last
only differing from the proposed numbers by lower denominations, viz.
hundreds, &c. we may expect that there will not be much difference
between the number of times which 14000 contains 4000, and that which
14379 contains 4732: and it generally happens so. But if the second
figure of the divisor be 5, or greater than 5, it will be more accurate
to increase the first figure of the divisor by 1, before trying the
method just explained. Nothing but practice can give facility in this
sort of guess-work.

81. This process may be made more simple when the divisor is not
greater than 12, if you have sufficient knowledge of the multiplication
table (50). For example, I want to divide 132976 by 4. At full length
the process stands thus:



	4)132976 (33244

	12

	 12

	 12

	9

	8 

	17

	16

	 16

	 16

	0



But you will recollect, without the necessity of writing it down,
that 13 contains 4 three times with a remainder 1; this 1 you will
place before 2, the next figure of the dividend, and you know that 12
contains 4 3 times exactly, and so on. It will be more convenient to
write down the quotient thus:


	4)132976

	———

	33244



While on this part of the subject, we may mention, that the shortest
way to multiply by 5 is to annex a cipher and divide by 2, which is
equivalent to taking the half of 10 times, or 5 times. To divide by
5, multiply by 2 and strike off the last figure, which leaves the
quotient; half the last figure is the remainder. To multiply by 25,
annex two ciphers and divide by 4. To divide by 25, multiply by 4 and
strike off the last two figures, which leaves the quotient; one fourth
of the last two figures, taken as one number, is the remainder. To
multiply a number by 9, annex a cipher, and subtract the number, which
is equivalent to taking the number ten times, and then subtracting it
once. To multiply by 99, annex two ciphers and subtract the number, &c.

In order that a number may be divisible by 2 without remainder, its
units’ figure must be an even number.[11]
That it may be divisible by 4, its last two figures must be divisible
by 4. Take the example 1236: this is composed of 12 hundreds and 36,
the first part of which, being hundreds, is divisible by 4, and gives
12 twenty-fives; it depends then upon 36, the last two figures, whether
1236 is divisible by 4 or not. A number is divisible by 8 if the last
three figures are divisible by 8; for every digit, except the last
three, is a number of thousands, and 1000 is divisible by 8; whether
therefore the whole shall be divisible by 8 or not depends on the last
three figures: thus, 127946 is not divisible by 8, since 946 is not
so. A number is divisible by 3 or 9 only when the sum of its digits is
divisible by 3 or 9. Take for example 1234; this is




	 
	1 thousand,
	  or  
	999 and 1


	 
	2 hundred,
	or
	twice 99 and 2


	 
	3 tens,
	or
	three times 9 and 3


	and  
	4
	or
	4





Now 9, 99, 999, &c. are all obviously
divisible by 9 and by 3, and so will be any number made by the
repetition of all or any of them any number of times. It therefore
depends on 1 + 2 + 3 + 4, or the sum of the digits, whether 1234 shall
be divisible by 9 or 3, or not. From the above we gather, that a number
is divisible by 6 when it is even, and when the sum of its digits is
divisible by 3. Lastly, a number is divisible by 5 only when the last
figure is 0 or 5.

82. Where the divisor is unity followed by ciphers, the rule becomes
extremely simple, as you will see by the following examples:


	100) 33429 (334

	300

	 342

	 300

	429

	400

	29



This is, then, the rule: Cut off as many figures from the right hand of
the dividend as there are ciphers. These figures will be the remainder,
and the rest of the dividend will be the quotient.


	10) 2717316

	271731 and rem. 6.



Or we may prove these results thus: from (20), 2717316 is 271731 tens
and 6; of which the first contains 10 271731 times, and the second not
at all; the quotient is therefore 271731, and the remainder 6 (72).
Again (20), 33429 is 334 hundreds and 29; of which the first contains
100 334 times, and the second not at all; the quotient is therefore
334, and the remainder 29.

83. The following examples will shew how the rule may be shortened when
there are ciphers in the divisor. With each example is placed another
containing the same process, all unnecessary figures being removed; and
from the comparison of the two, the rule at the end of this article is derived.




	I. 1782000)
	6424700000
	 (3605 
	1782)
	6424700
	 (3605


	 
	5346000
	 
	 
	5346
	 


	 
	10787000
	 
	 
	10787
	 


	 
	10692000
	 
	 
	10692
	 


	 
	9500000
	 
	 
	9500
	 


	 
	8910000
	 
	 
	8910
	 


	 
	590000
	 
	 
	590000  


	 


	II. 12300000)
	42176189300
	 (3428 
	123)
	421761
	 (3428


	 
	36900000
	 
	 
	 369
	 


	 
	 52761893
	 
	 
	 527
	 


	 
	  49200000
	 
	 
	  492
	 


	 
	   35618930
	 
	 
	   356
	 


	 
	   24600000
	 
	 
	   246
	 


	 
	   110189300
	 
	 
	   1101
	 


	 
	  98400000
	 
	 
	  984
	 


	 
	  11789300
	 
	 
	  11789300





The rule, then, is: Strike out as many figures[12]
from the right of the dividend as there are ciphers at the
right of the divisor. Strike out all the ciphers from the divisor, and
divide in the usual way; but at the end of the process place on the
right of the remainder all those figures which were struck out of the
dividend.

84. EXERCISES.



	Dividend.
	Divisor.
	Quotient.
	Remainder.




	9694
	47
	206
	12


	175618
	3136
	56
	2


	23796484
	130000
	183
	6484


	14002564
	1871
	7484
	0


	310314420
	7878
	39390
	0


	3939040647
	6889
	571787
	4


	22876792454961
	43046721
	531441
	0





Shew that



	 
	100 × 100 × 100 - 43 × 43 × 43
	 
	 


	I.
	————————————
	 = 
	100 × 100 + 100 × 43 + 43 × 43.


	 
	100 - 43
	 
	 


	 


	 
	100 × 100 × 100 + 43 × 43 × 43
	 
	 


	II.
	————————————
	=
	100 × 100 - 100 × 43 + 43 × 43.


	 
	100 + 43
	 
	 


	 


	 
	76 × 76 + 2 × 76 × 52 + 52 × 52
	 
	 


	III.
	————————————
	=
	76 + 52.


	 
	76 + 52
	 
	 


	 


	 
	 
	 
	12 × 12 × 12 × 12 - 1


	IV.
	1 + 12 + 12 × 12 + 12 × 12 × 12
	=
	————————.


	 
	 
	 
	12 - 1





What is the nearest number to 1376429 which can be divided by 36300
without remainder?—Answer, 1379400.

If 36 oxen can eat 216 acres of grass in one year, and if a sheep eat
half as much as an ox, how long will it take 49 oxen and 136 sheep
together to eat 17550 acres?—Answer, 25 years.

85. Take any two numbers, one of which divides the other without
remainder; for example, 32 and 4. Multiply both these numbers by any
other number; for example, 6. The products will be 192 and 24. Now,
192 contains 24 just as often as 32 contains 4. Suppose 6 baskets,
each containing 32 pebbles, the whole number of which will be 192.
Take 4 from one basket, time after time, until that basket is empty.
It is plain that if, instead of taking 4 from that basket, I take 4
from each, the whole 6 will be emptied together: that is, 6 times 32
contains 6 times 4 just as often as 32 contains 4. The same reasoning
applies to other numbers, and therefore we do not alter the quotient
if we multiply the dividend and divisor by the same number.

86. Again, suppose that 200 is to be divided by 50. Divide both the
dividend and divisor by the same number; for example, 5. Then, 200 is 5
times 40, and 50 is 5 times 10. But by (85), 40 divided by 10 gives the
same quotient as 5 times 40 divided by 5 times 10, and therefore the
quotient of two numbers is not altered by dividing both the dividend
and divisor by the same number.

87. From (55), if a number be multiplied successively by two others, it
is multiplied by their product. Thus, 27, first multiplied by 5, and
the product multiplied by 3, is the same as 27 multiplied by 5 times 3,
or 15. Also, if a number be divided by any number, and the quotient be

divided by another, it is the same as if the first number had been
divided by the product of the other two. For example, divide 60 by 4,
which gives 15, and the quotient by 3, which gives 5. It is plain, that
if each of the four fifteens of which 60 is composed be divided into
three equal parts, there are twelve equal parts in all; or, a division
by 4, and then by 3, is equivalent to a division by 4 × 3, or 12.

88. The following rules will be better understood by stating them in
an example. If 32 be multiplied by 24 and divided by 6, the result is
the same as if 32 had been multiplied by the quotient of 24 divided
by 6, that is, by 4; for the sixth part of 24 being 4, the sixth part
of any number repeated 24 times is that number repeated 4 times; or,
multiplying by 24 and dividing by 6 is equivalent to multiplying by 4.

89. Again, if 48 be multiplied by 4, and that product be divided by
24, it is the same thing as if 48 were divided at once by the quotient
of 24 divided by 4, that is, by 6. For, every unit which is repeated 6
times in 48 is repeated 4 times as often, or 24 times, in 4 times 48,
or the quotient of 48 and 6 is the same as the quotient of 48 × 4 and 6 × 4.

90. The results of the last five articles may be algebraically
expressed thus:



	ma
	 = 
	a
	(85)


	mb
	b





If n divide a and b without remainder,



	a/n
	 = 
	a
	(86)


	b/n
	b


	a/b
	 = 
	a
	(87)


	c
	bc


	ab
	 = a × 
	b
	(88)


	c
	c


	ac
	 = 
	a
	(89)


	b
	b/c





It must be recollected, however, that these have only been proved in
the case where all the divisions are without remainder.

91. When one number divides another without leaving any remainder,
or is contained an exact number of times in it, it is said to be a
measure of that number, or to measure it. Thus, 4 is
a measure of 136, or measures 136; but it does not measure 137. The

reason for using the word measure is this: Suppose you have a rod 4
feet long, with nothing marked upon it, with which you want to measure
some length; for example, the length of a street. If that street should
happen to be 136 feet in length, you will be able to measure it
with the rod, because, since 136 contains 4 34 times, you will find
that the street is exactly 34 times the length of the rod. But if the
street should happen to be 137 feet long, you cannot measure it with
the rod; for when you have measured 34 of the rods, you will find a
remainder, whose length you cannot tell without some shorter measure.
Hence 4 is said to measure 136, but not to measure 137. A measure,
then, is a divisor which leaves no remainder.

92. When one number is a measure of two others, it is called a
common measure of the two. Thus, 15 is a common measure of 180
and 75. Two numbers may have several common measures. For example, 360
and 168 have the common measures 2, 3, 4, 6, 24, and several others.
Now, this question maybe asked: Of all the common measures of 360 and
168, which is the greatest? The answer to this question is derived from
a rule of arithmetic, called the rule for finding the greatest
common measure, which we proceed to consider.

93. If one quantity measure two others, it measures their sum and
difference. Thus, 7 measures 21 and 56. It therefore measures 56 + 21
and 56-21, or 77 and 35. This is only another way of saying what was
said in (74).

94. If one number measure a second, it measures every number which the
second measures. Thus, 5 measures 15, and 15 measures 30, 45, 60, 75,
&c.; all which numbers are measured by 5. It is plain that if



	15 contains 5
	3 times,
	 


	30, or 15 + 15 contains 5
	3 + 3 times,
	 or 6 times,


	45, or 15 + 15 + 15 contains 5
	3 + 3 + 3
	 or 9 times;





and so on.

95. Every number which measures both the dividend and divisor
measures the remainder also. To shew this, divide 360 by 112. The
quotient is 3, and the remainder 24, that is (72) 360 is three times 112

and 24, or 360 = 112 × 3 + 24. From this it follows, that 24 is the
difference between 360 and 3 times 112, or 24 = 360-112 × 3. Take any
number which measures both 360 and 112; for example, 4. Then


	4 measures 360,

	4 measures 112, and therefore (94) measures 112 × 3,

	or 112 + 112 + 112.



Therefore (93) it measures 360-112 × 3, which is the remainder 24.
The same reasoning may be applied to all other measures of 360 and 112;
and the result is, that every quantity which measures both the dividend
and divisor also measures the remainder. Hence, every common
measure of a dividend and divisor is also a common measure
of the divisor and remainder.

96. Every common measure of the divisor and remainder is also a
common measure of the dividend and divisor. Take the same example,
and recollect that 360 = 112 × 3 + 24. Take any common measure of the
remainder 24 and the divisor 112; for example, 8. Then


	8 measures 24;

	and 8 measures 112, and therefore (94) measures 112 × 3.



Therefore (93) 8 measures 112 × 3 + 24, or measures the dividend 360.
Then every common measure of the remainder and divisor is also a common
measure of the divisor and dividend, or there is no common measure of
the remainder and divisor which is not also a common measure of the
divisor and dividend.

97. I. It is proved in (95) that the remainder and divisor have all the
common measures which are in the dividend and divisor.

II. It is proved in (96) that they have no others.

It therefore follows, that the greatest of the common measures of the
first two is the greatest of those of the second two, which shews how
to find the greatest common measure of any two numbers,[13]
as follows:

98. Take the preceding example, and let it be required to find the g.
c. m. of 360 and 112, and observe that




	360 divided by
	112 gives the remainder
	24,


	112 divided by
	24 gives the remainder
	16,


	24 divided by
	16 gives the remainder
	8,


	16 divided by
	8 gives no remainder.





Now, since 8 divides 16 without remainder, and since it also divides
itself without remainder, 8 is the g. c. m. of 8 and 16, because it is
impossible to divide 8 by any number greater than 8; so that, even if
16 had a greater measure than 8, it could not be common to 16 and 8.



	Therefore
	8
	is g. c. m. of
	16 and 8,


	(97) g. c. m. of
	16 and 8
	is g. c. m. of
	24 and 16,


	g. c. m. of
	24 and 16
	is g. c. m. of
	112 and 24,


	g. c. m. of
	112 and 24
	is g. c. m. of
	360 and 112,


	Therefore
	8
	is g. c. m. of
	360 and 112.





The process carried on may be written down in either of the following ways:


	112) 360 (3

	336

	24) 112 (4

	 96

	16) 24 (1

	16

	8) 16 (2

	16

	 0





	112
	360
	3


	96
	336
	4


	16
	24
	1


	16
	16
	2


	0
	8
	 





The rule for finding the greatest common measure of two numbers is,

I. Divide the greater of the two by the less.

II. Make the remainder a divisor, and the divisor a dividend, and find
another remainder.

III. Proceed in this way until there is no remainder, and the last
divisor is the greatest common measure required.

99. You may perhaps ask how the rule is to shew when the two numbers
have no common measure. The fact is, that there are, strictly speaking,
no such numbers, because all numbers are measured by 1; that is,
contain an exact number of units, and therefore 1 is a common measure
of every two numbers. If they have no other common measure, the last
divisor will be 1, as in the following example, where the greatest
common measure of 87 and 25 is found.



	25) 87 (3

	75

	12) 25 (2

	 24

	1) 12 (12

	12

	 0



EXERCISES.



	Numbers.
	 g. c. m.




	6197
	9521
	1


	58363
	2602
	1


	5547
	 147008443
	1849


	6281
	326041
	571


	28915
	31495
	5


	1509
	300309
	3






	What are 36 × 36 + 2 × 36 × 72 + 72 × 72

	and 36 × 36 × 36 + 72 × 72 × 72;



and what is their greatest common measure?—Answer, 11664.

100. If two numbers be divisible by a third,
and if the quotients be again divisible by a fourth, that third is
not the greatest common measure. For example, 360 and 504 are both
divisible by 4. The quotients are 90 and 126. Now 90 and 126 are both
divisible by 9, the quotients of which division are 10 and 14. By (87),
dividing a number by 4, and then dividing the quotient by 9, is the
same thing as dividing the number itself by 4 × 9, or by 36. Then,
since 36 is a common measure of 360 and 504, and is greater than 4, 4
is not the greatest common measure. Again, since 10 and 14 are both
divisible by 2, 36 is not the greatest common measure. It therefore
follows, that when two numbers are divided by their greatest common
measure, the quotients have no common measure except 1 (99). Otherwise,
the number which was called the greatest common measure in the last
sentence is not so in reality.

101. To find the greatest common measure of three numbers, find the g.
c. m. of the first and second, and of this and the third. For since
all common divisors of the first and second are contained in their g.
c. m., and no others, whatever is common to the first, second, and
third, is common also to the third and the g. c. m. of the first and
second, and no others. Similarly, to find the g. c. m. of four numbers,
find the g. c. m. of the first, second, and third, and of that and the fourth.

102. When a first number contains a second, or is divisible by it
without remainder, the first is called a multiple of the second. The
words multiple and measure are thus connected: Since 4 is

a measure of 24, 24 is a multiple of 4. The number 96 is a multiple of
8, 12, 24, 48, and several others. It is therefore called a common
multiple of 8, 12, 24. 48, &c. The product of any two numbers is
evidently a common multiple of both. Thus, 36 × 8, or 288, is a common
multiple of 36 and 8. But there are common multiples of 36 and 8 less
than 288; and because it is convenient, when a common multiple of two
quantities is wanted, to use the least of them, I now shew how to find
the least common multiple of two numbers.

103. Take, for example, 36 and 8. Find their greatest common measure,
which is 4, and observe that 36 is 9 × 4, and 8 is 2 × 4. The quotients
of 36 and 8, when divided by their greatest common measure, are
therefore 9 and 2. Multiply these quotients together, and multiply the
product by the greatest common measure, 4, which gives 9 × 2 × 4, or
72. This is a multiple of 8, or of 4 × 2 by (55); and also of 36 or of
4 × 9. It is also the least common multiple; but this cannot be proved
to you, because the demonstration cannot be thoroughly understood
without more practice in the use of letters to stand for numbers. But
you may satisfy yourself that it is the least in this case, and that
the same process will give the least common multiple in any other case
which you may take. It is not even necessary that you should know it is
the least. Whenever a common multiple is to be used, any one will do as
well as the least. It is only to avoid large numbers that the least is
used in preference to any other.

When the greatest common measure is 1, the least common multiple of the
two numbers is their product.

The rule then is: To find the least common multiple of two numbers,
find their greatest common measure, and multiply one of the numbers by
the quotient which the other gives when divided by the greatest common
measure. To find the least common multiple of three numbers, find the
least common multiple of the first two, and find the least common
multiple of that multiple and the third, and so on.


EXERCISES.



	Numbers proposed.
	Least
 common
 multiple.




	14, 21
	42


	16, 5, 24
	240


	1, 2, 3, 4, 5, 6, 7, 8, 9, 10 
	2520


	6, 8, 11, 16, 20
	2640


	876, 864
	63072


	868, 854
	52948





A convenient mode of finding the least common multiple of several
numbers is as follows, when the common measures are easily visible:
Pick out a number of common measures of two or more, which have
themselves no divisors greater than unity. Write them as divisors,
and divide every number which will divide by one or more of them.
Bring down the quotients, and also the numbers which will not divide
by any of them. Repeat the process with the results, and so on until
the numbers brought down have no two of them any common measure except
unity. Then, for the least common multiple, multiply all the divisors
by all the numbers last brought down. For instance, let it be required
to find the least common multiple of all the numbers from 11 to 21.



	2, 2, 3, 5, 7)
	11 12 13 14 15 16 17 18 19 20 21


	 
	11  1  13   1   1  4  17  3  19   1  1





There are now no common measures left in the row, and the least common
multiple required is the product of 2, 2, 3, 5, 7, 11, 13, 4, 17, 3,
and 19; or 232792560.



SECTION V.

FRACTIONS.



104. Suppose it required to divide 49 yards into five equal parts, or,
as it is called, to find the fifth part of 49 yards. If we divide 45 by 5,
the quotient is 9, and the remainder is 4; that is (72), 49 is made up of
5 times 9 and 4. Let the line a b represent 49 yards:




	A————————————————————B


	 
	C
	———————
	I
	—
	 


	 
	D
	———————
	K
	—
	 


	 
	E
	———————
	L
	—
	 


	 
	F
	———————
	M
	—
	 


	 
	G
	———————
	N
	—
	 







	 
	I
	K
	L
	M
	N


	H
	|
	|
	|
	|
	| |





Take 5 lines, c, d, e, f, and
g, each 9 yards in length, and the line h, 4 yards
in length. Then, since 49 is 5 nines and 4, c, d,
e, f, g, and h, are together equal
to a b. Divide h, which is 4 yards, into five equal
parts, i, k, l, m, and n,
and place one of these parts opposite to each of the lines, c,
d, e, f, and g. It follows that
the ten lines, c, d, e, f,
g, i, k, l, m, n,
are together equal to a b, or 49 yards. Now d
and k together are of the same length as c and
i together, and so are e and l, f
and m, and g and n. Therefore, c
and i together, repeated 5 times, will be 49 yards; that is,
c and i together make up the fifth part of 49 yards.

105. c is a certain number of yards, viz. 9; but i
is a new sort of quantity, to which hitherto we have never come. It
is not an exact number of yards, for it arises from dividing 4 yards
into 5 parts, and taking one of those parts. It is the fifth part of 4
yards, and is called a fraction of a yard. It is written thus,
⁴/₅(23), and is what we must add to 9 yards in order to make up the
fifth part of 49 yards.

The same reasoning would apply to dividing 49 bushels of corn, or 49
acres of land, into 5 equal parts. We should find for the fifth part
of the first, 9 bushels and the fifth part of 4 bushels; and for the
second, 9 acres and the fifth part of 4 acres.

We say, then, once for all, that the fifth part of 49 is 9 and ⁴/₅, or
9 + ⁴/₅; which is usually written (9⁴/₅), or if we use signs, 49/5 =
(9⁴/₅).

EXERCISES.

What is the seventeenth part of 1237?—Answer, (72-¹³/₁₇).




	What are
	10032
	663819
	and
	22773399
	?


	———,
	———,
	————


	1974
	23710
	2424


	 


	Answer,
	162
	 23649
	and
	  2343
	.


	(5 ——),
	(27 ———),
	(9394 ——)


	1974
	 23710
	  2424





106. By the term fraction is understood a part of any number, or the
sum of any of the equal parts into which a number is divided. Thus,
⁴⁹/₅, ⁴/₅, ²⁰/₇, are fractions. The term fraction even includes whole
numbers:[14]
for example, 17 is ¹⁷/₁, ³⁴/₂, ⁵¹/₃, &c.

The upper number is called the numerator, the lower number is
called the denominator, and both of these are called terms of the fraction.
As long as the numerator is less than the denominator, the fraction is
less than a unit: thus, ⁶/₁₇ is less than a unit; for 6 divided into 6 parts
gives 1 for each part, and must give less when divided into 17 parts.
Similarly, the fraction is equal to a unit when the numerator and denominator
are equal, and greater than a unit when the numerator is
greater than the denominator.

107. By ⅔ is meant the third part of 2. This is the same as twice the
third part of 1.

To prove this, let a b be two yards, and divide each of the
yards a c and c b into three equal parts.



	 


	|
	|
	|
	|
	|
	|
	|


	A
	D
	E
	C
	F
	G
	B





Then, because a e, e f, and f b, are all
equal to one another, a e is the third part of 2. It is
therefore ⅔. But a e is twice a d, and a d
is the third part of one yard, or ⅓; therefore ⅔ is twice ⅓; that is,
in order to get the length ⅔, it makes no difference whether we divide
two yards at once into three parts, and take one of
them, or whether we divide one yard into three parts, and take
two of them. By the same reasoning, ⅝ may be found either by
dividing 5 into 8 parts, and taking one of them, or by dividing 1 into
8 parts, and taking five of them. In future, of these two meanings I
shall use that which is most convenient at the time, as it is proved

that they are the same thing. This principle is the same as the
following: The third part of any number may be obtained by adding
together the thirds of all the units of which it consists. Thus, the
third part of 2, or of two units, is made by taking one-third out of
each of the units, that is,

⅔ = ⅓ × 2.

This meaning appears ambiguous when the numerator is greater than the
denominator: thus, ¹⁵/₇ would mean that 1 is to be divided into 7
parts, and 15 of them are to be taken. We should here let as many units
be each divided into 7 parts as will give more than 15 of those parts,
and take 15 of them.

108. The value of a fraction is not altered by multiplying the
numerator and denominator by the same quantity. Take the fraction ¾,
multiply its numerator and denominator by 5, and it becomes ¹⁵/₂₀,
which is the same thing as ¾; that is, one-twentieth part of 15 yards
is the same thing as one-fourth of 3 yards: or, if our second meaning
of the word fraction be used, you get the same length by dividing a
yard into 20 parts and taking 15 of them, as you get by dividing it
into 4 parts and taking 3 of them. To prove this,





let a b represent a yard; divide it into 4 equal parts, a
c, c d, d e, and e b, and divide each
of these parts into 5 equal parts. Then a e is ¾. But the
second division cuts the line into 20 equal parts, of which a
e contains 15. It is therefore ¹⁵/₂₀. Therefore, ¹⁵/₂₀ and ¾ are
the same thing.

Again, since ¾ is made from ¹⁵/₂₀ by dividing both the numerator
and denominator by 5, the value of a fraction is not altered by
dividing both its numerator and denominator by the same quantity. This
principle, which is of so much importance in every part of arithmetic,
is often used in common language, as when we say that 14 out of 21 is 2
out of 3, &c.

109. Though the two fractions ¾ and ¹⁵/₂₀ are the same in value, and

either of them may be used for the other without error, yet the first
is more convenient than the second, not only because you have a
clearer idea of the fourth of three yards than of the twentieth part
of fifteen yards, but because the numbers in the first being smaller,
are more convenient for multiplication and division. It is therefore
useful, when a fraction is given, to find out whether its numerator
and denominator have any common divisors or common measures. In (98)
was given a rule for finding the greatest common measure of any two
numbers; and it was shewn that when the two numbers are divided by
their greatest common measure, the quotients have no common measure
except 1. Find the greatest common measure of the terms of the
fraction, and divide them by that number. The fraction is then said to
be reduced to its lowest terms, and is in the state in which the
best notion can be formed of its magnitude.

EXERCISES.

With each fraction is written the same reduced to its lowest terms.



	2794
	 = 
	22 × 127
	 = 
	22


	2921
	23 × 127
	23


	 


	2788
	 = 
	17 × 164
	 = 
	17


	4920
	30 × 164
	30


	 


	93280
	 = 
	764 × 122
	 = 
	764


	13786
	113 × 122
	113


	 


	888800
	 = 
	22 × 40400
	 = 
	22


	40359600
	999 × 40400
	999


	 


	95469
	 = 
	121 × 789
	 = 
	121


	359784
	456 × 789
	456





110. When the terms of the fraction given are already in
factors,[15]
any one factor in the numerator may be divided by a number, provided
some one factor in the denominator is divided by the same. This follows
from (88) and (108). In the following examples the figures altered by
division are accented.




	12 × 11 × 10
	 = 
	3′ × 11 × 10
	 = 
	1′ × 11 × 5′
	 = 55


	  2 × 3 × 4  
	  2 × 3 × 1′  
	1′ × 1′ × 1′


	 


	18 × 15 × 13
	 = 
	2′ × 3′ × 1′
	 = 
	1′ × 1′ × 1′
	 = ¹/₁₆.


	20 × 54 × 52
	4′ × 6′ × 4′
	2′ × 2′ × 4′


	 


	27 × 28
	 = 
	3′ × 4′ 
	 = 
	3′ × 2′
	 = ⁶/₅.


	 9 × 70
	1′ × 10′
	1′ × 5′





111. As we can, by (108), multiply the numerator and denominator of a
fraction by any number, without altering its value, we can now readily
reduce two fractions to two others, which shall have the same value as
the first two, and which shall have the same denominator. Take, for
example, ⅔ and ⁴/₇; multiply both terms of ⅔ by 7, and both terms of
⁴/₇ by 3. It then appears that



	⅔ is
	2 × 7
	 or ¹⁴/₂₁


	3 × 7


	 


	⁴/₇ is
	4 × 3
	 or ¹²/₂₁


	7 × 3





Here are then two fractions ¹⁴/₂₁ and ¹²/₂₁, equal to ⅔ and ⁴/₇, and
having the same denominator, 21; in this case, ⅔ and ⁴/₇ are said to be
reduced to a common denominator.

It is required to reduce ⅒, ⅚, and ⁷/₉ to a common denominator.
Multiply both terms of the first by the product of 6 and 9; of the
second by the product of 10 and 9; and of the third by the product of
10 and 6. Then it appears (108) that



	⅒ is
	1 × 6 × 9
	 or ⁵⁴/₅₄₀.


	10 × 6 × 9


	 


	⅚ is
	5 × 10 × 9
	 or ⁴⁵⁰/₅₄₀.


	6 × 10 × 9


	 


	⁷/₉ is
	7 × 10 × 6
	 or ⁴²⁰/₅₄₀.


	9 × 10 × 6





On looking at these last fractions, we see that all the numerators and
the common denominator are divisible by 6, and (108) this division will
not alter their values. On dividing the numerators and denominators of
⁵⁴/₅₄₀, ⁴⁵⁰/₅₄₀, and ⁴²⁰/₅₄₀ by 6, the resulting fractions are, ⁹/₉₀,
⁷⁵/₉₀, and ⁷⁰/₉₀. These are fractions with a common denominator, and

which are the same as ⅒, ⅚, and ⁷/₉; and therefore these are a more
simple answer to the question than the first fractions. Observe also
that 540 is one common multiple of 10, 6, and 9, namely, 10 × 6 × 9,
but that 90 is the least common multiple of 10, 6, and 9 (103).
The following process, therefore, is better. To reduce the fractions ⅒,
⅚, and ⁷/₉, to others having the same value and a common denominator,
begin by finding the least common multiple of 10, 6, and 9, by the rule
in (103), which is 90. Observe that 10, 6, and 9 are contained in 90 9,
15, and 10 times. Multiply both terms of the first by 9, of the second
by 15, and of the third by 10, and the fractions thus produced are
⁹/₉₀, ⁷⁵/₉₀, and ⁷⁰/₉₀, the same as before.

If one of the numbers be a whole number, it may be reduced to a
fraction having the common denominator of the rest, by (106).

EXERCISES.



	Fractions proposed
	reduced to a common denominator.




	 
	 


	 
	2
	1
	1
	 
	 
	20
	6
	5
	 


	 
	3
	5
	6
	 
	 
	30
	30
	30
	 


	 
	 


	1
	2
	3
	12
	3
	28
	24
	18
	48
	63


	3
	7
	14
	21
	4
	84
	84
	84
	84
	84


	 
	 


	3
	4
	5
	6
	 
	3000
	400
	50
	6
	 


	10
	100
	1000
	 
	1000
	1000
	1000
	1000
	 


	 
	 


	 
	33
	 
	281
	 
	 
	22341
	 
	106499
	 


	 
	379
	 
	677
	 
	 
	256583
	 
	256583
	 





112. By reducing two fractions to a common denominator, we are able
to compare them; that is, to tell which is the greater and which the
less of the two. For example, take ½ and ⁷/₁₅. These fractions reduced,
without alteration of their value, to a common denominator, are ¹⁵/₃₀
and ¹⁴/₃₁. Of these the first must be the greater, because (107) it may
be obtained by dividing 1 into 30 equal parts and taking 15 of them,
but the second is made by taking 14 of those parts.

It is evident that of two fractions which have the same denominator,
the greater has the greater numerator; and also that of two fractions
which have the same numerator, the greater has the less denominator.

Thus, ⁸/₇ is greater than ⁸/⁹, since the first is a 7th, and the
last only a 9th part of 8. Also, any numerator may be made to belong
to as small a fraction as we please, by sufficiently increasing the
denominator. Thus, ¹⁰/₁₀₀ is ¹/₁₀, ¹⁰/₁₀₀₀ is ¹/₁₀₀, and ¹⁰/₁₀₀₀₀₀₀ is
¹/₁₀₀₀₀₀₀ (108).

We can now also increase and diminish the first fraction by the second.
For the first fraction is made up of 15 of the 30 equal parts into
which 1 is divided. The second fraction is 14 of those parts. The sum
of the two, therefore, must be 15 + 14, or 29 of those parts; that is,
½ + ⁷/₁₅ is ²⁹/₃₀. The difference of the two must be 15-14, or 1 of
those parts; that is, ½-⁷/₁₅ = ¹/₃₀.

113. From the last two articles the following rules are obtained:

I. To compare, to add, or to subtract fractions, first reduce them to
a common denominator. When this has been done, that is the greatest of
the fractions which has the greatest numerator.

Their sum has the sum of the numerators for its numerator, and the
common denominator for its denominator.

Their difference has the difference of the numerators for its
numerator, and the common denominator for its denominator.

EXERCISES.



	1
	 + 
	1
	 + 
	1
	 - 
	1
	 = 
	53


	2
	3
	4
	5
	60


	 


	 
	 
	44
	 - 
	153
	 = 
	18329
	 
	 


	 
	 3 
	427
	1282
	 


	 


	1
	 + 
	8
	 + 
	3
	 - 
	4
	 = 
	1834


	10
	100
	1000
	1000


	 


	2
	 - 
	1
	 + 
	12
	 = 
	253
	 
	 


	7
	13
	91
	 


	 


	1
	 + 
	8
	 + 
	94
	 = 
	3
	 
	 


	2
	16
	188
	2
	 


	 


	 
	 
	163
	 - 
	97
	 = 
	93066
	 
	 


	 
	521
	881
	459001
	 





114. Suppose it required to add a whole number to a fraction, for
example, 6 to ⁴/₉. By (106) 6 is ⁵⁴/₉, and ⁵⁴/₉ + ⁴/₉ is ⁵⁸/⁹; that is,
6 + ⁴/⁹, or as it is usually written, (6⁴/₉), is ⁵⁸/₉. The rule in this
case is: Multiply the whole number by the denominator of the fraction,
and to the product add the numerator of the fraction; the sum will be
the numerator of the result, and the denominator of the fraction will
be its denominator. Thus, (3¼) = ¹³/₄, (22⁵/₉) = ²⁰³/₉, (74²/₅₅) =
⁴⁰⁷²/₅₅. This rule is the opposite of that in (105).



115. From the last rule it appears that



	1723
	907
	 is 
	17230907
	 , 


	10000
	  10000  


	 


	667
	225
	 is 
	667225
	 , 


	 1000 
	  1000  


	 


	and  23
	99
	 is 
	2300099
	 , 


	10000
	  10000  





Hence, when a whole number is to be added to a fraction whose
denominator is 1 followed by ciphers, the number of which is not
less than the number of figures in the numerator, the rule is:
Write the whole number first, and then the numerator of the fraction,
with as many ciphers between them as the number of ciphers
in the denominator exceeds the number of figures in the
numerator. This is the numerator of the result, and the denominator
of the fraction is its denominator. If the number of ciphers in the
denominator be equal to the number of figures in the numerator, write
no ciphers between the whole number and the numerator.

EXERCISES.

Reduce the following mixed quantities to fractions:



	1
	23707
	 ,


	 100000 


	2457
	6
	 ,


	10


	 233
	2210
	 .


	10000





116. Suppose it required to multiply ⅔ by 4. This by (48) is taking ⅔
four times; that is, finding ⅔ + ⅔ + ⅔ + ⅔. This by (112) is ⁸/₃; so
that to multiply a fraction by a whole number the rule is: Multiply the
numerator by the whole number, and let the denominator remain.

117. If the denominator of the fraction be divisible by the whole
number, the rule may be stated thus: Divide the denominator of the
fraction by the whole number, and let the numerator remain. For
example, multiply ⁷/₃₆ by 6. This (116) is ⁴²/₃₆, which, since the
numerator and denominator are now divisible by 6, is (108) the same as ⁷/₆.
It is plain that ⁷/₆ is made from ⁷/₃₆ in the manner stated in the rule.

118. Multiplication has been defined to be the taking as many of one
number as there are units in another. Thus, to multiply 12 by 7 is to
take as many twelves as there are units in 7, or to take 12 as many
times as you must take 1 in order to make 7. Thus, what is done with 1
in order to make 7, is done with 12 to make 7 times 12. For example,



	7
	is
	 1 + 1 + 1 + 1 + 1 + 1 + 1


	7
	 times 12 is
	 12 + 12 + 12 + 12 + 12 + 12 + 12.






When the same thing is done with two fractions, the result is still
called their product, and the process is still called multiplication.
There is this difference, that whereas a whole number is made by adding
1 to itself a number of times, a fraction is made by dividing 1 into a
number of equal parts, and adding one of these parts to itself
a number of times. This being the meaning of the word multiplication,
as applied to fractions, what is ¾ multiplied by ⅞? Whatever is done
with 1 in order to make ⅞ must now be done with ¾; but to make ⅞, 1 is
divided into 8 parts, and 7 of them are taken. Therefore, to make ¾ ×
⅞, ¾ must be divided into 8 parts, and 7 of them must be taken. Now ¾
is, by (108), the same thing as ²⁴/₃₂. Since ²⁴/₃₂ is made by dividing
1 into 32 parts, and taking 24 of them, or, which is the same thing,
taking 3 of them 8 times, if ²⁴/₃₂ be divided into 8 equal parts, each
of them is ³/₃₂; and if 7 of these parts be taken, the result is ²¹/₃₂
(116): therefore ¾ multiplied by ⅞ is ²¹/₃₂; and the same reasoning
may be applied to any other fractions. But ²¹/₃₂ is made from ¾ and ⅞
by multiplying the two numerators together for the numerator, and the
two denominators for the denominator; which furnishes a rule for the
multiplication of fractions.

119. If this product ²¹/₃₂ is to be multiplied by a third fraction, for
example, by ⁵/₉, the result is, by the same rule, ¹⁰⁵/₂₈₈; and so on.
The general rule for multiplying any number of fractions together is
therefore:

Multiply all the numerators together for the numerator of the product,
and all the denominators together for its denominator.

120. Suppose it required to multiply together ¹⁵/₁₆ and ⁸/₁₀. The
product may be written thus:



	15 × 8
	 , and is, 
	120
	 ,


	16 × 10
	 160





which reduced to its lowest terms (109) is ¾. This
result might have been obtained directly, by observing that 15 and 10
are both measured by 5, and 8 and 16 are both measured by 8, and that
the fraction may be written thus:


	  3 × 5 × 8

	2 × 8 × 2 × 5.



Divide both its numerator and denominator by 5
× 8 (108) and (87), and the result is at once ¾; therefore, before
proceeding to multiply any number of fractions together, if there
be any numerator and any denominator, whether belonging to the same
fraction or not, which have a common measure, divide them both by that
common measure, and use the quotients instead of the dividends.


A whole number may be considered as a fraction whose denominator is 1;
thus, 16 is ¹⁶/₁ (106); and the same rule will apply when one or more
of the quantities are whole numbers.

EXERCISES.



	 
	 
	136
	 × 
	268
	 = 
	36448
	 = 
	18224


	 
	7470
	919
	6864930
	3432465


	 


	1
	 × 
	2
	 × 
	3
	 × 
	4
	 = 
	1


	2
	3
	4
	5
	 5 


	 


	 
	 
	 
	 
	2
	 × 
	17
	 = 
	2


	 
	 
	17
	45
	45


	 


	 
	 
	2
	 × 
	13
	 × 
	241
	 = 
	6266


	 
	59
	 7 
	 19 
	7874


	 


	 
	 
	 
	 
	13
	 × 
	601
	 = 
	7813


	 
	 
	461
	 11 
	5071







	Fraction

proposed.
	Square. 
	Cube.




	701
	491401
	  344472101


	158
	 24964 
	  3944312  


	 


	140
	19600
	2744000


	141
	19881
	2803221


	 


	355
	126025
	44738875


	113
	12769
	1442897





From 100 acres of ground, two-thirds of them are taken away; 50 acres
are then added to the result, and ⁵/₇ of the whole is taken; what
number of acres does this produce?—Answer, (59¹¹/₂₁).

121. In dividing one whole number by another, for example, 108 by 9,
this question is asked,—Can we, by the addition of any number of
nines, produce 108? and if so, how many nines will be sufficient for
that purpose?

Suppose we take two fractions, for example, ⅔ and ⅘, and ask, Can we,
by dividing ⅘ into some number of equal parts, and adding a number of
these parts together, produce ⅔? if so, into how many parts
must we divide ⅘, and how many of them must we add together?
The solution of this question is still called the division of ⅔ by ⅘;
and the fraction whose denominator is the number of parts into which ⅘
is divided, and whose numerator is the number of them which is taken,
is called the quotient. The solution of this question is as follows:
Reduce both these fractions to a common denominator (111), which does
not alter their value (108); they then become ¹⁰/₁₅ and ¹²/₁₅. The

question now is, to divide ¹²/₁₅ into a number of parts, and to
produce ¹⁰/₁₅ by taking a number of these parts. Since ¹²/₁₅ is made
by dividing 1 into 15 parts and taking 12 of them, if we divide ¹²/₁₅
into 12 equal parts, each of these parts is ¹/₁₅; if we take 10 of
these parts, the result is ¹⁰/₁₅. Therefore, in order to produce ¹⁰/₁₅
or ⅔ (108), we must divide ¹²/₁₅ or ⅘ into 12 parts, and take 10 of
them; that is, the quotient is ¹⁰/₁₂. If we call ⅔ the dividend, and ⅘
the divisor, as before, the quotient in this case is derived from the
following rule, which the same reasoning will shew to apply to other cases:

The numerator of the quotient is the numerator of the dividend
multiplied by the denominator of the divisor. The denominator of the
quotient is the denominator of the dividend multiplied by the numerator
of the divisor. This rule is the reverse of multiplication, as will be
seen by comparing what is required in both cases. In multiplying ⅘ by
¹⁰/₁₂, I ask, if out of ⅘ be taken 10 parts out of 12, how much of a
unit is taken, and the answer is ⁴⁰/⁶⁰, or ⅔. Again, in dividing ⅔
by ⅘, I ask what part of ⅘ is ⅔, the answer to which is ¹⁰/₁₂.

122. By taking the following instance, we shall see that this rule can
be sometimes simplified. Divide ¹⁶/₃₃ by ²⁸/₁₅. Observe that 16 is 4 ×
4, and 28 is 4 × 7; 33 is 3 × 11, and 15 is 3 × 5; therefore the two
fractions are



	4 × 4
	 and 
	4 × 7
	 ,


	3 × 11
	3 × 5





and their quotient, according to the rule, is


	4 × 4 × 3 × 5

	3 × 11 × 4 × 7,



in which 4 × 3 is found both in the numerator and denominator. The
fraction is therefore (108) the same as



	4 × 5
	 or 
	20
	 


	11 × 7
	77





The rule of the last article, therefore, admits of
this modification: If the two numerators or the two denominators have
a common measure, divide by that common measure, and use the quotients
instead of the dividends.

123. In dividing a fraction by a whole number, for example, ⅔ by 15,
consider 15 as the fraction ¹⁵/₁. The rule gives ²/⁴⁵ as the quotient.
Therefore, to divide a fraction by a whole number, multiply the
denominator by that whole number.


EXERCISES.



	Dividend.
	Divisor.
	Quotient.




	41
	63
	41


	33
	11
	189


	 


	467
	907
	47167


	151
	101
	136957


	 


	7813
	601
	13


	5071
	 11 
	461


	 







	What are
	¹/₅ × ¹/₅ × ¹/₅ - ²/₁₇× ²/₁₇ × ²/₁₇
	 ,


	¹/₅  -  ²/₁₇


	 


	and
	⁸/₁₁ × ⁸/₁₁ - ³/₁₁ × ³/₁₁
	 ?


	⁸/₁₁ - ³/₁₁


	 


	Answer,
	 559
	and 1.


	7225





A can reap a field in 12 days, B in 6, and C in 4 days; in what time
can they all do it together?[16]—Answer, 2 days.

In what time would a cistern be filled by cocks which would separately
fill it in 12, 11, 10, and 9 hours?—Answer, (2⁴⁵⁴/₇₆₃) hours.

124. The principal results of this section may be exhibited
algebraically as follows; let a, b, c, &c. stand
for any whole numbers. Then



	(107)
	a
	 = 
	1
	 × 
	a


	b
	a


	 


	(108)
	a
	 = 
	ma
	 
	 


	b
	ma







	(111)
	a
	 and 
	c
	 are the same as 
	ad
	 and 
	bc


	b
	d
	bd
	bd







	(112)
	a
	 + 
	b
	 = 
	a + b


	c
	c
	c


	 
	a
	 - 
	b
	 = 
	a - b


	c
	c
	c


	 


	(113)
	a
	 + 
	c
	 = 
	ad + bc


	b
	d
	bd


	 
	a
	 - 
	c
	 = 
	ad - bc


	b
	d
	bd


	 


	(118)
	a
	 × 
	c
	 = 
	ac


	b
	d
	bd







	(121)
	a
	 divᵈ. by 
	c
	 or 
	a/b
	 = 
	ad


	b
	d
	c/d
	bc






125. These results are true even when the letters themselves represent
fractions. For example, take the fraction


	a/b

	c/d



whose numerator and denominator are fractional,
and multiply its numerator and denominator by the fraction



	e
	 , which gives  
	ae/bf


	 f 
	ce/df


	 


	 
	which (121) is  
	aedf


	 
	bfce





which, dividing the numerator and denominator
by ef (108), is


	ad

	bc



But the original fraction itself is


	ad

	bc



hence



	a/b
	 = 
	a/b
	 × 
	e/f


	c/d
	c/d
	 × 
	e/f





which corresponds to the second formula[17]
in (124). In a similar manner it may be shewn, that the other formulæ
of the same article are true when the letters there used either
represent fractions, or are removed and fractions introduced in their
place. All formulæ established throughout this work are equally true
when fractions are substituted for whole numbers. For example (54),
(m + n)a = ma + na. Let m,
n, and a be respectively the fractions



	p
	 , 
	r
	 , and 
	b


	 q 
	 s 
	 c 





Then m + n is



	p
	 + 
	r
	,  or  
	ps + qr


	 q 
	 s 
	qs





and (m + n)a is



	ps + qr
	 × 
	b
	,  or  
	(ps + qr)b
	 


	qs
	 c 
	qsc
	 


	 


	or
	 
	psb + qrb
	 .


	 
	qsc


	
	
	
	
	
	


	
	
	
	







	But this (112) is  
	psb
	 + 
	qrb
	, which is  
	pb
	 + 
	rb
	 ,


	qsc
	qsc
	qc
	sc


	 


	since  
	psb
	 = 
	pb
	 , and
	qrb
	 = 
	rb
	  (103).


	qsc
	qc
	qsc
	sc


	 







	But  
	pb
	 = 
	p
	 × 
	b
	, and  
	rb
	 ,
	 = 
	r
	 × 
	b
	.


	qc
	 q 
	 c 
	sc
	 s 
	 c 





Therefore (m + n)a, or



	(
	p
	 + 
	r
	) 
	b
	 = 
	p
	 × 
	b
	 + 
	r
	 × 
	b
	.


	 q 
	 s 
	 c 
	 q 
	 c 
	 s 
	 c 





In a similar manner the same may be proved of any other formula.

The following examples may be useful:



	a
	 × 
	c
	 + 
	e
	 × 
	g
	  =  
	acfh + bdeg


	 b 
	 d 
	 f 
	 h 


	————————
	—————


	a
	 × 
	e
	 + 
	c
	 × 
	g
	aedh + bcfg


	 b 
	 f 
	 d 
	 h 







	1
	 = 
	b


	 
	 1 
	ab + 1


	a
	 + 
	—
	 


	 
	 b 
	 







	1
	 = 
	1
	 = 
	bc + 1


	————————
	——————
	——————


	 
	1
	 
	c
	abc + a + c


	a +
	————
	 
	a +
	———
	 
	 


	1  
	bc + 1
	 


	 
	b +
	—
	 
	 


	c  
	 
	 






Thus,



	1
	 = 
	1
	 = 
	57


	————————
	——————
	———


	 
	1
	 
	8
	350


	6 +
	————
	 
	6 +
	——
	 
	 


	1  
	57  
	 


	 
	7 +
	—
	 
	 


	8  
	 
	 





The rules that have been proved to hold good for all numbers may be
applied when the numbers are represented by letters.



SECTION VI.

DECIMAL FRACTIONS.



126. We have seen (112) (121) the necessity of reducing fractions
to a common denominator, in order to compare their magnitudes. We
have seen also how much more readily operations are performed upon
fractions which have the same, than upon those which have different,
denominators. On this account it has long been customary, in all
those parts of mathematics where fractions are often required, to
use none but such as either have, or can be easily reduced to others
having, the same denominators. Now, of all numbers, those which can
be most easily managed are such as 10, 100, 1000, &c., where 1 is
followed by ciphers. These are called decimal numbers; and a
fraction whose denominator is any one of them, is called a decimal
fraction, or more commonly, a decimal.

127. A whole number may be reduced to a decimal fraction, or one
decimal fraction to another, with the greatest ease. For example,



	94 is 
	940
	 , or 
	9400
	 , or 
	94000
	  (106);


	10
	100
	1000


	 


	 3 
	 is 
	 30 
	 , or 
	 300 
	 , or 
	 3000 
	  (108).


	30
	100
	1000
	10000





The placing of a cipher on the right hand of any number is the same
thing as multiplying that number by 10 (57), and this may be done as
often as we please in the numerator of a fraction, provided it be done
as often in the denominator (108).

128. The next question is, How can we reduce a fraction which is not
decimal to another which is, without altering its value? Take, for
example, the fraction ⁷/₁₆, multiply both the numerator and denominator
successively by 10, 100, 1000, &c., which will give a series of
fractions, each of which is equal to ⁷/₁₆ (108), viz. ⁷⁰/₁₆₀, ⁷⁰⁰/₁₆₀₀,

⁷⁰⁰⁰/₁₆₀₀₀, ⁷⁰⁰⁰⁰/₁₆₀₀₀₀, &c. The denominator of each of these
fractions can be divided without remainder by 16, the quotients of
which divisions form the series of decimal numbers 10, 100, 1000,
10000, &c. If, therefore, one of the numerators be divisible by
16, the fraction to which that numerator belongs has a numerator and
denominator both divisible by 16. When that division has been made,
which (108) does not alter the value of the fraction, we shall have a
fraction whose denominator is one of the series 10, 100, 1000, &c.,
and which is equal in value to ⁷/₁₆. The question is then reduced to
finding the first of the numbers 70, 700, 7000, 70000, &c., which
can be divided by 16 without remainder.

Divide these numbers, one after the other, by 16, as follows:



	16)
	70
	(4
	   
	16)
	700
	(43
	   
	16)
	7000
	(437
	   
	16)
	70000
	(4375


	 
	64
	 
	64
	 
	64
	 
	64


	 
	  6
	 
	  60
	 
	  60
	 
	  60


	 
	  48
	 
	  48
	 
	  48


	 
	  12
	 
	  120
	 
	  120


	 
	  112
	 
	  112


	 
	8
	 
	80


	 
	80


	 
	0





It appears, then, that 70000 is the first of the numerators which is
divisible by 16. But it is not necessary to write down each of these
divisions, since it is plain that the last contains all which came
before. It will do, then, to proceed at once as if the number of
ciphers were without end, to stop when the remainder is nothing, and
then count the number of ciphers which have been used. In this case,
since 70000 is 16 × 4375,



	70000
	 , which is  
	16 × 4375
	 , or  
	4375
	 ,


	160000
	16 × 10000
	10000





gives the fraction required.

Therefore, to reduce a fraction to a decimal fraction, annex ciphers
to the numerator, and divide by the denominator until there is no
remainder. The quotient will be the numerator of the required fraction,
and the denominator will be unity, followed by as many ciphers as were
used in obtaining the quotient.


EXERCISES.

Reduce to decimal fractions

½, ¼, ²/₂₅, ¹/₅₀, ³⁹²⁷/₁₂₅₀,
and ⁴⁵³/₆₂₅.

Answer, ⁵/₁₀, ²⁵/₁₀₀, ⁸/₁₀₀, ²/₁₀₀, ³¹⁴¹⁶/₁₀₀₀₀,
and ⁷²⁴⁸/₁₀₀₀₀.

129. It will happen in most cases that the annexing of ciphers to
the numerator will never make it divisible by the denominator without
remainder. For example, try to reduce ¹/₇ to a decimal fraction.


	7)1000000000000000000, &c.

	142857142857142857, &c.


The quotient here is a continual repetition of the figures 1, 4, 2, 8,
5, 7, in the same order; therefore ¹/₇ cannot be reduced to a decimal
fraction. But, nevertheless, if we take as a numerator any number of
figures from the quotient 142857142857, &c., and as a denominator
1 followed by as many ciphers as were used in making that part of the
quotient, we shall get a fraction which differs very little from ¹/₇,
and which will differ still less from it if we put more figures in the
numerator and more ciphers in the denominator.

Thus,



	1
	
	is less
	
	1
	 by 
	3
	
	which is not
	
	1


	10
	than
	 7 
	70
	so much as
	10


	14
	 
	1
	 
	2
	 
	1


	100
	 7 
	700
	100


	142
	1
	6
	1


	1000
	 7 
	7000
	1000


	1428
	1
	4
	1


	10000
	 7 
	70000
	10000


	14285
	1
	5
	1


	100000
	 7 
	700000
	100000


	142857
	1
	1
	1


	1000000
	 7 
	7000000
	1000000


	&c.
	&c.
	&c.
	&c.





In the first column is a series of decimal fractions, which come nearer
and nearer to ¹/₇, as the third column shews. Therefore, though we
cannot find a decimal fraction which is exactly ¹/₇, we can find one
which differs from it as little as we please.


This may also be illustrated thus: It is required to reduce ¹/₇ to
a decimal fraction without the error of say a millionth of a unit;
multiply the numerator and denominator of ¹/₇ by a million, and then
divide both by 7; we have then



	1
	 = 
	1000000
	 = 
	1428571¹/₇


	 7 
	7000000
	1000000





If we reject the fraction ¹/₇ in the numerator, what we reject is
really the 7th part of the millionth part of a unit; or less than the
millionth part of a unit. Therefore ¹⁴²⁸⁵⁷/₁₀₀₀₀₀₀ is the fraction
required.

EXERCISES.



	Make similar tables
	
	3
	,  
	17
	, and 
	1
	 .


	with these fractions
	 91 
	143
	247







	The recurring 
	
	3
	 is 
	329670,329670, &c.


	quotient of 
	91


	 
	17
	 
	118881,118881, &c.


	143


	 
	1
	 
	404858299595141700,4048582 &c.


	247





130. The reason for the recurrence of the figures of the
quotient in the same order is as follows: If 1000, &c. be divided by
the number 247, the remainder at each step of the division is less than
247, being either 0, or one of the first 246 numbers. If, then, the
remainder never become nothing, by carrying the division far enough,
one remainder will occur a second time. If possible, let the first
246 remainders be all different, that is, let them be 1, 2, 3, &c.,
up to 246, variously distributed. As the 247th remainder cannot be so
great as 247, it must be one of these which have preceded. From the
step where the remainder becomes the same as a former remainder, it is
evident that former figures of the quotient must be repeated in the
same order.

131. You will here naturally ask, What is the use of decimal
fractions, if the greater number of fractions cannot be reduced at
all to decimals? The answer is this: The addition, subtraction,
multiplication, and division of decimal fractions are much easier than

those of common fractions; and though we cannot reduce all common
fractions to decimals, yet we can find decimal fractions so near to
each of them, that the error arising from using the decimal instead
of the common fraction will not be perceptible. For example, if we
suppose an inch to be divided into ten million of equal parts, one of
those parts by itself will not be visible to the eye. Therefore, in
finding a length, an error of a ten-millionth part of an inch is of no
consequence, even where the finest measurement is necessary. Now, by
carrying on the table in (129), we shall see that



	1428571
	 does not differ from 
	1
	 by 
	1
	 ;


	10000000
	 7 
	10000000





and if these fractions represented parts of an
inch, the first might be used for the second, since the difference is
not perceptible. In applying arithmetic to practice, nothing can be
measured so accurately as to be represented in numbers without any
error whatever, whether it be length, weight, or any other species of
magnitude. It is therefore unnecessary to use any other than decimal
fractions, since, by means of them, any quantity may be represented
with as much correctness as by any other method.

EXERCISES.

Find decimal fractions which do not differ from the following fractions
by ¹/₁₀₀₀₀₀₀₀₀.



	⅓
	  Answer, 
	³³³³³³³³/₁₀₀₀₀₀₀₀₀.


	⁴/₇
	⁵⁷¹⁴²⁸⁵⁷/₁₀₀₀₀₀₀₀₀.


	¹¹³/₃₅₅
	³¹⁸³⁰⁹⁸⁵/₁₀₀₀₀₀₀₀₀.


	³⁵⁵/₁₁₃
	³¹⁴¹⁵⁹²⁹²/₁₀₀₀₀₀₀₀₀.





132. Every decimal may be immediately reduced to a quantity consisting
either of a whole number and more simple decimals, or of more
simple decimals alone, having one figure only in each of the numerators.
Take, for example,



	147326
	.  By (115) 
	147326
	 is 147
	326
	 ;


	1000
	1000
	1000





and since 326 is made up of 300, and 20, and 6; by (112)
³²⁶/₁₀₀₀₀ = ³⁰⁰/₁₀₀₀ + ²⁰/₁₀₀₀ + ⁶/₁₀₀₀. But (108) ³⁰⁰/₁₀₀₀ is ³/₁₀, and ²⁰/₁₀₀₀
is ²/₁₀₀. Therefore, ¹¹⁴⁷³²6/₁₀₀₀ is made up of 147 + ³/₁₀ + ²/₁₀₀ +
6/₁₀₀₀. Now, take any number, for example, 147326, and form a number
of fractions having for their numerators this number, and for their

denominators 1, 10, 100, 1000, 10000, &c., and
reduce these fractions into numbers and more simple decimals, in the
foregoing manner, which will give the table below.

DECOMPOSITION OF A DECIMAL FRACTION.



	147326
	 = 
	147326
	 


	1     


	147326
	 = 
	14732
	 + 
	6
	 


	10    
	10


	147326
	 = 
	1473
	 + 
	2
	 + 
	6
	 


	100   
	10
	100


	147326
	 = 
	147
	 + 
	3
	 + 
	2
	 + 
	6
	 


	1000  
	10
	100
	1000


	147326
	 = 
	14
	 + 
	7
	 + 
	3
	 + 
	2
	 + 
	6
	 


	10000 
	10
	100
	1000
	10000


	147326
	 = 
	1
	 + 
	4
	 + 
	7
	 + 
	3
	 + 
	2
	 + 
	6
	 


	100000
	10
	100
	1000
	10000
	100000


	147326 
	 = 
	 
	 
	1
	 + 
	4
	 + 
	7
	 + 
	3
	 + 
	2
	 + 
	6
	 
	 


	1000000
	 
	10
	100
	1000
	10000
	100000
	1000000
	 


	147326  
	 = 
	 
	 
	 
	 
	1
	 + 
	4
	 + 
	7
	 + 
	3
	 + 
	2
	 + 
	6


	10000000
	 
	 
	100
	1000
	10000
	100000
	1000000
	10000000





N.B. The student should write this table himself,
and then proceed to make similar tables from the following exercises.

EXERCISES.

Reduce the following fractions into a series of numbers and more simple
fractions:



	31415926
	, 
	31415926
	,&c.


	10
	100


	2700031
	, 
	2700031
	,&c.


	10
	100


	2073000
	, 
	2073000
	,&c.


	10
	100


	3331303
	, 
	3331303
	,&c.


	1000
	10000





133. If, in this table, and others made in the same manner, you look at
those fractions which contain a whole number, you will see that they may

be made thus: Mark off, from the right hand of the numerator, as many
figures as there are ciphers in the denominator by a
point, or any other convenient mark.



	This will give
	14732·6
	when the fraction is
	147326


	10


	 
	1473·26
	 
	147326


	100


	 
	147·326
	 
	147326


	1000


	 
	&c.
	 
	&c.





The figures on the left of the point by themselves make the whole
number which the fraction contains. Of those on its right, the first
is the numerator of the fraction whose denominator is 10, the second
of that whose denominator is 100, and so on. We now come to those
fractions which do not contain a whole number.

134. The first of these is ¹⁴⁷³²⁶/₁₀₀₀₀₀₀ which the number of
ciphers in the denominator is the same as the number of
figures in the numerator. If we still follow the same rule, and
mark off all the figures, by placing the point before them all, thus,
·147326, the observation in (133) still holds good; for, on looking at
¹⁴⁷³²⁶/₁₀₀₀₀₀₀ in the table, we find it is



	1
	 + 
	4
	 + 
	7
	 + 
	3
	 + 
	2
	 + 
	6


	10
	100
	1000
	10000
	100000
	1000000





The next fraction is ¹⁴⁷³²⁶/₁₀₀₀₀₀₀₀, which we find by the table to be



	1
	 + 
	4
	 + 
	7
	 + 
	3
	 + 
	2
	 + 
	6


	100
	1000
	10000
	100000
	1000000
	10000000





In this, 1 is not divided by 10, but by 100; if, therefore, we put a
point before the whole, the rule is not true, for the first figure on
the left of the point has the denominator which, according to the rule,
the second ought to have, the second that which the third ought to
have, and so on. In order to keep the same rule for this case, we must
contrive to make 1 the second figure on the right of the point instead
of the first. This may be done by placing a cipher between it and the

point, thus, ·0147326. Here the rule holds good, for by that rule this
fraction is



	0
	 + 
	1
	 + 
	4
	 + 
	7
	 + 
	3
	 + 
	2
	 + 
	6


	10
	100
	1000
	10000
	100000
	1000000
	10000000





which is the same as the preceding line, since ⁰/₁₀ is 0,
and need not be reckoned.

Similarly, when there are two ciphers more in the denominator than
there are figures in the numerator, the rule will be true if we place
two ciphers between the point and the numerator. The rule, therefore,
stated fully, is this:

To reduce a decimal fraction to a whole number and more simple
decimals, or to more simple decimals alone if it do not contain a whole
number, mark off by a point as many figures from the numerator as
there are ciphers in the denominator. If the numerator have not places
enough for this, write as many ciphers before it as it wants places,
and put the point before these ciphers. Then, if there be any figures
before the point, they make the whole number which the fraction
contains. The first figure after the point with the denominator 10, the
second with the denominator 100, and so on, are the fractions of
which the first fraction is composed.

135. Decimal fractions are not usually written at full length. It is
more convenient to write the numerator only, and to cut off from the
numerator as many figures as there are ciphers in the denominator,
when that is possible, by a point. When there are more ciphers in the
denominator than figures in the numerator, as many ciphers are placed
before the numerator as will supply the deficiency, and the point is
placed before the ciphers. Thus, ·7 will be used in future to denote
⁷/₁₀, ·07 for ⁷/₁₀₀, and so on. The following tables will give the
whole of this notation at one view, and will shew its connexion with
the decimal notation explained in the first section. You will observe
that the numbers on the right of the units’ place stand for units
divided by 10, 100, 1000, &c. while those on the left are
units multiplied by 10, 100, 1000, &c.


The student is recommended always to write the decimal point in a line
with the top of the figures or in the middle, as is done here, and
never at the bottom. The reason is, that it is usual in the higher
branches of mathematics to use a point placed between two numbers
or letters which are multiplied together; thus, 15. 16, a.
b, (a + b). (c + d)
stand for the products of those numbers or letters.



	I.  
	123·4  stands for
	1234
	or 123
	4
	or 123 +
	4
	 


	10
	10
	10
	 


	12·34
	1234
	or 12
	34
	or 12 +
	3
	 + 
	4
	 


	100
	100
	10
	100
	 


	1·234
	1234
	or 1
	234
	or 1 +
	2
	 + 
	3
	 + 
	4
	 


	1000
	1000
	10
	100
	1000
	 


	·1234
	1234
	 
	 
	or
	1
	 + 
	2
	 + 
	3
	 + 
	4
	 


	10000
	 
	10
	100
	1000
	10000
	 


	·01234
	1234
	 
	 
	or
	 
	 
	1
	 + 
	2
	 + 
	3
	 + 
	4
	 


	100000
	 
	 
	100
	1000
	10000
	100000
	 


	·001234
	1234
	 
	 
	or
	 
	 
	 
	 
	1
	 + 
	2
	 + 
	3
	 + 
	4


	1000000
	 
	 
	 
	1000
	10000
	100000
	1000000








	II.  
	·01003  is 
	1003
	 or 
	1
	 + 
	3


	100000
	100
	100000


	·1003  is 
	1003
	 or 
	1
	 + 
	3


	10000
	 10 
	10000


	10·03  is 
	1003
	 or 
	10
	 + 
	3


	100
	100


	100·3  is 
	1003
	 or 
	100
	 + 
	3


	10
	10








	III.  
	·1238 
	 = 
	1
	 + 
	2
	 + 
	8
	 + 
	3


	10
	100
	1000
	10000


	 = 
	 ·1
	 + 
	·02
	 + 
	·008
	 + 
	·0003


	 = 
	 ·1
	 + 
	·0283
	 = 
	·12
	 + 
	·0083


	 = 
	 ·128
	 + 
	·0003
	 = 
	·108
	 + 
	·0203


	 = 
	 ·1003
	 + 
	·028
	 = 
	·1203
	 + 
	·008
                 








	IV.  
	In 1234·56789 

inches the 
	 
	1 is 
	1000
	inches


	2 is 
	200
	 


	3 is 
	30
	 


	4 is 
	4
	 


	5 is 
	⁵/₁₀
	of an inch


	6 is 
	⁶/₁₀₀
	 


	7 is 
	⁷/₁₀₀₀
	 


	8 is 
	⁸/₁₀₀₀₀
	 


	9 is 
	⁹/₁₀₀₀₀₀
	 





136. The ciphers on the right hand of the
decimal point serve the same purpose as the ciphers in (10). They are
not counted as any thing themselves, but serve to shew the place in
which the accompanying numbers stand. They might be dispensed with by
writing the numbers in ruled columns, as in the first section. They
are distinguished from the numbers which accompany them by calling the
latter significant figures. Thus, ·0003747 is a decimal of seven
places with four significant figures, ·346 is a decimal of three places
with three significant figures, &c.

137. The value of a decimal is not altered by putting any number of
ciphers on its right. Take, for example, ·3 and ·300. The first (135)
is ³/₁₀, and the second ³⁰⁰/₁₀₀₀, which is made
from the first by multiplying both its numerator and denominator by
100, and (108) is the same quantity.

138. To reduce two decimals to a common denominator, put as many
ciphers on the right of that which has the smaller number of places
as will make the number of places in both fractions the same. Take,
for example, ·54 and 4·3297. The first is ⁵⁴/₁₀₀, and the second
⁴³²⁹⁷/₁₀₀₀₀. Multiply the numerator and denominator of
the first by 100 (108), which reduces it to ⁵⁴⁰⁰/₁₀₀₀₀,
which has the same denominator as ⁴³²⁹⁷/₁₀₀₀₀. But
⁵⁴⁰⁰/₁₀₀₀₀ is ·5400 (135). In whole numbers, the  decimal point should
be placed at the end: thus, 129 should be written 129·. It is,
however, usual to omit the point; but you must recollect that 129 and
129·000 are of the same value, since the first is 129 and the second
¹²⁹⁰⁰⁰/₁₀₀₀.

139. The rules which were given in the last chapter for addition,
subtraction, multiplication, and division, apply to all fractions, and
therefore to decimal fractions among the rest. But the way of writing
decimal fractions, which is explained in this chapter, makes the
application of these rules more simple. We proceed to the different cases.

Suppose it required to add 42·634, 45·2806, 2·001, and 54. By (112)
these must be reduced to a common denominator, which is done (138) by
writing them as follows: 42·6340, 45·2806, 2·0010, and 54·0000. These
are decimal fractions, whose numerators are 426340, 452806, 20010, and
540000, and whose common denominator is 10000. By (112) their sum is



	426340 + 452806 + 20010 + 540000
	 , which is  
	1439156


	10000
	10000





or 143·9156. The simplest way of doing this is as
follows: write the decimals down under one another, so that the decimal
points may fall under one another, thus:


	42·634

	45·2806

	 2·001

	54

	143·9156



Add the different columns together as in common addition, and place the
decimal point under the other decimal points.

EXERCISES.



	What are
	1527 + 64·732094 + 2·0013 + ·00001974;


	 
	2276·3 + ·107 + ·9 + 26·3172 + 56732·001;


	and
	  1·11 + 7·7 + ·0039 + ·00142 + ·8838?


	 


	Answer,
	1593·73341374, 59035·6252, 9·69912.





140. Suppose it required to subtract 91·07324 from 137·321. These
fractions when reduced to a common denominator are 91·07324 and
137·32100 (138). Their difference is therefore



	13732100 - 9107324
	 , which is  
	4624776


	100000
	100000






or 46·24776. This may be most simply done as follows: write the less
number under the greater, so that its decimal point may fall under that
of the greater, thus:


	137·321

	 91·07324

	 46·24776



Subtract the lower from the upper line, and
wherever there is a figure in one line and not in the other, proceed as
if there were a cipher in the vacant place.

EXERCISES.



	What is
	12362 - 274·22107 + ·5;


	 
	9976·2073942 - ·00143976728;


	and
	1·2 + ·03 + ·004 - ·0005?


	 


	Answer,
	12088·27893, 9976·20595443272; and 1·2335.





141. The multiplication of a decimal by 10, 100, 1000, &c.,
is performed by merely moving the decimal point to the right.
Suppose, for example, 13·2079 is to be multiplied by 100. The
decimal is ¹³²⁰⁷⁹/₁₀₀₀₀, which multiplied by 100 is
(117) ¹³²⁰⁷⁹/₁₀₀, or 1320·79. Again, 1·309 × 100000 is
¹³⁰⁹/₁₀₀₀ × 100000, or (116) ¹³⁰⁹⁰⁰⁰⁰⁰/₁₀₀₀ or
130900. From these and other instances we get the following rule: To
multiply a decimal fraction by a decimal number (126), move the decimal
point as many places to the right as there are ciphers in the decimal
number. When this cannot be done, annex ciphers to the right of the
decimal (137) until it can.

142. Suppose it required to multiply 17·036 by 4·27. The
first of these decimals is ¹⁷⁰³⁶/₁₀₀₀, and the second
⁴²⁷/₁₀₀. By (118) the product of these fractions has
for its numerator the product of 17036 and 427, and for its
denominator the product of 1000 and 100; therefore this product is
⁷²⁷⁴³⁷²/₁₀₀₀₀₀, or 72·74372. This may be done more shortly
by multiplying the two numbers 17036 and 427, and cutting off by the
decimal point as many places as there are decimal places both in 17·036
and 4·27, because the product of two decimal numbers will contain as
many ciphers as there are ciphers in both.


143. This question now arises: What if there should not be as many
figures in the product as there are decimal places in the multiplier
and multiplicand together? To see what must be done in this case,
multiply ·172 by ·101, or ¹⁷²/₁₀₀₀ by ¹⁰¹/₁₀₀₀.
The product of these two is ¹⁷³⁷²/₁₀₀₀₀₀₀, or ·017372 (135).
Therefore, when the number of places in the product is not sufficient
to allow the rule of the last article to be followed, as many ciphers
must be placed at the beginning as will make up the deficiency.

ADDITIONAL EXAMPLES.



	·001 × ·01 is
	·00001


	56 × ·0001 is
	·0056.





EXERCISES.

Shew that



	3·002 × 3·002
	 = 
	3 × 3 + 2 × 3 × ·002 + ·002 × ·002


	11·5609 × 5·3191
	 = 
	8·44 × 8·44 - 3·1209 × 3·1209


	8·217 × 10·001
	 = 
	8 × 10 + 8 × ·001 + 10 × ·217 + ·001 × ·217.







	Fraction.
	Square.
	Cube.




	82·92
	6875·7264
	570135·233088


	·0173
	·00029929
	·000005177717


	1·43
	2·0449
	2·924207


	·009
	·000081
	·000000729







	15·625
	 × 
	 64
	 = 
	1000


	1·5625
	 × 
	·64
	 = 
	1


	·015625
	 × 
	·0064
	 = 
	·0001


	·15625
	 × 
	·64
	 = 
	·1


	1562·5
	 × 
	·064
	 = 
	100


	15625000
	 × 
	·064
	 = 
	1000000





144. The division of a decimal by a decimal number, such as 10, 100,
1000, &c., is performed by moving the decimal point as many places to
the left as there are ciphers in the decimal number. If there are not
places enough in the dividend to allow of this, annex ciphers to the
beginning of it until there are. For example, divide 1734·229 by 1000:
the decimal fraction is ¹⁷³⁴²²⁹/₁₀₀₀, which divided by 1000 (123) is
¹⁷³⁴²²⁹/₁₀₀₀₀₀₀, or 1·734229. If, in the same way, 1·2106 be divided by
10000, the result is ·00012106.


145. Before proceeding to shorten the rule for the division of one
decimal fraction by another, it will be necessary to resume what was
said in (128) upon the reduction of any fraction to a decimal fraction.
It was there shewn that ⁷/₁₆ is the same fraction as ⁴³⁷⁵/₁₀₀₀₀ or ·4375.
As another example, convert ³/₁₂₈ into a decimal fraction. Follow the
same process as in (128), thus:


	128)300000000000(234375

	256

	440

	384

	560

	512

	480

	384

	960

	896

	640

	640

	0



Since 7 ciphers are used, it appears that 30000000 is the first of the
series 30, 300, &c., which is divisible by 128; and therefore ³/₁₂₈
or, which is the same thing (108), ³⁰⁰⁰⁰⁰⁰⁰/₁₂₈₀₀₀₀₀₀₀ is equal to
²³⁴³⁷⁵/₁₀₀₀₀₀₀₀ or ·0234375 (135).

From these examples the rule for reducing a fraction to a decimal is:
Annex ciphers to the numerator; divide by the denominator, and annex
a cipher to each remainder after the figures of the numerator are all
used, proceeding exactly as if the numerator had an unlimited number
of ciphers annexed to it, and was to be divided by the denominator.
Continue this process until there is no remainder, and observe how many
ciphers have been used. Place the decimal point in the quotient so as
to cut off as many figures as you have used ciphers; and if there be
not figures enough for this, annex ciphers to the beginning until there
are places enough.

146. From what was shewn in (129), it appears that it is not every
fraction which can be reduced to a decimal fraction. It was there
shewn, however, that there is no fraction to which we may not find a
decimal fraction as near as we please. Thus, ¹/₁₀, ¹⁴/₁₀₀, ¹⁴²/₁₀₀₀,
¹⁴²⁸/₁₀₀₀₀, ¹⁴²⁸⁵/₁₀₀₀₀₀, &c., or ·1, ·14, ·142, ·1428, ·14285, were
shewn to be fractions which approach nearer and nearer to ¹/₇. To find
either of these fractions, the rule is the same as that in the last

article, with this exception, that, I. instead of stopping when there
is no remainder, which never happens, stop at any part of the process,
and make as many decimal places in the quotient as are equal in number
to the number of ciphers which have been used, annexing ciphers to the
beginning when this cannot be done, as before. II. Instead of obtaining
a fraction which is exactly equal to the fraction from which we set
out, we get a fraction which is very near to it, and may get one still
nearer, by using more of the quotient. Thus, ·1428 is very near to ¹/₇,
but not so near as ·142857; nor is this last, in its turn, so near as
·142857142857, &c.

147. If there should be ciphers in the numerator of a fraction, these
must not be reckoned with the number of ciphers which are necessary in
order to follow the rule for changing it into a decimal fraction. Take,
for example, ¹⁰⁰/₁₂₅; annex ciphers to the numerator, and divide by the
denominator. It appears that 1000 is divisible by 125, and that the
quotient is 8. One cipher only has been annexed to the numerator, and
therefore 100 divided by 125 is ·8. Had the fraction been ¹/₁₂₅, since
1000 divided by 125 gives 8, and three ciphers would have been annexed
to the numerator, the fraction would have been ·008.

148. Suppose that the given fraction has ciphers at the right of its
denominator; for example, ³¹/₂₅₀₀. Then annexing a cipher to the
numerator is the same thing as taking one away from the denominator;
for, (108) ³¹⁰/₂₅₀₀ is the same thing as ³¹/₂₅₀, and ³¹⁰/₂₅₀
as ³¹/₂₅. The rule, therefore, is in this case: Take away the ciphers
from the denominator.

EXERCISES.

Reduce the following fractions to decimal fractions:



	1
	,
	36
	,
	297
	, and
	1
	 .


	800
	1250
	64
	128


	 


	Answer, ·00125, ·0288, 4·640625,


	and
	·0078125.





Find decimals of 6 places very near to the following fractions:




	27
	,
	156
	,
	22
	,
	194
	,
	2637
	,
	1
	,
	1
	, and
	3
	.


	49
	33
	37000
	13
	9907
	2908
	466
	277


	 


	Answer,
	·551020, 4·727272, ·000594, 14·923076, ·266175,


	 
	·000343,  ·002145,  and ·010830.





149. From (121) it appears, that if two fractions have the same
denominator, the first may be divided by the second by dividing the
numerator of the first by the numerator of the second. Suppose it
required to divide 17·762 by 6·25. These fractions (138), when reduced
to a common denominator, are 17·762 and 6·250, or ¹⁷⁷⁶²/₁₀₀₀ and
⁶²⁵⁰/₁₀₀₀. Their quotient is therefore ¹⁷⁷⁶²/₆₂₅₀, which must now be
reduced to a decimal fraction by the last rule. The process at full
length is as follows: Leave out the cipher in the denominator, and
annex ciphers to the numerator, or, which will do as well, to the
remainders, when it becomes necessary, and divide as in (145).


	625)17762(284192

	1250

	5262

	5000

	2620

	2500

	1200

	 625

	5750

	5625

	1250

	1250

	0



Here four ciphers have been annexed to the numerator, and one has been
taken from the denominator. Make five decimal places in the quotient,
which then becomes 2·84192, and this is the quotient of 17·762 divided
by 6·25.

150. The rule for division of one decimal by another is as follows:
Equalise the number of decimal places in the dividend and divisor,
by annexing ciphers to that which has fewest places. Then, further,
annex as many ciphers to the dividend[18]
as it is required to have decimal places, throw away the decimal point,
and operate as in common division. Make the required number of decimal
places in the quotient.

Thus, to divide 6·7173 by ·014 to three decimal places, I first write
6·7173 and ·0140, with four places in each. Having to provide for three
decimal places, I should annex three ciphers to 6·7173; but, observing

that the divisor ·0140 has one cipher, I strike that one out and annex
two ciphers to 6·7173. Throwing away the decimal points, then divide
6717300 by 014 or 14 in the usual way, which gives the quotient 479807
and the remainder 2. Hence 479·807 is the answer.

The common rule is: Let the quotient contain as many decimal places
as there are decimal places in the dividend more than in the divisor.
But this rule becomes inoperative except when there are more decimals
in the dividend than in the divisor, and a number of ciphers must
be annexed to the former. The rule in the text amounts to the same
thing, and provides for an assigned number of decimal places. But the
student is recommended to make himself familiar with the rule of the
characteristic given in the Appendix,
and also to accustom himself to reason out the place of the
decimal point. Thus, it should be visible, that 26·119 ÷ 7·2436 has
one figure before the decimal point, and that 26·119 ÷ 724·36 has one
cipher after it, preceding all significant figures.

Or the following rule may be used: Expunge the decimal point of the
divisor, and move that of the dividend as many places to the right
as there were places in the divisor, using ciphers if necessary.
Then proceed as in common division, making one decimal place in the
quotient for every decimal place of the final dividend which is used.
Thus 17·314 divided by 61·2 is 173·14 divided by 612, and the decimal
point must precede the first figure of the quotient. But 17·314 divided
by 6617·5 is 173·14 by 66175; and since three decimal places of
173·14000 ... must be used before a quotient figure can be found, that
quotient figure is the third decimal place, or the quotient is ·002.....

EXAMPLES.



	3·1
	 = 1240, 
	·00062
	 = ·00096875


	·0025
	·64





EXERCISES.

Shew that



	15·006 × 15·006 - ·004 × ·004
	 = 15·002,


	15·01





and that



	·01 × ·01 × ·01 + 2·9 × 2·9 × 2·9
	 = 2·9 × 2·9 - 2·9 × ·01 + ·01 × ·01


	2·91





What are



	1
	, 
	1
	, and 
	365
	,


	3·14159
	2·7182818
	·18349





as far as 6 places of decimals?—Answer,
·318310, ·367879, and 1989·209221.

Calculate 10 terms of each of the following series, as far as 5 places
of decimals.



	1
	 + 
	1
	 + 
	1
	 + 
	1
	 + 
	1
	 + &c. =
	 ·71824.


	 2 
	2 × 3
	2 × 3 × 4
	2 × 3 × 4 × 5







	 
	1
	 + 
	1
	 + 
	1
	 + 
	1
	 + 
	1
	 + &c. =
	 2·92895.


	 2 
	 3 
	 4 
	 5 


	 
	80
	 + 
	81
	 + 
	82
	 + 
	83
	 + 
	84
	 + &c. =
	 9·88286.


	81
	82
	83
	84
	85





151. We now enter upon methods by which unnecessary trouble is saved in
the computation of decimal quantities. And first, suppose a number of
miles has been measured, and found to be 17·846217 miles. If you were
asked how many miles there are in this distance, and a rough answer
were required which should give miles only, and not parts of miles,
you would probably say 17. But this, though the number of whole miles
contained in the distance, is not the nearest number of miles; for,
since the distance is more than 17 miles and 8 tenths, and therefore
more than 17 miles and a half, it is nearer the truth to say, it is 18
miles. This, though too great, is not so much too great as the other
was too little, and the error is not so great as half a mile. Again,
if the same were required within a tenth of a mile, the correct answer
is 17·8; for though this is too little by ·046217, yet it is not so
much too little as 17·9 is too great; and the error is less than half
a tenth, or ¹/₂₀. Again, the same distance, within a hundredth of a
mile, is more correctly 17·85 than 17·84, since the last is too little
by ·006217, which is greater than the half of ·01; and therefore 17·84
+ ·01 is nearer the truth than 17·84. Hence this general rule: When a
certain number of the decimals given is sufficiently accurate for the
purpose, strike off the rest from the right hand, observing, if the
first figure struck off be equal to or greater than 5, to increase the
last remaining figure by 1.

The following are examples of a decimal abbreviated by one place
at a time.



3·14159, 3·1416, 3·142, 3·14, 3·1, 3·0

2·7182818, 2·718282, 2·71828, 2·7183, 2·718, 2·72, 2·7, 3·0

1·9919, 1·992, 1·99, 2·00, 2·0

152. In multiplication and division it is useless to retain more
places of decimals in the result than were certainly correct in
the multiplier, &c., which gave that result. Suppose, for example,
that 9·98 and 8·96 are distances in inches which have been measured
correctly to two places of decimals, that is, within half a hundredth
of an inch each way. The real value of that which we call 9·98 may be
any where between 9·975 and 9·985, and that of 8·96 may be any where
between 8·955 and 8·965. The product, therefore, of the numbers which
represent the correct distances will lie between 9·975 × 8·955 and
9·985 × 8·965, that is, taking three decimal places in the products,
between 89·326 and 89·516. The product of the actual numbers given
is 89·4208. It appears, then, that in this case no more than the
whole number 89 can be depended upon in the product, or, at most,
the first place of decimals. The reason is, that the error made in
measuring 8·96, though only in the third place of decimals, is in
the multiplication increased at least 9·975, or nearly 10 times;
and therefore affects the second place. The following simple rule
will enable us to judge how far a product is to be depended upon.
Let a be the multiplier, and b the multiplicand; if
these be true only to the first decimal place, the product is within
(a + b)/20[19]
of the truth; if to two decimal places, within (a +
b)/200; if to three, within (a + b)/2000; and so
on. Thus, in the above example, we have 9·98 and 8·96, which are true
to two decimal places: their sum divided by 200 is ·0947, and their
product is 89·4208, which is therefore within ·0947 of the truth. If,
in fact, we increase and diminish 89·4208 by ·0947, we get 89·5155
and 89·3261, which are very nearly the limits found within which the
product must lie. We see, then, that we cannot in this case depend upon
the first place of decimals, as (151) an error of ·05 cannot exist if
this place be correct; and here is a possible error of ·09 and upwards.

It is hardly necessary to say, that if the numbers given be exact,
their product is exact also, and that this article applies where the
numbers given are correct only to a certain number of decimal places.
The rule is: Take half the sum of the multiplier and multiplicand,
remove the decimal point as many places to the left as there are
correct places of decimals in either the multiplier or multiplicand;
the result is the quantity within which the product can be depended
upon. In division, the rule is: Proceed as in the last rule, putting
the dividend and divisor in place of the multiplier and multiplicand,
and divide by the square of the divisor; the quotient will
be the quantity within which the division of the first dividend and
divisor may be depended upon. Thus, if 17·324 be divided by 53·809,
both being correct to the third place, their half sum will be 35·566,
which, by the last rule, is made ·035566, and is to be divided by the
square of 53·809, or, which will do as well for our purpose, the square
of 50, or 2500. The result is something less than ·00002, so that the
quotient of 17·324 and 53·809 can be depended on to four places of decimals.

153. It is required to multiply two decimal fractions together, so as
to retain in the product only a given number of decimal places, and
dispense with the trouble of finding the rest. First, it is evident
that we may write the figures of any multiplier in a contrary order
(for example, 4321 instead of 1234), provided that in the operation we
move each line one place to the right instead of to the left, as in the
following example:



	2221
	2221


	1234
	4321


	8884
	2221


	6663 
	 4442


	4442  
	  6663


	2221   
	   8884


	2740714
	2740714





Suppose now we wish to multiply 348·8414 by 51·30742, reserving only
four decimal places in the product. If we reverse the multiplier, and
proceed in the manner just pointed out, we have the following:




	3488414 
	 


	2470315 
	 


	17442070 
	 


	3488414
	 


	1046524
	2


	24418
	898


	1395
	3656


	69
	76828


	17898·1522
	23188





Cut off, by a vertical line, the first four places of decimals, and
the columns which produced them. It is plain that in forming our
abbreviated rule, we have to consider only, I. all that is on the left
of the vertical line; II. all that is carried from the first column on
the right of the line. On looking at the first column to the left of
the line, we see 4, 4, 8, 5, 9, of which the first 4 comes from 4 ×
1′,[20]
the second 4 from 1 × 3′, the 8 from 8 × 7′, the 5 from 8 × 4′,
and the 9 from 4 × 2′. If, then, we arrange the multiplicand and the
reversed multiplier thus,


	3488414

	2470315



each figure of the multiplier is placed under
the first figure of the multiplicand which is used with it in forming
the first four places of decimals. And here observe, that the
units’ figure in the multiplier 51·30742, viz. 1, comes under 4, the
fourth decimal place in the multiplicand. If there had been no
carrying from the right of the vertical line, the rule would have been:
Reverse the multiplier, and place it under the multiplicand, so that
the figure which was the units’ figure in the multiplier may stand
under the last place of decimals in the multiplicand which is to be
preserved; place ciphers over those figures of the multiplier which
have none of the multiplicand above them, if there be any: proceed to
multiply in the usual way, but begin each figure of the multiplier with
the figure of the multiplicand which comes above it, taking no account
of those on the right: place the first figures of all the lines under
one another. To correct this rule, so as to allow for what is carried
from the right of the vertical line, observe that this consists of two
parts, 1st, what is carried directly in the formation of the different
lines, and 2dly, what is carried from the addition of the first column
on the right. The first of these may be taken into account by beginning

each figure of the multiplier with the one which comes on its right in
the multiplicand, and carrying the tens to the next figure as usual, but
without writing down the units. But both may be allowed for at once,
with sufficient correctness, on the principle of (151), by carrying
1 from 5 up to 15, 2 from 15 up to 25, &c.; that is, by carrying the
nearest ten. Thus, for 37, 4 would be carried, 37 being nearer to 40
than to 30. This will not always give the last place quite correctly,
but the error may be avoided by setting out so as to keep one more
place of decimals in the product than is absolutely required to be
correct. The rule, then, is as follows:

154. To multiply two decimals together, retaining only n decimal
places.

I. Reverse the multiplier, strike out the decimal points, and place the
multiplier under the multiplicand, so that what was its units’ figure
shall fall under the nᵗʰ decimal place of the multiplicand,
placing ciphers, if necessary, so that every place of the multiplier
shall have a figure or cipher above it.

II. Proceed to multiply as usual, beginning each figure of the
multiplier with the one which is in the place to its right in the
multiplicand: do not set down this first figure, but carry its
nearest ten to the next, and proceed.

III. Place the first figures of all the lines under one another; add as
usual; and mark off n places from the right for decimals.

It is required to multiply 136·4072 by 1·30609, retaining 7 decimal
places.


	1364072000

	906031

	1364072000

	409221600

	8184432

	122766

	178·1600798




In the following examples the first two lines are the multiplicand
and multiplier; and the number of decimals to be retained will be
seen from the results.



	·4471618
	33·166248
	3·4641016


	3·7719214
	1·4142136
	1732·508


	37719214
	033166248
	346410160


	8161744 
	63124141
	8052371 


	15087686
	3316625
	346410160


	1508768
	1326650
	242487112


	264034
	33166
	10392305


	3772
	13266
	692820


	2263
	663
	173205


	38
	33
	2771


	30
	10
	6001·58373


	1·6866591
	2
	 


	 
	46·90415
	 





Exercises may be got from article (143).

155. With regard to division, take any two numbers, for example,
16·80437921 and 3·142, and divide the first by the second, as far as
any required number of decimal places, for example, five. This gives
the following:



	3·142)
	16·804
	379
	21(5·34830


	 
	15·710
	 


	 
	1·0943
	 


	 
	9426
	 


	 
	15177
	 


	 (A) 
	12568
	 


	2609
	2609
	9


	2514
	2513
	6 


	95
	96
	32


	94
	94
	26


	1
	2
	061






Now cut off by a vertical line, as in (153), all the figures which
come on the right of the first figure 2, in the last remainder 2061.
As in multiplication, we may obtain all that is on the left of the
vertical line by an abbreviated method, as represented at (A). After
what has been said on multiplication, it is useless to go further
into the detail; the following rule will be sufficient: To divide one
decimal by another, retaining only n places: Proceed one step in
the ordinary division, and determine, by (150), in what place is the
quotient so obtained; proceed in the ordinary way, until the number of
figures remaining to be found in the quotient is less than the number
of figures in the divisor: if this should be already the case, proceed
no further in the ordinary way. Instead of annexing a figure or cipher
to the remainder, cut off a figure from the divisor, and proceed one
step with this curtailed divisor as usual, remembering, however, in
multiplying this divisor, to carry the nearest ten, as in (154),
from the figure which was struck off; repeat this, striking off another
figure of the divisor, and so on, until no figures are left. Since we
know from the beginning in what place the first figure of the quotient
is, and also how many decimals are required, we can tell from the
beginning how many figures there will be in the whole quotient. If the
divisor contain more figures than the quotient, it will be unnecessary
to use them: and they may be rejected, the rest being corrected as in
(151): if there be ciphers at the beginning of the divisor, if it be,
for example,



	·003178, since this is 
	·3178
	 ,


	100





divide by ·3178 in the usual way, and afterwards
multiply the quotient by 100, or remove the decimal point two places to
the right. If, therefore, six decimals be required, eight places must
be taken in dividing by ·3178, for an obvious reason. In finding the
last figure of the quotient, the nearest should be taken, as in the
second of the subjoined examples.




	Places required,  
	2
	 
	8


	Divisor,
	·41432
	 
	3·1415927


	Dividend,
	673·1489    
	 
	2·71828180


	 
	41432  
	 
	2·51327416


	 
	258828
	 
	20500764


	 
	248592
	 
	18849556


	 
	  10237
	[21]
	1651208


	 
	8286
	 
	1570796


	 
	1951
	 
	80412


	 
	1657
	 
	62832


	 
	294
	 
	17580


	 
	290
	 
	15708


	 
	4
	 
	1872


	 
	 4
	 
	1571


	 
	0
	 
	301


	 
	283


	 
	18


	 
	19


	Quotient,
	1624·71
	 
	·86525596





Examples may be obtained from (143) and (150).



SECTION VII.

ON THE EXTRACTION OF

THE SQUARE ROOT.



156. We have already remarked (66), that a number multiplied by itself
produces what is called the square of that number. Thus, 169, or
13 × 13, is the square of 13. Conversely, 13 is called the square
root of 169, and 5 is the square root of 25; and any number is the
square root of another, which when multiplied by itself will produce
that other. The square root is signified by the sign

√ or √   ;
thus, √25 means the square root of 25, or 5; √16 + 9

means the square root of 16 + 9, and is 5, and must not be confounded
with √16 + √9, which is 4 + 3, or 7.


157. The following equations are evident from the definition:

√a × √a = a

√aa = a

√ab × √ab = ab

(√a × √b) × (√a × √b) =
          √a × √a × √b × √b = ab

whence

√a × √b = √ab

158. It does not follow that a number has a square root because it
has a square; thus, though 5 can be multiplied by itself, there is
no number which multiplied by itself will produce 5. It is proved in
algebra, that no fraction[22]
multiplied by itself can produce a whole number, which may be found
true in any number of instances; therefore 5 has neither a whole nor
a fractional square root; that is, it has no square root at all.
Nevertheless, there are methods of finding fractions whose squares
shall be as near to 5 as we please, though not exactly equal to
it. One of these methods gives ¹⁵¹²⁷/₆₇₆₅, whose square, viz.



	15127
	× 
	15127
	 or 
	228826129
	 ,


	6765
	6765
	45765225





differs from 5 by only ⁴/₄₅₇₆₅₂₂₅, which is less
than ·0000001: hence we are enabled to use √5 in arithmetical and
algebraical reasoning: but when we come to the practice of any problem,
we must substitute for √5 one of the fractions whose square is nearly
5, and on the degree of accuracy we want, depends what fraction is
to be used. For some purposes, ¹²³/₅₅ may be sufficient,
as its square only differs from 5 by ⁴/₃₀₂₅; for others,
the fraction first given might be necessary, or one whose square is
even nearer to 5. We proceed to shew how to find the square root of a
number, when it has one, and from thence how to find fractions whose
squares shall be as near as we please to the number, when it has not.
We premise, what is sufficiently evident, that of two numbers, the
greater has the greater square; and that if one number lie between two
others, its square lies between the squares of those others.

159. Let x be a number consisting of any number of parts, for
example, four, viz. a, b, c, and d; that
is, let


x = a + b + c + d

The square of this number, found as in (68), will be


	aa + 2a(b + c + d)

	+ bb + 2b(c + d)

	+ cc + 2cd

	+ dd



The rule there found for squaring a number consisting of parts was:
Square each part, and multiply all that come after by twice that part,
the sum of all the results so obtained will be the square of the whole
number. In the expression above obtained, instead of multiplying
2a by each of the succeeding parts, b, c,
and d, and adding the results, we multiplied 2a by the
sum of all the succeeding parts, which (52) is the same thing;
and as the parts, however disposed, make up the number, we may reverse
their order, putting the last first, &c.; and the rule for squaring
will be: Square each part, and multiply all that come before by twice
that part. Hence a reverse rule for extracting the square root presents
itself with more than usual simplicity. It is: To extract the square
root of a number N, choose a number A, and see if N will bear the
subtraction of the square of A; if so, take the remainder, choose a
second number B, and see if the remainder will bear the subtraction of
the square of B, and twice B multiplied by the preceding part A: if it
will, there is a second remainder. Choose a third number C, and see if
the second remainder will bear the subtraction of the square of C, and
twice C multiplied by A + B: go on in this way either until there is no
remainder, or else until the remainder will not bear the subtraction
arising from any new part, even though that part were the least number,
which is 1. In the first case, the square root is the sum of A, B, C,
&c.; in the second, there is no square root.

160. For example, I wish to know if 2025 has a square root. I choose 20
as the first part, and find that 400, the square of 20, subtracted from
2025, gives 1625, the first remainder. I again choose 20, whose square,
together with twice itself, multiplied by the preceding part, is

20 × 20 + 2 × 20 × 20, or 1200; which subtracted from 1625, the first
remainder, gives 425, the second remainder. I choose 7 for the third
part, which appears to be too great, since 7 × 7, increased by 2 × 7
multiplied by the sum of the preceding parts 20 + 20, gives 609, which
is more than 425. I therefore choose 5, which closes the process, since
5 × 5, together with 2 × 5 multiplied by 20 + 20, gives exactly 425.
The square root of 2025 is therefore 20 + 20 + 5, or 45, which will be
found, by trial, to be correct; since 45 × 45 = 2025. Again, I ask if
13340 has, or has not, a square root. Let 100 be the first part, whose
square is 10000, and the first remainder is 3340. Let 10 be the second
part. Here 10 × 10 + 2 × 10 × 100 is 2100, and the second remainder,
or 3340-2100, is 1240. Let 5 be the third part; then 5 × 5 + 2 × 5
× (100 + 10) is 1125, which, subtracted from 1240, leaves 115. There
is, then, no square root; for a single additional unit will give a
subtraction of 1 × 1 + 2 × 1 × (100 + 10 + 5), or 231, which is greater
than 115. But if the number proposed had been less by 115, each of the
remainders would have been 115 less, and the last remainder would have
been nothing. Therefore 13340-115, or 13225, has the square root 100
+ 10 + 5, or 115; and the answer is, that 13340 has no square root, and
that 13225 is the next number below it which has one, namely, 115.

161. It only remains to put the rule in such a shape as will guide us
to those parts which it is most convenient to choose. It is evident
(57) that any number which terminates with ciphers, as 4000, has double
the number of ciphers in its square. Thus, 4000 × 4000 = 16000000;
therefore, any square number,[23]
 as 49, with an even number of ciphers annexed, as 490000, is a square number.
The root[24]
of 490000 is 700. This being premised, take any number, for example, 76176;
setting out from the right hand towards the left, cut off two figures; then
two more, and so on, until one or two figures only are left: thus, 7,61,76.
This number is greater than 7,00,00, of which the first figure is not a
square number, the nearest square below it being 4. Hence, 4,00,00 is

the nearest square number below 7,00,00, which has four ciphers,
and its square root is 200. Let this be the first part chosen: its
square subtracted from 76176 leaves 36176, the first remainder; and
it is evident that we have obtained the highest number of the highest
denomination which is to be found in the square root of 76176; for
300 is too great, its square, 9,00,00, being greater than 76176: and
any denomination higher than hundreds has a square still greater. It
remains, then, to choose a second part, as in the examples of (160),
with the remainder 36176. This part cannot be as great as 100, by what
has just been said; its highest denomination is therefore a number of
tens. Let N stand for a number of tens, which is one of the simple
numbers 1, 2, 3, &c.; that is, let the new part be 10N, whose square
is 10N × 10N, or 100NN, and whose double multiplied by the former part
is 20N × 200, or 4000N; the two together are 4000N + 100NN. Now, N
must be so taken that this may not be greater than 36176: still more
4000N must not be greater than 36176. We may therefore try, for N, the
number of times which 36176 contains 4000, or that which 36 contains
4. The remark in (80) applies here. Let us try 9 tens or 90. Then, 2 ×
90 × 200 + 90 × 90, or 44100, is to be subtracted, which is too great,
since the whole remainder is 36176. We then try 8 tens or 80, which
gives 2 × 80 × 200 + 80 × 80, or 38400, which is likewise too great. On
trying 7 tens, or 70, we find 2 × 70 × 200 + 70 × 70, or 32900, which
subtracted from 36176 gives 3276, the second remainder. The rest of
the square root can only be units. As before, let N be this number of
units. Then, the sum of the preceding parts being 200 + 70, or 270,
the number to be subtracted is 270 × 2N + NN, or 540N + NN. Hence, as
before, 540N must be less than 3276, or N must not be greater than the
number of times which 3276 contains 540, or (80) which 327 contains
54. We therefore try if 6 will do, which gives 2 × 6 × 270 + 6 × 6, or
3276, to be subtracted. This being exactly the second remainder, the
third remainder is nothing, and the process is finished. The square
root required is therefore 200 + 70 + 6, or 276.

The process of forming the numbers to be subtracted may be shortened
thus. Let A be the sum of the parts already found, and N a new part:

there must then be subtracted 2AN + NN, or (54) 2A + N multiplied by
N. The rule, therefore, for forming it is: Double the sum of all the
preceding parts, add the new part, and multiply the result by the new
part.

162. The process of the last article is as follows:



	 
	 
	7,61,76
	(200 
	 
	7,61,76(276


	 
	 
	4 00 00
	   70
	 
	4


	400
	)
	3,61,76
	    6
	47)
	361


	70
	3 29 00
	 
	 
	329


	400
	)
	32 76
	 
	546)
	3276


	140
	32 76
	 
	 
	3276


	6
	0
	 
	 
	  0





In the first of these, the numbers are written at length, as we found
them; in the second, as in (79), unnecessary ciphers are struck off,
and the periods 61, 76, are not brought down, until, by the continuance
of the process, they cease to have ciphers under them. The following is
another example, to which the reasoning of the last article may be applied.



	 
	 
	34,86,78,44,01
	(50000 
	 
	34,86,78,44,01(59049


	 
	 
	25 00 00 00 00
	   9000
	 
	25


	100000
	)
	  9 86 78 44 01
	    40
	109)
	986


	9000
	  9 81 00 00 00
	   9
	 
	981  


	100000
	)
	5 78 44 01
	 
	1180
	4)57844


	18000
	4 72 16 00
	 
	 
	   47216


	40
	 ——————
	 
	 
	————


	100000
	)
	5 78 44 01
	 
	 
	 


	18000
	4 72 16 00
	 
	 
	 


	40
	 ——————
	 
	 
	 


	100000
	)
	1 06 28 01
	 
	1180
	89)1062801


	18000
	1 06 28 01
	 
	 
	1062801 


	80
	 ——————
	 
	 
	 —————


	9
	0
	 
	 
	 0





163. The rule is as follows: To extract the square root of a number;—


I. Beginning from the right hand, cut off periods of two figures each,
until not more than two are left.

II. Find the root of the nearest square number next below the number in

the first period. This root is the first figure of the required root;
subtract its square from the first period, which gives the first remainder.

III. Annex the second period to the right of the remainder, which gives
the first dividend.

IV. Double the first figure of the root; see how often this is
contained in the number made by cutting one figure from the right of
the first dividend, attending to IX., if necessary; use the quotient as
the second figure of the root; annex it to the right of the double of
the first figure, and call this the first divisor.

V. Multiply the first divisor by the second figure of the root; if the
product be greater than the first dividend, use a lower number for the
second figure of the root, and for the last figure of the divisor,
until the multiplication just mentioned gives the product less than the
first dividend; subtract this from the first dividend, which gives the
second remainder.

VI. Annex the third period to the second remainder, which gives the
second dividend.

VII. Double the first two figures of the root;[25]
see how often the result is contained in the number made by cutting one
figure from the right of the second dividend; use the quotient as the
third figure of the root; annex it to the right of the double of the
first two figures, and call this the second divisor.

VIII. Get a new remainder, as in V., and repeat the process until all
the periods are exhausted; if there be then no remainder, the square
root is found; if there be a remainder, the proposed number has no
square root, and the number found as its square root is the square root
of the proposed number diminished by the remainder.

IX. When it happens that the double of the figures of the root is not
contained at all in all the dividend except the last figure, or when,
being contained once, 1 is found to give more than the dividend, put a
cipher in the square root and in the divisor, and bring down the next
period; should the same thing still happen, put another cipher in the
root and divisor, and bring down another period; and so on.





EXERCISES.



	Numbers proposed.
	 Square roots.


	73441
	271


	2992900
	1730


	6414247921
	80089


	903687890625
	950625


	42420747482776576  
	205962976


	13422659310152401
	115856201





164. Since the square of a fraction is obtained by squaring the
numerator and the denominator, the square root of a fraction is found
by taking the square root of both. Thus, the square root of ²⁵/₆₄ is ⅝,
since 5 × 5 is 25, and 8 × 8 is 64. If the numerator or denominator,
or both, be not square numbers, it does not therefore follow that the
fraction has no square root; for it may happen that multiplication
or division by the same number may convert both the numerator and
denominator into square numbers (108). Thus, ²⁷/₄₈, which appears
at first to have no square root, has one in reality, since it is the same
as ⁹/₁₆, whose square root is ¾.

165. We now proceed from (158), where it was stated that any number or
fraction being given, a second may be found, whose square is as near to
the first as we please. Thus, though we cannot solve the problem, “Find
a fraction whose square is 2,” we can solve the following, “Find a
fraction whose square shall not differ from 2 by so much as ·00000001.”
Instead of this last, a still smaller fraction may be substituted;
in fact, any one however small: and in this process we are said to
approximate to the square root of 2. This can be done to any extent, as
follows: Suppose we wish to find the square root of 2 within ¹/₅₇ of
the truth; by which I mean, to find a fraction a/b whose
square is less than 2, but such that the square of a/b +
¹/₅₇ is greater than 2. Multiply the numerator and denominator of ²/₁
by the square of 57, or 3249, which gives ⁶⁴⁹⁸/₃₂₄₉. On attempting to
extract the square root of the numerator, I find (163) that there is a
remainder 98, and that the square number next below 6498 is 6400, whose
root is 80. Hence, the square of 80 is less than 6498, while that of 81

is greater. The square root of the denominator is of course 57. Hence,
the square of ⁸⁰/⁵⁷ is less than ⁶⁴⁹⁸/₃₂₄₉, or 2,
while that of ⁸¹/₅₇ is greater, and these two fractions only
differ by ¹/₅₇; which was required to be done.

166. In practice, it is usual to find the square root true to a certain
number of places of decimals. Thus, 1·4142 is the square root of 2 true
to four places of decimals, since the square of 1·4142, or 1·99996164,
is less than 2, while an increase of only 1 in the fourth decimal
place, giving 1·4143, gives the square 2·00024449, which is greater
than 2. To take a more general case: Suppose it required to find the
square root of 1·637 true to four places of decimals. The fraction is
¹⁶³⁷/₁₀₀₀, whose square root is to be found within ·0001, or ¹/₁₀₀₀₀.
Annex ciphers to the numerator and denominator, until the denominator
becomes the square of ¹/₁₀₀₀₀, which gives ¹⁶³⁷⁰⁰⁰⁰⁰/₁₀₀₀₀₀₀₀₀, extract
the square root of the numerator, as in (163), which shews that the
square number nearest to it is 163700000-13564, whose root is
12794. Hence, ¹²⁷⁹⁴/₁₀₀₀₀, or 1·2794, gives a square less than 1·637,
while 1·2795 gives a square greater. In fact, these two squares are
1·63686436 and 1·63712025.

167. The rule, then, for extracting the square root of a number or
decimal to any number of places is: Annex ciphers until there are twice
as many places following the units’ place as there are to be decimal
places in the root; extract the nearest square root of this number,
and mark off the given number of decimals. Or, more simply: Divide the
number into periods, so that the units’ figure shall be the last of
a period; proceed in the usual way; and if, when decimals follow the
units’ place, there is one figure on the right, in a period by itself,
annex a cipher in bringing down that period, and afterwards let each
new period consist of two ciphers. Place the decimal point after that
figure in forming which the period containing the units was used.

168. For example, what is the square root of (1⅜) to five places of
decimals? This is (145) 1·375, and the process is the first example
over leaf. The second example is the extraction of the root of ·081
to seven places, the first period being 08, from which the cipher is
omitted as useless.



	1,37,5(1·17260

	1  

	21)  37

	 21    

	227) 1650

	 1589  

	2342) 6100

	4684

	23446) 141600

	140676    

	23452)    92400

	8,1(·2846049

	4   

	48)410

	384

	564) 2600

	2256

	5686) 34400

	34116

	569204) 2840000

	2276816

	569208)  56318400

	·000002413672221(·001553599

	1   

	25) 141

	125  

	305) 1636

	1525  

	3103) 11172

	9309  

	31065) 186322

	155325  

	310709) 3099710

	2796381   

	30332900



169. When more than half the decimals required have been found, the
others may be simply found by dividing the dividend by the divisor, as
in (155). The extraction of the square root of 12 to ten places, which
will be found in the next page, is an example. It must, however, be
observed in this process, as in all others where decimals are obtained
by approximation, that the last place cannot always be depended upon:
on which account it is advisable to carry the process so far, that
one or even two more decimals shall be obtained than are absolutely
required to be correct.



	A

	12(3·46410161513

	9  

	64) 300

	256  

	686) 4400

	4116  

	6924) 28400

	27696  

	69281)  70400

	69281  

	6928201) 11190000

	6928201  

	69282026) 4261799|00

	4156921|56

	692820321) 104877|4400

	69282|0321

	6928203225) 35595|407900

	34641|016125

	69282032301)  954|39177500

	692|82032301

	692820323023) 261|5714519900

	207|8460969069

	53|7253550831

	 

	B

	692820323026)537253550831(77545870549

	484974226118

	52279324713

	48497422611;

	3781902102

	3464101615

	317800487

	277128129

	40672358

	34641016

	6031342

	5542562

	488780

	484974

	3806

	3464

	342

	277

	65

	62

	3



If from any remainder we cut off the ciphers, and all figures which
would come under or on the right of these ciphers, by a vertical line,
we find on the left of that line a contracted division, such as those
in (155). Thus, after having found the root as far as 3·464101, we
have the remainder 4261799, and the divisor 6928202. The figures on
the left of the line are nothing more than the contracted division of
this remainder by the divisor, with this difference, however, that we
have to begin by striking a figure off the divisor, instead of using
the whole divisor once, and then striking off the first figure. By this
alone we might have doubled our number of decimal places, and got the

additional figures 615137, the last 7 being obtained by carrying the
contracted division one step further with the remainder 53. We have,
then, this rule: When half the number of decimal places have been
obtained, instead of annexing two ciphers to the remainder, strike off
a figure from what would be the divisor if the process were continued at
length, and divide the remainder by this contracted divisor, as in (155).

As an example, let us double the number of decimal places already
obtained, which are contained in 3·46410161513. The remainder is
537253550831, the divisor 692820323026, and the process is as in (B).
Hence the square root of 12 is,

3·4641016151377545870549;

which is true to the last figure, and a little too
great; but the substitution of 8 instead of 9 on the right hand would
make it too small.

EXERCISES.



	Numbers. 
	Square roots.


	·001728
	·0415692194


	64·34
	8·02122185


	8074
	89·8554394


	10
	3·16227766


	1·57
	 1·2529964086141667788495







SECTION VIII.

ON THE PROPORTION OF NUMBERS.



170. When two numbers are named in any problem, it is usually
necessary, in some way or other, to compare the two; that is, by
considering the two together, to establish some connexion between
them, which may be useful in future operations. The first method
which suggests itself, and the most simple, is to observe which is
the greater, and by how much it differs from the other. The connexion
thus established between two numbers may also hold good of two other
numbers; for example, 8 differs from 19 by 11, and 100 differs from 111

by the same number. In this point of view, 8 stands to 19 in the
same situation in which 100 stands to 111, the first of both couples
differing in the same degree from the second. The four numbers thus
noticed, viz.:

8, 19, 100, 111,

are said to be in arithmetical[26]
proportion. When four numbers are thus placed, the first and
last are called the extremes, and the second and third the
means. It is obvious that 111 + 8 = 100 + 19, that is, the sum
of the extremes is equal to the sum of the means. And this is not
accidental, arising from the particular numbers we have taken, but must
be the case in every arithmetical proportion; for in 111 + 8, by (35),
any diminution of 111 will not affect the sum, provided a corresponding
increase be given to 8; and, by the definition just given, one mean is
as much less than 111 as the other is greater than 8.

171. A set or series of numbers is said to be in continued
arithmetical proportion, or in arithmetical progression, when
the difference between every two succeeding terms of the series is the
same. This is the case in the following series:



	1,
	2,
	3,
	4,
	5,
	&c.


	3,
	6,
	9,
	12,
	15,
	&c.


	1½,
	2,
	2½,
	3,
	3½,
	&c.





The difference between two succeeding terms is called the common
difference. In the three series just given, the common differences are,
1, 3, and ½.

172. If a certain number of terms of any arithmetical series be taken,
the sum of the first and last terms is the same as that of any other
two terms, provided one is as distant from the beginning of the series
as the other is from the end. For example, let there be 7 terms, and
let them be,

a   b   c   d   e   f   g.


Then, since, by the nature of the series, b is as much above
a as f is below g (170), a + g =
b + f. Again, since c is as much above b
as e is below f (170), b + f = c
+ e. But a + g = b + f; therefore
a + g = c + e, and so on. Again, twice
the middle term, or the term equally distant from the beginning and
the end (which exists only when the number of terms is odd), is equal
to the sum of the first and last terms; for since c is as much
below d as e is above it, we have c + e =
d + d = 2d. But c + e = a
+ g; therefore, a + g = 2d. This will
give a short rule for finding the sum of any number of terms of an
arithmetical series. Let there be 7, viz. those just given. Since
a + g, b + f, and c + e, are
the same, their sum is three times (a + g), which with
d, the middle term, or half a + g, is three times
and a half (a + g), or the sum of the first and last
terms multiplied by (3½), or ⁷/₂, or half the number of terms. If there
had been an even number of terms, for example, six, viz. a,
b, c, d, e, and f, we know now that
a + f, b + e, and c + d,
are the same, whence the sum is three times (a + f), or
the sum of the first and last terms multiplied by half the number of
terms, as before. The rule, then, is: To sum any number of terms of an
arithmetical progression, multiply the sum of the first and last terms
by half the number of terms. For example, what are 99 terms of the
series 1, 2, 3, &c.? The 99th term is 99, and the sum is



	(99 + 1) 
	99
	 , or 
	100 × 99
	 , or 4950.


	2
	2





The sum of 50 terms of the series



	 1 
	,  
	 2 
	,  
	1,  
	 4 
	,  
	 5 
	, 2,  &c. is 
	(
	 1 
	 + 
	 50 
	)
	 50 
	 ,


	3
	3
	3
	3
	3
	3
	2





or 17 × 25, or 425.

173. The first term being given, and also the common difference and
number of terms, the last term may be found by adding to the first
term the common difference multiplied by one less than the number of
terms. For it is evident that the second term differs from the first
by the common difference, the third term by twice, the
fourth term by three times the common difference; and so
on. Or, the passage from the first to the nth term is made by
n-1 steps, at each of which the common difference is added.


EXERCISES.



	Given.
	To find.


	Series.
	 No. of terms. 
	 Last term. 
	Sum.




	4,
	6½,
	9, &c.
	33
	84
	1452


	1,
	3,
	5, &c.
	28
	55
	784


	2,
	20,
	38, &c.
	100,000
	1799984
	 89999300000





174. The sum being given, the number of terms, and the first term,
we can thence find the common difference. Suppose, for example, the
first term of a series to be one, the number of terms 100, and the sum
10,000. Since 10,000 was made by multiplying the sum of the first and
last terms by ¹⁰⁰/₂, if we divide by this, we shall recover the sum
of the first and last terms. Now, ¹⁰,⁰⁰⁰/₁ divided by ¹⁰⁰/₂ is (122)
200, and the first term being 1, the last term is 199. We have then to
pass from 1 to 199, or through 198, by 99 equal steps. Each step is,
therefore, ¹⁹⁸/⁹⁹, or 2, which is the common difference; or the series
is 1, 3, 5, &c., up to 199.



	Given.
	To find.


	Sum.
	 No. of terms. 
	 First term. 
	 Last term. 
	 Common diff.




	1809025
	1345
	1
	2689
	2


	44
	10
	3
	29
	 14


	5
	45


	7075600 
	1330
	4
	10636
	8





175. We now return to (170), in which we compared two numbers together
by their difference. This, however, is not the method of comparison
which we employ in common life, as any single familiar instance will
shew. For example, we say of A, who has 10 thousand pounds, that he is
much richer than B, who has only 3 thousand; but we do not say that
C, who has 107 thousand pounds, is much richer than D, who has 100
thousand, though the difference of fortune is the same in both cases,
viz. 7 thousand pounds. In comparing numbers we take into our reckoning
not only the differences, but the numbers themselves. Thus, if B and D
both received 7 thousand pounds, B would receive 233 pounds and a third
for every 100 pounds which he had before, while D for every 100 pounds

would receive only 7 pounds. And though, in the view taken in (170), 3
is as near to 10 as 100 is to 107, yet, in the light in which we now
regard them, 3 is not so near to 10 as 100 is to 107, for 3 differs
from 10 by more than twice itself, while 100 does not differ from 107
by so much as one-fifth of itself. This is expressed in mathematical
language by saying, that the ratio or proportion of 10 to
3 is greater than the ratio or proportion of 107 to 100.
We proceed to define these terms more accurately.

176. When we use the term part of a number or fraction in
the remainder of this section, we mean, one of the various sets of
equal parts into which it may be divided, either the half, the
third, the fourth, &c.: the term multiple has been already explained
(102). By the term multiple-part of a number we mean, the
abbreviation of the words multiple of a part. Thus, 1, 2, 3,
4, and 6, are parts of 12; ½ is also a part of 12, being contained in
it 24 times; 12, 24, 36, &c., are multiples of 12; and 8, 9, ⁵/₂,
&c. are multiple parts of 12, being multiples of some of its parts.
And when multiple parts generally are spoken of, the parts themselves
are supposed to be included, on the same principle that 12 is counted
among the multiples of 12, the multiplier being 1. The multiples
themselves are also included in this term; for 24 is also 48 halves,
and is therefore among the multiple parts of 12. Each part is also
in various ways a multiple-part; for one-fourth is two-eighths, and
three-twelfths, &c.

177. Every number or fraction is a multiple-part of every other number
or fraction. If, for example, we ask what part 12 is of 7, we see
that on dividing 7 into 7 parts, and repeating one of these parts 12
times, we obtain 12; or, on dividing 7 into 14 parts, each of which
is one-half, and repeating one of these parts 24 times, we obtain
24 halves, or 12. Hence, 12 is ¹²/₇, or ²⁴/₁₄, or ³⁶/₂₁ of 7; and
so on. Generally, when a and b are two whole numbers,
a/b expresses the multiple-part which a is of
b, and b/a that which b is of a.
Again, suppose it required to determine what multiple-part (2⅐)
is of (3⅕), or ¹⁵/₇ of ¹⁶/₅. These fractions, reduced to a common
denominator, are ⁷⁵/₃₅ and ¹¹²/₃₅, of which the second, divided into

112 parts, gives ¹/₃₅, which repeated 75 times gives ⁷⁵/₃₅, the
first. Hence, the multiple-part which the first is of the second is
⁷⁵/₁₁₂, which being obtained by the rule given in (121), shews that
a/b, or a divided by b, according to the
notion of division there given, expresses the multiple-part which
a is of b in every case.

178. When the first of four numbers is the same multiple-part of the
second which the third is of the fourth, the four are said to be
geometrically[27]
proportional, or simply proportional. This is a word in
common use; and it remains to shew that our mathematical definition
of it, just given, is, in fact, the common notion attached to it. For
example, suppose a picture is copied on a smaller scale, so that a line
of two inches long in the original is represented by a line of one inch
and a half in the copy; we say that the copy is not correct unless all
the parts of the original are reduced in the same proportion, namely,
that of 2 to (1½). Since, on dividing two inches into 4 parts, and
taking 3 of them, we get (1½), the same must be done with all the lines
in the original, that is, the length of any line in the copy must be
three parts out of four of its length in the original. Again, interest
being at 5 per cent, that is, £5 being given for the use of £100, a
similar proportion of every other sum would be given; the interest of
£70, for example, would be just such a part of £70 as £5 is of £100.

Since, then, the part which a is of b is expressed by the
fraction a/b, or any other fraction which is equivalent
to it, and that which c is of d by c/d,
it follows, that when a, b, c, and d, are
proportional, a/b = c/d. This equation will
be the foundation of all our reasoning on proportional quantities; and
in considering proportionals, it is necessary to observe not only the
quantities themselves, but also the order in which they come. Thus,
a, b, c, and d, being proportionals, that
is, a being the same multiple-part of b which c
is of d, it does not follow that a, d, b,
and c are proportionals, that is, that a is the same

multiple-part of d which b is of c. It is plain
that a is greater than, equal to, or less than b,
according as c is greater than, equal to, or less than d.

179. Four numbers, a, b, c, and d, being
proportional in the order written, a and d are called
the extremes, and b and c the means,
of the proportion. For convenience, we will call the two extremes,
or the two means, similar terms, and an extreme and a mean,
dissimilar terms. Thus, a and d are similar, and
so are b and c; while a and b, a and
c, d and b, d and c, are dissimilar.
It is customary to express the proportion by placing dots between the
numbers, thus:

a : b ∷ c : d

180. Equal numbers will still remain equal when they have been
increased, diminished, multiplied, or divided, by equal quantities.
This amounts to saying that if


	a = b and p = q,

	a + p = b + q,

	a - p = b - q,

	ap = bq,

	 

	a   b

	and — = —.

	p   q



It is also evident, that a + p-p, a
-p + p, ap/p, and a/p ×
p, are all equal to a.

181. The product of the extremes is equal to the product of the means.
Let a/b = c/d, and multiply these equal
numbers by the product bd. Then,



	a
	 × bd = 
	abd
	  (116) = ad,


	b
	b







	and  
	c
	 × bd = 
	cbd
	 = cb:


	d
	d


	hence (180), ad = bc.  





Thus, 6, 8, 21, and 28, are proportional, since



	 6 
	 = 
	 3 
	 = 
	3 × 7
	 = 
	21
	  (180);


	8
	4
	4 × 7
	28





and it appears that 6 × 28 = 8 × 21, since both products are 168.

182. If the product of two numbers be equal to the product of two
others, these numbers are proportional in any order whatever, provided
the numbers in the same product are so placed as to be similar terms;
that is, if ab = pq, we have the following proportions:—


	a : p ∷ q : b

	a : q ∷ p : b

	b : p ∷ q : a

	b : q ∷ p : a

	p : a ∷ b : q

	p : b ∷ a : q

	q : a ∷ b : p

	q : b ∷ a : p



To prove any one of these, divide both ab and pq by the
product of its second and fourth terms; for example, to shew the truth
of a: q ∷ p: b, divide both ab and
pq by bq. Then,



	ab
	 = 
	a
	 , and 
	pq
	 = 
	p
	 ; hence (180),


	bq
	q
	bq
	b


	 


	a
	 = 
	p
	 , or a : q ∷ p : b .


	q
	b
	 
	 






The pupil should not fail to prove every one of the eight cases, and to
verify them by some simple examples, such as 1 × 6 = 2 × 3, which gives
1: 2 ∷ 3: 6, 3: 1 ∷ 6: 2, &c.

183. Hence, if four numbers be proportional, they are also proportional
in any other order, provided it be such that similar terms still remain
similar. For since, when



	 a 
	 = 
	 c 
	 ,


	b
	d
	 





it follows (181) that ad = bc, all the proportions
which follow from ad = bc, by the last article, follow also from



	 a 
	 = 
	 c 
	 .


	b
	d
	 





184. From (114) it follows that



	1 + 
	 a 
	  =  
	b + a
	 ,


	b
	b







	and if  
	 a 
	  be
	 less than
	 1,


	b







	 1 - 
	 a 
	  =  
	b - a
	 ,


	b
	b







	while if 
	 a 
	  be
	 greater than 
	1,


	b







	 a 
	 - 1
	  =  
	a - b
	.


	b
	b







	Also (122), if  
	a + b
	  be
	 divided by  
	a - b


	b
	b


	the result is 
	a + b
	 


	a - b
	 





Hence, a, b, c, and d,
being proportionals, we may obtain other proportions, thus:



	Let 
	 a 
	  =  
	 c 


	b
	d







	Then (114)  1 + 
	 a 
	  =  
	 1 + 
	 c 


	b
	d







	or   
	a + b
	  =  
	c + d


	b
	d


	or   
	a + b: b ∷ c + d: d





That is, the sum of the first and second is to the second as the sum of
the third and fourth is to the fourth. For brevity, we shall not state
in words any more of these proportions, since the pupil will easily
supply what is wanting.

Resuming the proportion a: b ∷ c: d



	or   
	 a 
	  =  
	 c 


	b
	d







	1 - 
	 a 
	  =  
	1 - 
	 c 
	 , if 
	 a 
	 be less than 1,


	b
	d
	b







	or   
	b - a
	  =  
	d - c


	b
	d





that is,   b-a: b ∷ d-c: d

  or,  a-b: b ∷ c-d: d,



	if  
	 a 
	 be greater than 1.


	b


	 









	Again, since  
	a + b
	  =  
	c + d


	b
	d







	and  
	a - b
	  =  
	c - d
	  (
	 a 
	 being greater than 1)


	b
	d
	b





dividing the first by the second we have



	a + b
	  =  
	c + d
	 


	a - b
	c - d





or  a + b : a - b ∷ c + d : c - d

and also  a + b : b - a ∷ c + d : d - c,



	if  
	 a 
	 be less than 1.


	b


	 





185. Many other proportions might be obtained in the same manner. We
will, however, content ourselves with writing down a few which can be
obtained by combining the preceding articles.



	a + b
	 : 
	a
	 ∷ 
	c + d
	 : 
	c


	a
	 : 
	a - b
	 ∷ 
	c
	 : 
	c - d


	a + c
	 : 
	a - c
	 ∷ 
	b + d
	 : 
	b - d.





In these and all others it must be observed, that
when such expressions as a-b and c-d occur,
it is supposed that a is greater than b, and c
greater than d.

186. If four numbers be proportional, and any two dissimilar terms be
both multiplied, or both divided by the same quantity, the results are
proportional. Thus, if a: b ∷ c: d, and
m and n be any two numbers, we have also the following:



	ma
	 : 
	b
	 ∷ 
	mc
	 : 
	d


	a
	 : 
	mb
	 ∷ 
	c
	 : 
	md


	 a 
	 : 
	mb
	 ∷ 
	 c 
	 : 
	md


	n
	n


	 


	ma
	 : 
	nb
	 ∷ 
	mc
	 : 
	nd


	 a 
	 : 
	 b 
	 ∷ 
	 c 
	 : 
	 d 


	m
	m
	m
	m


	 a 
	 : 
	 b 
	 ∷ 
	 c 
	 : 
	 d 


	m
	m
	n
	n





and various others. To prove any one of these,
recollect that nothing more is necessary to make four numbers
proportional except that the product of the extremes should be equal to
that of the means. Take the third of those just given; the product of
its extremes is



	 a 
	 × md, or  
	mbc
	 ,


	n
	n





while that of the means is



	mb × 
	 c 
	 , or  
	mad
	 .


	n
	n





But since a : b ∷ c : d,
by (181) ad = bc,



	whence, by (180), mad = mbc, and 
	mad
	 = 
	mbc
	 .


	n
	n







	Hence 
	 a 
	 , 
	 c 
	 , and md, are proportionals. 


	n
	n





187. If the terms of one proportion be multiplied by the terms of a
second, the products are proportional; that is, if a: b ∷ c: d,

and p: q ∷ r: s, it follows that
ap: bq ∷ cr: ds. For, since ad
= bc, and ps = qr, by (180) adps =
bcqr, or ap × ds = bq × cr, whence
(182) ap: bq ∷ cr: ds.

188. If four numbers be proportional, any similar powers of these
numbers are also proportional; that is, if



	Then  
	a
	 : 
	b
	 ∷ 
	c
	 : 
	d


	aa
	 : 
	bb
	 ∷ 
	cc
	 : 
	dd


	aaa
	 : 
	bbb
	 ∷ 
	ccc
	 : 
	ddd


	 
	 &c. 
	 
	 &c. 





For, if we write the proportion twice, thus,



	 
	a
	 : 
	b
	 ∷ 
	c
	 : 
	d


	a
	 : 
	b
	 ∷ 
	c
	 : 
	d


	by (187)  
	aa
	 : 
	bb
	 ∷ 
	cc
	 : 
	dd


	But  
	a
	 : 
	b
	 ∷ 
	c
	 : 
	d


	Whence (187)  
	aaa
	 : 
	bbb
	 ∷ 
	ccc
	 : 
	ddd and so on.





189. An expression is said to be homogeneous with respect to any two
or more letters, for instance, a, b, and c,
when every term of it contains the same number of letters, counting
a, b, and c only. Thus, maab + nabc
+ rccc is homogeneous with respect to a, b, and
c; and of the third degree, since in each term there is either
a, b, and c, or one of these repeated alone,
or with another, so as to make three in all. Thus, 8aaabc,
12abccc, maaaaa, naabbc, are all homogeneous, and
of the fifth degree, with respect to a, b, and c
only; and any expression made by adding or subtracting these from one
another, will be homogeneous and of the fifth degree. Again ma
+ mnb is homogeneous with respect to a and b, and
of the first degree; but it is not homogeneous with respect to m
and n, though it is so with respect to a and n.
This being premised, we proceed to a theorem,[28]
which will contain all the results of (184), (185), and (188).


190. If any four numbers be proportional, and if from the first two,
a and b, any two homogeneous expressions of the same
degree be formed; and if from the last two, two other expressions
be formed, in precisely the same manner, the four results will be
proportional. For example, if a: b ∷ c:
d, and if 2aaa + 3aab and bbb + abb
be chosen, which are both homogeneous with respect to a and
b, and both of the third degree; and if the corresponding
expressions 2ccc + 3ccd and ddd + cdd be
formed, which are made from c and d precisely in the same
manner as the two former ones from a and b, then will

2aaa + 3aab : bbb + abb ∷ 2ccc + 3ccd : ddd + cdd



	To prove this, let 
	 a 
	 be called x.
	 


	b
	 


	Then, since 
	 a 
	 = x,  and
	 a 
	 = 
	 c 
	 ,


	b
	b
	d


	it follows that 
	 c 
	 = x.
	 


	d
	 





But since a divided by b gives x, x
multiplied by b will give a, or a = bx. For
a similar reason, c = dx. Put bx and dx
instead of a and c in the four expressions just given,
recollecting that when quantities are multiplied together, the result
is the same in whatever order the multiplications are made; that, for
example, bxbxbx is the same as bbbxxx.

Hence, 2aaa + 3aab = 2bxbxbx + 3bxbxb

 = 2bbbxxx + 3bbbxx

which is bbb multiplied by 2xxx + 3xx

or bbb (2xxx + 3xx)[29]

Similarly, 2ccc + 3ccd = ddd (2xxx + 3xx)

Also, bbb + abb = bbb + bxbb

 = bbb multiplied by 1 + x

or bbb(1 + x)

Similarly, ddd + cdd = ddd (1 + x)

Now, bbb : bbb ∷ ddd : ddd

Whence (186),
bbb(2xxx + 3xx): bbb(1 + x) ∷
ddd(2xxx + 3xx): ddd(1 + x),
which, when instead of these expressions their equals just found are
substituted, becomes 2aaa + 3aab: bbb + abb
∷ 2ccc + 3ccd: ddd + cdd.


The same reasoning may be applied to any other case, and the pupil
may in this way prove the following theorems:

 If

a : b ∷ c : d

2a + 3b : b ∷ 2c + 3d : d

aa + bb : aa - bb  ∷ cc + dd : cc - dd

mab : 2aa + bb ∷ mcd : 2cc + dd

191. If the two means of a proportion be the same, that is, if a
: b ∷ b: c, the three numbers, a, b,
and c, are said to be in continued proportion, or in
geometrical progression. The same terms are applied to a series
of numbers, of which any three that follow one another are in continued
proportion, such as



	1
	2
	4
	8
	16
	32
	64
	&c.


	 


	2
	2
	2
	2
	2
	2
	2
	&c.


	 3 
	 9 
	 27 
	 81 
	243
	729





Which are in continued proportion, since



	1
	 : 
	2
	 ∷ 
	2
	 : 
	4
	 
	2
	 : 
	 2 
	 ∷ 
	 2 
	 : 
	 2 


	3
	3
	9


	2
	 : 
	4
	 ∷ 
	4
	 : 
	8
	 2 
	 : 
	 2 
	 ∷ 
	 2 
	 : 
	 2 


	3
	9
	9
	27


	&c.
	 
	&c.





192. Let a, b, c, d, e be in
continued proportion; we have then



	a : b ∷ b : c
	  or  
	 a 
	 = 
	 b 
	  or  
	ac = bb


	b
	c


	b : c ∷ c : d
	 
	 b 
	 = 
	 c 
	 
	bd = cc


	c
	d


	c : d ∷ d : e
	 
	 c 
	 = 
	 d 
	 
	ce = dd


	d
	e





Each term is formed from the preceding, by multiplying
it by the same number. Thus,



	b
	 = 
	 b 
	 × a (180); c = 
	 c 
	× b;


	a
	b







	and since  
	 a 
	 = 
	 b 
	 , 
	 b 
	 = 
	 c 


	b
	c
	a
	b







	or  c = 
	 b 
	 × b. 


	a


	Again,  d =  
	 d 
	 × c ,


	c







	but  
	 d 
	 = 
	 c 
	 , which is = 
	 b 
	 ; 


	c
	b
	a







	therefore, d = 
	 b 
	 × c, and so on


	a







	If, then, 
	 b 
	(which is called the common ratio of the series)


	a


	be denoted by r, we have





b = ar c = br = arr d = cr = arrr

and so on; whence the series




	 
	a
	 
	b
	 
	c
	 
	d
	&c.




	is  
	a
	 
	ar
	 
	arr
	 
	arrr
	&c.


	Hence  
	a
	 : 
	c
	 ∷ 
	a
	 : 
	arr
	 


	(186)  
	 
	 ∷ 
	aa
	 : 
	aarr
	 


	 
	 ∷ 
	aa
	 : 
	bb
	 





because, b being ar, bb is arar or aarr. Again,



	 
	a
	 : 
	d
	 ∷ 
	a
	 : 
	arrr
	 


	(186) 
	 
	 ∷ 
	aaa
	 : 
	aaarrr
	 


	 
	 
	 ∷ 
	aaa
	 : 
	bbb
	 


	 
	a
	 : 
	e
	 ∷ 
	aaaa
	 : 
	bbbb
	 , and so on;





that is, the first bears to the nᵗʰ term
from the first the same proportion as the nᵗʰ power of the first
to the nᵗʰ power of the second.

193. A short rule may be found for adding together any number of terms
of a continued proportion. Let it be first required to add together the
terms 1, r, rr, &c. where r is greater than
unity. It is evident that we do not alter any expression by adding or
subtracting any numbers, provided we afterwards subtract or add the
same. For example,

p = p - q + q - r
                                 + r - s + s

Let us take four terms of the series, 1, r, rr, &c. or,

1 + r + rr + rrr

It is plain that

rrrr - 1 = rrrr - rrr + rrr - rr +
rr - r + r - 1

Now (54), rr-r = r(r-1), rrr
-rr = rr(r-1), rrrr-rrr =
rrr(r-1), and the above equation becomes rrrr
-1 = rrr(r-1) + rr (r-1) + r
(r-1) + r-1; which is (54) rrr + rr +
r + 1 taken r-1 times. Hence, rrrr-1 divided
by r-1 will give 1 + r + rr + rrr,
the sum of the terms required. In this way may be proved the following
series of equations:



	1 + r
	  =  
	rr - 1


	r - 1


	1 + r + rr
	=
	rrr - 1


	r - 1


	1 + r + rr + rrr
	=
	rrrr - 1


	r - 1


	1 + r + rr + rrr + rrrr
	=
	rrrrr - 1


	r - 1






If r be less than unity, in order to find 1 + r +
rr + rrr, observe that

1 - rrrr = 1 - r + r - rr + rr - rrr + rrr - rrrr

 = 1 - r + r(1 - r) + rr(1 - r) + rrr(1 - r);

whence, by similar reasoning, 1 + r + rr + rrr
is found by dividing 1-rrrr by 1-r; and equations
similar to these just given may be found, which are,



	1 + r
	  =  
	1 - rr


	1 - r


	1 + r + rr
	=
	1 - rrr


	1 - r


	1 + r + rr + rrr
	=
	1 - rrrr


	1 - r


	1 + r + rr + rrr + rrrr
	=
	1 - rrrrr


	1 - r





The rule is: To find the sum of n terms of the series, 1 + r +
rr + &c., divide the difference between 1 and the (n +
1)ᵗʰ term by the difference between 1 and r.

194. This may be applied to finding the sum of any number of terms of
a continued proportion. Let a, b, c, &c. be the
terms of which it is required to sum four, that is, to find a
+ b + c + d, or (192) a + ar
+ arr + arrr, or (54) a(1 + r + rr +
rrr), which (193) is



	rrrr - 1
	 ×  a, or 
	1 - rrrr
	 × a,


	r - 1
	1 - r





according as r is greater or less than unity.
The first fraction is



	arrrr - a
	 , or (192) 
	e - a
	 .


	r - 1
	r - 1





Similarly, the second is



	a - e
	 .


	1 - r





The rule, therefore, is: To sum n terms of a continued
proportion, divide the difference of the (n + 1)ᵗʰ and first
terms by the difference between unity and the common measure. For
example, the sum of 10 terms of the series 1 + 3 + 9 + 27 + &c. is
required. The eleventh term is 59049, and ⁽⁵⁹⁰⁴⁹ ⁻ ¹⁾/₍₃₋₁₎ is 29524.
Again, the sum of 18 terms of the series 2 + 1 + ½ + ½ + &c. of
which the nineteenth term is ¹/₁₃₁₀₇₂, is



	 
	1
	 
	 


	2 - 
	———
	 
	 


	131072
	 
	131070


	—————
	  =  3
	——— .


	1 - ½
	131072







EXAMPLES.



	9 terms of
	 1 
	 + 
	 4 
	 + 
	 16 
	 + &c. are  
	87381


	10   ......  
	 3 
	 + 
	 6 
	 + 
	 12 
	 + &c. ... 
	847422675


	7
	49
	201768035


	20   ......  
	 1 
	 + 
	 1 
	 + 
	 1 
	 + &c. ... 
	1048575


	2
	4
	8
	1048576





195. The powers of a number or fraction greater than unity increase;
for since 2½ is greater than 1, 2½ × 2½ is 2½ taken more than once,
that is, is greater than 2½, and so on. This increase goes on without
limit; that is, there is no quantity so great but that some power of
2½ is greater. To prove this, observe that every power of 2½ is made
by multiplying the preceding power by 2½, or by 1 + 1½, that is, by
adding to the former power that power itself and its half. There will,
therefore, be more added to the 10th power to form the 11th, than was
added to the 9th power to form the 10th. But it is evident that if
any given quantity, however small, be continually added to 2½, the
result will come in time to exceed any other quantity that was also
given, however great; much more, then, will it do so if the quantity
added to 2½ be increased at each step, which is the case when the
successive powers of 2½ are formed. It is evident, also, that the
powers of 1 never increase, being always 1; thus, 1 × 1 = 1, &c.
Also, if a be greater than m times b, the square
of a is greater than mm times the square of b.
Thus, if a = 2b + c, where a is greater
than 2b, the square of a, or aa, which is (68)
4bb + 4bc + cc is greater than 4bb, and so
on.

196. The powers of a fraction less than unity continually decrease;
thus, the square of ⅖, or ⅖ × ⅖, is less than ⅖, being only two-fifths of it.
This decrease continues without limit; that is, there is no quantity so
small but that some power of ⅖ is less. For if



	 5 
	 = 
	 x,
	 


	2


	 2 
	 = 
	 1 
	,


	5
	x







	and the powers of ⅖ are  
	1
	 ,  
	1
	 ,


	xx
	xxx





and so on. Since x is greater than 1 (195),
some power of x may be found which shall be greater than a
given quantity. Let this be called m; then 1/m is the
corresponding power of ⅖; and a fraction whose denominator can be
made as great as we please, can itself be made as small as we please (112).

197. We have, then, in the series

1  r  rr  rrr  rrrr  &c.


I. A series of increasing terms, if r be greater than 1. II. Of
terms having the same value, if r be equal to 1. III. A series
of decreasing terms, if r be less than 1. In the first two
cases, the sum

1 + r + rr + rrr + &c.

may evidently be made as great as we please, by
sufficiently increasing the number of terms. But in the third this
may or may not be the case; for though something is added at each
step, yet, as that augmentation diminishes at every step, we may not
certainly say that we can, by any number of such augmentations, make
the result as great as we please. To shew the contrary in a simple
instance, consider the series,

1 + ½ + ¼ + ⅛ + ¹/₁₆ + &c.

Carry this series to what extent we may, it will always
be necessary to add the last term in order to make as much as 2. Thus,

(1 + ½ + ¼) + ¼ = 1 + ½ + ½ = 1 + 1 = 2

(1 + ½ + ¼ + ⅛) + ⅛ = 2.

(1 + ½ + ¼ + ⅛ + ¹/₁₆) + ¹/₁₆ = 2, &c.

But in the series, every term is only the half
of the preceding; consequently no number of terms, however great, can
be made as great as 2 by adding one more. The sum, therefore, of 1,
½, ¼, ⅛ &c. continually approaches to 2, diminishing its distance
from 2 at every step, but never reaching it. Hence, 2 is celled the
limit of 1 + ½ + ¼ + &c. We are not, therefore, to conclude
that every series of decreasing terms has a limit. The contrary
may be shewn in the very simple series, 1 + ½ + ⅓ + ¼ + &c. which
may be written thus:

1 + ½ + (⅓ + ¼) + (⅕ + ... up to ⅛) + (⅑ + ... up to ¹/₁₆)

       + (¹/₁₇ + ... up to ¹/₃₂) + &c.

We have thus divided all the series, except the first two terms, into
lots, each containing half as many terms as there are units in the
denominator of its last term. Thus, the fourth lot contains 16 or ³²/₂2
terms. Each of these lots may be shewn to be greater than ½. Take the

third, for example, consisting of ⅑, ¹/₁₀, ¹/₁₁, ¹/₁₂, ¹/₁₃, ¹/₁₄,
¹/₁₅, and ¹/₁₆. All except ¹/₁₆, the last, are greater than ¹/₁₆;
consequently, by substituting ¹/₁₆ for each of them, the amount of the
whole lot would be lessened; and as it would then become ⁸/₁₆, or ½,
the lot itself is greater than ½. Now, if to 1 + ½, ½ be continually
added, the result will in time exceed any given number. Still more will
this be the case if, instead of ½, the several lots written above be
added one after the other. But it is thus that the series 1 + ½ + ⅓,
&c. is composed, which proves what was said, that this series has
no limit.

198. The series 1 + r + rr + rrr + &c. always
has a limit when r is less than 1. To prove this, let the term
succeeding that at which we stop be a, whence (194) the sum is



	1 - a
	 , or (112) 
	1
	 - 
	a
	 .


	1 - r
	1 - r
	1 - r





The terms decrease without limit (196), whence we may take a term so
far distant from the beginning, that a, and therefore



	1 - a
	 ,


	1 - r





shall be as small as we please. But it is evident that in this case



	1
	 - 
	a


	1 - r
	1 - r





though always less than



	1


	1 - r





may be brought as near to



	1


	1 - r





as we please; that is, the series 1 + r + rr + &c.
continually approaches to the limit



	1
	 .


	1 - r





Thus 1 + ½ + ¼ + ⅛ + &c. where r = ½, continually
approaches to



	1
	or 2,


	1 - ½





as was shewn in the last article.

EXERCISES.



	The limit of  
	2
	 + 
	 2 
	 + 
	 2 
	 + &c.


	3
	9







	or  
	2
	(
	1
	 + 
	 1 
	 + 
	 1 
	 + &c.
	)
	is  3


	3
	9







	... 
	1
	 + 
	9
	 + 
	81
	 + &c.
	  ...  10


	 10 
	 100 


	... 
	5
	 + 
	 15 
	 + 
	 45 
	 + &c.
	  ...  8¾


	7
	49





199. When the fraction a/b is not equal to
c/d, but greater, a is said to have to b a
greater ratio than c has to d; and when a/b
is less than c/d, a is said to have to b
a less ratio than c has to d. We propose the following
questions as exercises, since they follow very simply from this definition.


I. If a be greater than b, and c less than or
equal to d, a will have a greater ratio to b than
c has to d.

II. If a be less than b, and c greater than or
equal to d, a has a less ratio to b than c
has to d.

III. If a be to b as c is to d, and
if a have a greater ratio to b than c has to
x, d is less than x; and if a have a less
ratio to b than c to x, d is greater than
x.

IV. a has to b a greater ratio than ax to
bx + y, and a less ratio than ax to bx-
y.

200. If a have to b a greater ratio than c has to
d, a + c has to b + d a less ratio
than a has to b, but a greater ratio than c has to
d; or, in other words, if a/b be the greater of
the two fractions a/b and c/d,



	a + c


	b + d





will be greater than c/d, but less than
a/b. To shew this, observe that (mx +
ny)/(m + n) must lie between x and
y, if x and y be unequal: for if x be the
less of the two, it is certainly greater than



	mx + nx


	m + n





or than x; and if y be the greater of the two,
it is certainly less than



	my + ny


	m + n





or than y. It therefore lies between x and y.
Now let a/b be x, and let c/d be y:
then a = bx, c = dy. Now



	bx + dy


	b + d





is something between x and y,
as was just proved; therefore



	a + c


	b + d





is something between a/b and
c/d. Again, since a/b and c/d
are respectively equal to ap/bp and cq/dq,
and since, as has just been proved,



	ap + cq


	bp + dq





lies between the two last, it also lies between the two first;
that is, if p and q be any numbers or fractions whatsoever,



	ap + cq


	bp + dq





lies between a/b and c/d.

201. By the last article we may often form some notion of the value
of an expression too complicated to be easily calculated. Thus,



	1 + x
	 lies between 
	1
	 and 
	x
	,  or 1 and 
	1
	 ;


	1 + xx
	 1 
	xx
	 x 


	ax + by
	 lies between 
	ax
	 and 
	by
	,
	 


	axx + bbyy
	axx
	bbyy





that is, between 1/x and 1/by. And it has been shewn
that (a + b)/2 lies between a and b, the
denominator being considered as 1 + 1.

202. It may also be proved that a fraction such as



	a + b + c + d 


	p + q + r + s





always lies among



	 a 
	 , 
	 b 
	 , 
	 c 
	 , and  
	 d 
	 , 


	p
	q
	r
	s





that is, is less than the greatest of them, and
greater than the least.  Let these fractions be arranged in order of magnitude;
that is, let a/p be greater than b/q,
b/q be greater than c/r, and
c/r greater than d/s. Then by (200)



	 
	is

less
 than 
	 
	and
 greater 

than
	 


	a + b
	 
	 a 
	 
	 
	 
	 b 
	 and 
	 c 


	p + q
	 
	 p 
	 
	 
	 
	q
	 
	r


	a + b + c
	 
	a + b
	 and 
	 a 
	 
	 c 
	 and 
	 d 


	p + q + r
	 
	p + q
	p
	 
	r
	s


	a + b + c + d
	 
	a + b + c
	 and 
	 a 
	 
	 d 
	 
	 


	p + q + r + s
	 
	p + q + r
	p
	 
	s
	 
	 





whence the proposition is evident.

203. It is usual to signify “a is greater than b” by
a > b and “a is less than b” by a <
b; the opening of V being turned towards the greater quantity.
The pupil is recommended to make himself familiar with these signs.



SECTION IX.

ON PERMUTATIONS AND
 COMBINATIONS.



204. If a number of counters, distinguished by different letters, be
placed on the table, and any number of them, say four, be taken away,
the question is, to determine in how many different ways this can be
done. Each way of doing it gives what is called a combination of
four, but which might with more propriety be called a selection
of four. Two combinations or selections are called different, which
differ in any way whatever; thus, abcd and abce are
different, d being in one and e in the other, the
remaining parts being the same. Let there be six counters, a,
b, c, d, e, and f; the combinations
of three which can be made out of them are twenty in number, as follow:



	abc
	ace
	bcd
	bef


	abd
	acf
	bce
	cde


	abe
	ade
	bcf
	cdf


	abf
	adf
	bde
	cef


	acd
	aef
	bdf
	def





The combinations of four are fifteen in number, namely,




	abcd
	abde
	acde
	adef
	bcef


	abce
	abdf
	acdf
	bcde
	bdcf


	abcf
	abef
	acef
	bcdf
	cdef





and so on.

205. Each of these combinations may be written in several different
orders; thus, abcd may be disposed in any of the following ways:



	abcd
	acbd
	acdb
	abdc
	adbc
	adcb


	bacd
	cabd
	cadb
	badc
	dabc
	dacb


	bcad
	cbad
	cdab
	bdac
	dbac
	dcab


	bcda
	cbda
	cdba
	bdca
	dbca
	dcba





of which no two are entirely in the same
order. Each of these is said to be a distinct permutation of
abcd. Considered as a combination, they are all the same,
as each contains a, b, c, and d.

206. We now proceed to find how many permutations, each
containing one given number, can be made from the counters in another
given number, six, for example. If we knew how to find all the
permutations containing four counters, we might make those which
contain five thus: Take any one which contains four, for example,
abcf in which d and e are omitted; write d
and e successively at the end, which gives abcfd,
abcfe, and repeat the same process with every other permutation
of four; thus, dabc gives dabce and dabcf. No
permutation of five can escape us if we proceed in this manner,
provided only we know those of four; for any given permutation of
five, as dbfea, will arise in the course of the process from
dbfe, which, according to our rule, furnishes dbfea.
Neither will any permutation be repeated twice, for dbfea, if
the rule be followed, can only arise from the permutation dbfe.
If we begin in this way to find the permutations of two out of the six,

a  b  c  d  e  f

each of these gives five; thus,

a gives ab ac ad ae af

b    ...     ba bc bd be bf

and the whole number is 6 × 5, or 30.


Again,

ab gives  abc abd abe abf

ac    ...       acb acd ace acf

and here are 30, or 6 × 5 permutations of 2, each of which gives 4
permutations of 3; the whole number of the last is therefore 6 × 5 × 4,
or 120.

Again,

abc gives  abcd abce abcf

abd    ...     abdc abde abdf

and here are 120, or 6 × 5 × 4, permutations of
three, each of which gives 3 permutations of four; the whole number of
the last is therefore 6 × 5 × 4 × 3, or 360.

In the same way, the number of permutations of 5 is 6 × 5 × 4 × 3 × 2,
and the number of permutations of six, or the number of different ways
in which the whole six can be arranged, is 6 × 5 × 4 × 3 × 2 × 1. The
last two results are the same, which must be; for since a permutation
of five only omits one, it can only furnish one permutation of six.
If instead of six we choose any other number, x, the number of
permutations of two will be x(x-1), that of three will
be x(x-1)(x-2), that of four x(x
-1)(x-2)(x-3), the rule being: Multiply the whole
number of counters by the next less number, and the result by the next
less, and so on, until as many numbers have been multiplied together
as there are to be counters in each permutation: the product will be
the whole number of permutations of the sort required. Thus, out of 12
counters, permutations of four may be made to the number of 12 × 11 ×
10 × 9, or 11880.

EXERCISES.

207. In how many different ways can eight persons be arranged
on eight seats?

Answer, 40320.

In how many ways can eight persons be seated at a round table, so that
all shall not have the same neighbours in any two arrangements?[30]

Answer, 5040.


If the hundredth part of a farthing be given for every different
arrangement which can be made of fifteen persons, to how much will
the whole amount?

Answer, £13621608.

Out of seventeen consonants and five vowels, how many words can
be made, having two consonants and one vowel in each?

Answer, 4080.

208. If two or more of the counters have the same letter upon them,
the number of distinct permutations is less than that given by the
last rule. Let there be a, a, a, b,
c, d, and, for a moment, let us distinguish between the
three as thus, a, a′, a″. Then, abca′a″d,
and a″bcaa′d are reckoned as distinct permutations in the
rule, whereas they would not have been so, had it not been for the
accents. To compute the number of distinct permutations, let us make
one with b, c, and d, leaving places for the
as, thus, ( ) bc ( ) ( ) d. If the as
had been distinguished as a, a′, a″, we might
have made 3 × 2 × 1 distinct permutations, by filling up the vacant
places in the above, all which six are the same when the as
are not distinguished. Hence, to deduce the number of permutations of
a, a, a, b, c, d, from that of
aa′a″bcd, we must divide the latter by 3 × 2 × 1, or 6, which gives


	6 × 5 × 4 × 3 × 2 × 1

	3 × 2 × 1



or 120. Similarly, the number of permutations of aaaabbbcc is



	9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
	 .


	4 × 3 × 2 × 1 × 3 × 2 × 1 × 2 × 1





EXERCISE.

How many variations can be made of the order of the letters in the
word antitrinitarian?

Answer, 126126000.

209. From the number of permutations we can easily deduce the number of
combinations. But, in order to form these combinations independently,
we will shew a method similar to that in (206). If we know the
combinations of two which can be made out of a, b,
c, d, e, we can find the combinations of three,
by writing successively at the end of each combination of two, the
letters which come after the last contained in it. Thus, ab
gives abc, abd, abe; ad gives ade
only. No combination of three can escape us if we proceed in this
manner, provided only we know the combinations of two; for any given
combination of three, as acd, will arise in the course of
the process from ac, which, according to our rule, furnishes

acd. Neither will any combination be repeated
twice, for acd, if the rule be followed, can only arise from ac, since
neither ad nor cd furnishes it. If we begin in this way to find the
combinations of the five,



	 
	 
	a
	b
	c
	d
	e


	 
	a
	gives
	ab
	ac
	ad
	ae


	 
	b
	····
	 
	bc
	bd
	be


	 
	c
	····
	 
	 
	cd
	ce


	 
	d
	····
	 
	 
	 
	de


	Of these,  
	ab
	gives
	abc
	abd
	abe
	 


	 
	ac
	····
	 
	acd
	ace
	 


	 
	ad
	····
	 
	 
	ade
	 


	 
	bc
	····
	 
	bcd
	bce
	 


	 
	bd
	····
	 
	 
	bde
	 


	 
	cd
	····
	 
	 
	cde
	 


	 ae be ce and de give none.


	Of these,  
	abc
	gives
	abcd
	 
	abce
	 


	 
	abd
	····
	 
	 
	abde
	 


	 
	acd
	····
	 
	 
	acde
	 


	 
	bcd
	····
	 
	 
	bcde
	 


	Those which contain e give none, as before.





Of the last, abcd gives abcde, and
the others none, which is evidently true, since only one selection of
five can be made out of five things.

210. The rule for calculating the number of combinations is derived
directly from that for the number of permutations. Take 7 counters;
then, since the number of permutations of two is 7 × 6, and since
two permutations, ba and ab, are in any combination
ab, the number of combinations is half that of the permutations,
or (7 × 6)/2. Since the number of permutations of three is 7 × 6 × 5,
and as each combination abc has 3 × 2 × 1 permutations, the
number of combinations of three is



	7 × 6 × 5
	 .


	1 × 2 × 3





Also, since any combination of four, abcd, contains
4 × 3 × 2 × 1 permutations, the number of combinations of four is



	7 × 6 × 5 × 4
	 ,


	1 × 2 × 3 × 4





and so on. The rule is: To find the number of combinations,
each containing n counters, divide the corresponding number of

permutations by the product of 1, 2, 3, &c. up to n. If
x be the whole number, the number of combinations of two is



	x(x - 1)
	 ;


	1 × 2





that of three is



	x(x - 1)(x - 2)
	 ;


	1 × 2 × 3





that of four is



	x(x - 1)(x - 2)(x - 3)
	 ;


	1 × 2 × 3 × 4





211. The rule may in half the cases be simplified, as follows. Out of
ten counters, for every distinct selection of seven which is taken, a
distinct combination of 3 is left. Hence, the number of combinations
of seven is as many as that of three. We may, therefore, find the
combinations of three instead of those of seven; and we must moreover
expect, and may even assert, that the two formulæ for finding these two
numbers of combinations are the same in result, though different in
form. And so it proves; for the number of combinations of seven out of
ten is



	10 × 9 × 8 × 7 × 6 × 5 × 4
	 ,


	1 × 2 × 3 × 4 × 5 × 6 × 7





in which the product 7 × 6 × 5 × 4 occurs in both terms, and therefore
may be removed from both (108), leaving



	10 × 9 × 8
	 ,


	1 × 2 × 3





which is the number of combinations of three out of ten. The same may
be shewn in other cases.

EXERCISES.

How many combinations of four can be made out of twelve things?

Answer, 495.



	What number of
	 
	6
	  
	 out of 
	  
	8
	  
	 Answer, 
	  
	28


	combinations
	4
	11
	330


	can be made of  
	26
	28
	378


	 
	6
	15
	5005





How many combinations can be made of 13 out of 52; or how many
different hands may a person hold at the game of whist?

Answer, 635013559600.





BOOK II.



COMMERCIAL ARITHMETIC.

SECTION I.

WEIGHTS, MEASURES, &C.

212. In making the calculations which are necessary in commercial
affairs, no more processes are required than those which have been
explained in the preceding book. But there is still one thing
wanted—not to insure the accuracy of our calculations, but to enable
us to compare and judge of their results. We have hitherto made use of
a single unit (15), and have treated of other quantities which are made
up of a number of units, in Sections II., III., and IV., and of those
which contain parts of that unit in Sections V. and VI. Thus, if we are
talking of distances, and take a mile as the unit, any other length may
be represented,[31]
either by a certain number of miles, or a certain
number of parts of a mile, and (1 meaning one mile) may be expressed

either by a whole number or a fraction. But we can easily see that in
many cases inconveniences would arise. Suppose, for example, I say,
that the length of one room is ¹/₁₈₀ of a mile, and of another ¹/₁₇₄
of a mile, what idea can we form as to how much the second is longer
than the first? It is necessary to have some smaller measure; and if
we divide a mile into 1760 equal parts, and call each of these parts a
yard, we shall find that the length of the first room is 9 yards and
⁷/₉ of a yard, and that of the second 10 yards and ¹⁰/₈₇ of a yard.
From this we form a much better notion of these different lengths,
but still not a very perfect one, on account of the fractions ⁷/₉ and
¹⁰/₈₇. To get a clearer idea of these, suppose the yard to be divided
into three equal parts, and each of these parts to be called a foot;
then ⁷/₉ of a yard contains 2⅓ feet, and ¹⁰/₈₇ of a yard contains ³⁰/₈₇
of a foot, or a little more than ⅓ of a foot. Therefore the length
of the first room is now 9 yards, 2 feet, and ⅓ of a foot; that of
the second is 10 yards and a little more than ⅓ of a foot. We see,
then, the convenience of having large measures for large quantities,
and smaller measures for small ones; but this is done for convenience
only, for it is possible to perform calculations upon any sort
of quantity, with one measure alone, as certainly as with more than
one; and not only possible, but more convenient, as far as the mere
calculation is concerned.

The measures which are used in this country are not those which would
have been chosen had they been made all at one time, and by a people
well acquainted with arithmetic and natural philosophy. We proceed
to shew how the results of the latter science are made useful in
our system of measures. Whether the circumstances introduced are
sufficiently well known to render the following methods exact enough
for the recovery of astronomical standards, may be matter of
opinion; but no doubt can be entertained of their being amply correct
for commercial purposes.


It is evidently desirable that weights and measures should always
continue the same, and that posterity should be able to replace any
one of them when the original measure is lost. It is true that a yard,
which is now exact, is kept by the public authorities; but if this were
burnt by accident,[32]
how are those who shall live 500 years hence to know what was the
length which their ancestors called a yard? To ensure them this
knowledge, the measure must be derived from something which cannot
be altered by man, either from design or accident. We find such a
quantity in the time of the daily revolution of the earth, and also
in the length of the year, both of which, as is shewn in astronomy,
will remain the same, at least for an enormous number of centuries,
unless some great and totally unknown change take place in the solar
system. So long as astronomy is cultivated, it is impossible to suppose
that either of these will be lost, and it is known that the latter is
365·24224 mean solar days, or about 365¼ of the average interval which
elapses between noon and noon, that is, between the times when the sun
is highest in the heavens. Our year is made to consist of 365 days,
and the odd quarter is allowed for by adding one day to every fourth
year, which gives what we call leap-year. This is the same as adding ¼
of a day to each year, and is rather too much, since the excess of the
year above 365 days is not ·25 but ·24224 of a day. The difference is
·00776 of a day, which is the quantity by which our average year is too
long. This amounts to a day in about 128 years, or to about 3 days in
4 centuries. The error is corrected by allowing only one out of four
of the years which close the centuries to be leap-years. Thus,
a.d. 1800 and 1900 are not leap-years,
but 2000 is so.

213. The day is therefore the first measure obtained, and is divided
into 24 parts or hours, each of which is divided into 60 parts or
minutes, and each of these again into 60 parts or seconds. One second,
marked thus, 1″,[33]
is therefore the 86400ᵗʰ part of a day, and the following is the


MEASURE OF TIME.[34]



	60
	  seconds
	 are 
	1 minute
	 
	1 m.


	60
	  minutes
	 ” 
	1 hour
	1 h.


	24
	  hours
	 ” 
	1 day
	1 d.


	7
	  days
	 ” 
	1 week
	1 wk.


	365
	  days
	 ” 
	1 year
	1 yr.





214. The second having been obtained, a pendulum can be
constructed which shall, when put in motion, perform one vibration
in exactly one second, in the latitude of Greenwich.[35]
If we were inventing measures, it would be convenient to call the length of
this pendulum a yard, and make it the standard of all our measures of
length. But as there is a yard already established, it will do equally
well to tell the length of the pendulum in yards. It was found by
commissioners appointed for the purpose, that this pendulum in London
was 39·1393 inches, or about one yard, three inches, and ⁵/₃₆ of an
inch. The following is the division of the yard.

MEASURES OF LENGTH.

The lowest measure is a barleycorn.[36]



	3
	  barleycornsare
	1 inch
	1 in.


	12
	  inches
	1 foot
	1 ft.


	3
	  feet
	1 yard
	1 yd.


	5½
	  yards
	1 pole
	1 po.


	40
	  poles or 220 yards
	1 furlong
	1 fur.


	8
	  furlongs or 1760 yards
	1 mile
	1 mi.


	Also  
	 


	6
	  feet
	1 fathom
	1 fth.


	69⅓
	  miles
	1 degree
	1 deg. or 1°.






A geographical mile is ¹/₆₀th of a degree, and three such miles are one
nautical league.

In the measurement of cloth or linen the following are also used:



	2¼
	inches are
	1 nail
	1 nl.


	4
	nails
	1 quarter (of a yard)
	1 qr.


	3
	quarters
	1 Flemish ell
	1 Fl. e.


	5
	quarters
	1 English ell
	1 E. e.


	6
	quarters
	1 French ell
	1 Fr. e.





215. MEASURES OF SURFACE, OR SUPERFICIES.

All surfaces are measured by square inches, square feet, &c.; the
square inch being a square whose side is an inch in length, and so on.
The following measures may be deduced from the last, as will afterwards
appear.



	144
	square inches are
	1 square foot
	1 sq. ft.


	9
	square feet
	1 square yard
	1 sq. yd.


	30¼
	square yards
	1 square pole
	1 sq. p.


	40
	square poles
	1 rood
	1 rd.


	4
	roods
	1 acre
	1 ac.





Thus, the acre contains 4840 square yards, which is ten times a square
of 22 yards in length and breadth. This 22 yards is the length which
land-surveyors’ chains are made to have, and the chain is divided into
100 links, each ·22 of a yard or 7·92 inches. An acre is then 10 square
chains. It may also be noticed that a square whose side is 69⁴/₇ yards
is nearly an acre, not exceeding it by ⅕ of a square foot.

216. MEASURES OF SOLIDITY OR CAPACITY.[37]

Cubes are solids having the figure of dice. A cubic inch is a cube each
of whose sides is an inch, and so on.



	1728
	cubic inches are
	1 cubic foot
	1 c. ft.


	27
	cubic feet
	1 cubic yard
	1 c. yd.






This measure is not much used, except in purely mathematical
questions. In the measurements of different commodities various measures
were used, which are now reduced, by act of parliament, to one.
This is commonly called the imperial measure, and is as follows:

MEASURE OF LIQUIDS AND

OF ALL DRY GOODS.



	4
	gills  are
	1 pint
	1 pt.


	2
	pints
	1 quart
	1 qt.


	4
	quarts
	1 gallon
	1 gall.


	2
	gallons
	1 peck[38]
	1 pk.


	4
	pecks
	1 bushel
	1 bu.


	8
	bushels
	1 quarter
	1 qr.


	5
	quarters
	1 load
	1 ld.





The gallon in this measure is about 277·274 cubic inches; that is, very
nearly 277¼ cubic inches.[39]

217. The smallest weight in use is the grain, which is thus determined.
A vessel whose interior is a cubic inch, when filled with
water,[40]
has its weight increased by 252·458 grains. Of the grains so determined,
7000 are a pound averdupois, and 5760 a pound troy. The
first pound is always used, except in weighing precious metals and
stones, and also medicines. It is divided as follows:


AVERDUPOIS WEIGHT.



	27
	¹¹/₃₂
	grainsare
	1 dram
	1 dr.


	6
	 
	drams, or drachms
	1 ounce[41]
	1 oz.


	16
	 
	ounces
	1 pound
	1 lb.


	28
	 
	pounds
	1 quarter
	1 qr.


	4
	 
	quarters
	1 hundred-weight
	1 cwt.


	20
	 
	hundred-weight
	1 ton
	1 ton.





The pound averdupois contains 7000 grains. A cubic foot of water weighs
62·3210606 pounds averdupois, or 997·1369691 ounces.

For the precious metals and for medicines, the pound troy, containing
5760 grains, is used, but is differently divided in the two cases. The
measures are as follow:

TROY WEIGHT.



	24
	grainsare
	1 pennyweight
	1 dwt.


	20
	pennyweights
	1 ounce
	1 oz.


	12
	ounces
	1 pound
	1 lb.





The pound troy contains 5760 grains. A cubic foot of water weighs
75·7374 pounds troy, or 908·8488 ounces.

APOTHECARIES’ WEIGHT.



	20
	grainsare
	1 scruple
	℈


	3
	scruples
	1 dram
	ʒ


	8
	drams
	1 ounce
	℥


	12
	ounces
	1 pound
	lb





218. The standard coins of copper, silver, and gold, are,—the penny,
which is 10⅔ drams of copper; the shilling, which weighs 3 pennyweights
15 grains, of which 3 parts out of 40 are alloy, and the rest pure
silver; and the sovereign, weighing 5 pennyweights and 3¼ grains, of
which 1 part out of 12 is copper, and the rest pure gold.


MEASURES OF MONEY.

The lowest coin is a farthing, which is marked thus, ¼, being one
fourth of a penny.



	2
	farthings are
	1 halfpenny
	 ½d.


	2
	halfpence
	1 penny
	1d.


	12
	pence
	1 shilling
	1s.


	20
	shillings
	1 pound[42] or sovereign
	£1


	21
	shillings
	1 guinea.[43]
	 





219. When any quantity is made up of several others, expressed in
different units, such as £1. 14. 6, or 2cwt. 1qr. 3lbs., it is called
a compound quantity. From these tables it is evident that any
compound quantity of any substance can be measured in several different
ways. For example, the sum of money which we call five pounds four
shillings is also 104 shillings, or 1248 pence, or 4992 farthings.
It is easy to reduce any quantity from one of these measurements to
another; and the following examples will be sufficient to shew how to
apply the same process, usually called Reduction,
to all sorts of quantities.

I. How many farthings are there in £18. 12. 6¾?[44]

Since there are 20 shillings in a pound, there are, in £18, 18 × 20, or
360 shillings; therefore, £18. 12 is 360 + 12, or 372 shillings. Since
there are 12 pence in a shilling, in 372 shillings there are 372 × 12,
or 4464 pence; and, therefore, in £18. 12. 6 there are 4464 + 6, or
4470 pence.


Since there are 4 farthings in a penny, in 4470 pence there are 4470 ×
4, or 17880 farthings; and, therefore, in £18. 12. 6¾ there are 17880
+ 3, or 17883 farthings. The whole of this process may be written as
follows:


	£18 . 12 . 6¾

	 20    

	360 + 12 =  372

	    12   

	4464 + 6 = 4470

	      4   

	17880 + 3 = 17883



II. In 17883 farthings, how many pounds, shillings, pence, and
farthings are there?

Since 17883, divided by 4, gives the quotient 4470, and the remainder
3, 17883 farthings are 4470 pence and 3 farthings (218).

Since 4470, divided by 12, gives the quotient 372, and the remainder 6,
4470 pence is 372 shillings and 6 pence.

Since 372, divided by 20, gives the quotient 18, and the remainder 12,
372 shillings is 18 pounds and 12 shillings.

Therefore, 17883 farthings is 4470¾d., which is 372s.
6¾d., which is £18. 12. 6¾.

The process may be written as follows:


	4)17883

	——

	12)4470 ... 3

	——

	20)372 ... 6

	£18 . 12 . 6¾



EXERCISES.

A has £100. 4. 11½, and B has 64392 farthings. If A receive 1492
farthings, and B £1. 2. 3½, which will then have the most, and by how
much?—Answer, A will have £33. 12. 3 more than B.

In the following table the quantities written opposite to each other
are the same: each line furnishes two exercises.




	£15 . 18 . 9½
	15302 farthings.


	115ˡᵇˢ 1ᵒᶻ 8ᵈᵚᵗ
	663072 grains.


	3ˡᵇˢ 14ᵒᶻ 9ᵈʳ
	1001 drams.


	3ᵐ 149 yds 2ᶠᵗ 9 in
	195477 inches.


	19ᵇᵘ  2ᵖᵏˢ  1 gall 2 qᵗˢ
	1260 pints.


	16 ʰ 23ᵐ 47ˢ
	59027 seconds.





220. The same may be done where the number first expressed is
fractional. For example, how many shillings and pence are there in ⁴/₁₅
of a pound? Now, ⁴/₁₅ of a pound is ⁴/₁₅ of 20 shillings;
⁴/₁₅ of 20 is



	4 × 20
	, or  
	4 × 4
	  (110), or  
	16
	 ,


	15
	3
	3





or (105) 5⅓ of a shilling. Again, ⅓ of a shilling is ⅓ of
12 pence, or 4 pence. Therefore, £⁴/₁₅ = 5s. 4d.

Also, ·23 of a day is ·23 × 24 in hours, or 5ʰ·52; and ·52 of an hour
is ·52 × 60 in minutes, or 3ᵐ·2; and ·2 of a minute is ·2 × 60 in
seconds, or 12ˢ; whence ·23 of a day is 5ʰ 31ᵐ 12ˢ.

Again, suppose it required to find what part of a pound 6s.
8d. is. Since 6s. 8d. is 80 pence, and since the
whole pound contains 20 × 12 or 240 pence, 6s. 8d. is
made by dividing the pound into 240 parts, and taking 80 of them. It is
therefore £⁸⁰/₂₄₀ (107), but ⁸⁰/₂₄₀ = ⅓ (108);
therefore, 6s. 8d. = £⅓.

EXERCISES.



	⅖ of a day is
	9ʰ 36ᵐ


	 ·12841 of a day
	3ʰ 4ᵐ 54ᔆ·624[45]


	 ·257 of a cwt.
	28ˡᵇˢ 12ᵒᶻ 8ᵈʳ·704


	£·14936
	2ˢ 11ᵈ 3ᶠ·3856





221, 222. I have thought it best to refer the mode of converting
shillings, pence, and farthings into decimals of a pound to the
Appendix (See Appendix On Decimal Money).
I should strongly recommend the reader to make himself perfectly familiar with the modes

given in that Appendix. To prevent the subsequent sections from being
altered in their numbering, I have numbered this paragraph as above.

223. The rule of addition[46]
of two compound quantities of the same sort will be evident from the
following example. Suppose it required to add £192. 14. 2½ to £64. 13.
11¾. The sum of these two is the whole of that which arises from adding
their several parts. Now



	¾d. +  ½d.
	 = 
	⁵/₄d.
	 = 
	£0 . 0 . 1¼
	(219)


	11d. +  2d.
	 = 
	13d.
	 = 
	0 . 1 . 1
	 


	13s. + 14s.
	 = 
	27s.
	 = 
	1 . 7 . 0
	 


	£64 + £192
	 = 
	 
	 = 
	256 . 0 . 0
	 


	The sum of all of which is
	£257. 8 . 2¼
	 





This may be done at once, and written as follows:


	£192.14.  2½

	  64.13.11¾

	£257.  8.  2¼



Begin by adding together the farthings, and reduce the result to pence
and farthings. Set down the last only, carry the first to the line
of pence, and add the pence in both lines to it. Reduce the sum to
shillings and pence; set down the last only, and carry the first to the
line of shillings, and so on. The same method must be followed when the
quantities are of any other sort; and if the tables be kept in memory,
the process will be easy.

224. Subtraction is performed on the same principle
as in (40), namely, that the difference of two quantities is not altered by
adding the same quantity to both. Suppose it required to subtract
£19 . 13. 10¾ from £24. 5. 7½. Write these quantities under one another thus:



	£24.  5.  7½

	19. 13. 10¾



Since ¾ cannot be taken from ½ or ²/₄, add 1d. to both
quantities, which will not alter their difference; or, which is the
same thing, add 4 farthings to the first, and 1d. to the second.
The pence and farthings in the two lines then stand thus: 7⁶/₄d.
and 11¾d. Now subtract ¾ from ⁶/₄, and the difference is ¾ which
must be written under the farthings. Again, since 11d. cannot be
subtracted from 7d., add 1s. to both quantities by adding
12d. to the first, and 1s. to the second. The pence in
the first line are then 19, and in the second 11, and the difference
is 8, which write under the pence. Since the shillings in the lower
line were increased by 1, there are now 14s. in the lower, and
5s. in the upper one. Add 20s. to the upper and £1 to
the lower line, and the subtraction of the shillings in the second
from those in the first leaves 11s. Again, there are now £20 in
the lower, and £24 in the upper line, the difference of which is £4;
therefore the whole difference of the two sums is £4. 11. 8¾. If we
write down the two sums with all the additions which have been made,
the process will stand thus:


	£24 . 25 . 19⁶/₄

	20 . 14 . 11¾

	Difference  £4 . 11 .  8¾



225. The same method may be applied to any of the quantities in the
tables. The following is another example:

From     7 cwt. 2 qrs. 21 lbs. 14 oz.
Subtract 2 cwt. 3 qrs. 27 lbs. 12 oz.

After alterations have been made similar to those in the last article,
the question becomes:



	From
	7 cwt. 6 qrs. 49 lbs. 14 oz.


	Subtract
	3 cwt. 4 qrs. 27 lbs. 12 oz.


	The difference is
	4 cwt. 2 qrs. 22 lbs.  2 oz.





In this example, and almost every other, the process may be a little

shortened in the following way. Here we do not subtract 27 lbs. from 21
lbs., which is impossible, but we increase 21 lbs. by 1 qr. or 28 lbs.
and then subtract 27 lbs. from the sum. It would be shorter, and lead
to the same result, first to subtract 27 lbs. from 1 qr. or 28 lbs. and
add the difference to 21 lbs.

226. EXERCISES.

A man has the following sums to receive: £193. 14. 11¼, £22. 0. 6¾,
£6473. 0. 0, and £49. 14. 4½; and the following debts to pay: £200
. 19. 6¼, £305. 16. 11, £22, and £19. 6. 0½. How much will remain
after paying the debts?

Answer, £6190. 7. 4¾.

There are four towns, in the order A, B, C, and D. If a man can go from
A to B in 5ʰ 20ᵐ 33ˢ, from B to C in 6ʰ 49ᵐ 2ˢ and from A to D in 19ʰ
0ᵐ 17ˢ, how long will he be in going from B to D, and from C to D?

Answer, 13ʰ 39ᵐ 44ˢ, and 6ʰ 50ᵐ 42ˢ.

227. In order to perform the process of Multiplication, it
must be recollected that, as in (52), if a quantity be divided into
several parts, and each of these parts be multiplied by a number, and
the products be added, the result is the same as would arise from
multiplying the whole quantity by that number.

It is required to multiply £7. 13. 6¼ by 13. The first quantity is
made up of 7 pounds, 13 shillings, 6 pence, and 1 farthing. And



	1 farth. × 13 is  
	13 farth.  or
	£0 .  0 . 3¼
	(219)


	6 pence  × 13 is  
	78 pence,  or
	 0 .  6 . 6
	 


	13 shill. × 13 is  
	169 shill.  or
	 8 .  9 . 0


	7 pounds × 13 is  
	91 pounds, or
	91 .  0 . 0


	The sum of all these is
	 £99 . 15 . 9¼





which is therefore £7. 13. 6¼ × 13.

This process is usually written as follows:


	£ 7 . 13 . 6¼

	13

	£99 . 15 . 9¼




228. Division is performed upon the same principle as in (74),
viz. that if a quantity be divided into any number of parts, and each
part be divided by any number, the different quotients added together
will make up the quotient of the whole quantity divided by that number.
Suppose it required to divide £99. 15. 9¼ by 13. Since 99 divided
by 13 gives the quotient 7, and the remainder 8, the quantity is made
up of £13 × 7, or £91, and £8. 15. 9¼. The quotient of the first,
13 being the divisor, is £7: it remains to find that of the second.
Since £8 is 160s., £8. 15. 9¼ is 175s. 9¼d.,
and 175 divided by 13 gives the quotient 13, and the remainder 6; that
is, 175s. 9¼d. is made up of 169s. and 6s.
9¼d., the quotient of the first of which is 13s., and it
remains to find that of the second. Since 6s. is 72d.,
6s. 9¼d. is 81¼d., and 81 divided by 13 gives the
quotient 6 and remainder 3; that is, 81¼d. is 78d. and
3¼d., of the first of which the quotient is 6d. Again,
since 3d. is ¹²/₄, or 12 farthings, 3¼d. is 13 farthings,
the quotient of which is 1 farthing, or ¼, without remainder. We have
then divided £99. 15. 9¼ into four parts, each of which is divisible
by 13, viz. £91, 169s., 78d., and 13 farthings; so that
the thirteenth part of this quantity is £7. 13. 6¼. The whole process
may be written down as follows; and the same sort of process may be
applied to the exercises which follow:


	£    s.    d.  £    s.     d.

	13)99 15   9¼(7  13    6¼

	91

	 8

	  20

	160 + 15 = 175

	 13

	45

	39

	6

	12

	72 + 9 = 81

	78

	3

	  4

	12 + 1 = 13

	13

	0




Here, each of the numbers 99, 175, 81, and 13, is divided by 13 in the
usual way, though the divisor is only written before the first of them.

EXERCISES.



	2 cwt. 1 qr. 21 lbs. 7 oz. × 53
	  =  
	129 cwt. 1 qr. 16 lbs. 3 oz.


	2ᵈ 4ʰ 3ᵐ 27ˢ × 109
	=
	236ᵈ 10ʰ 16ᵐ 3ˢ


	£27 . 10 . 8 × 569
	=
	£15666 . 9 . 4


	£7 . 4 . 8 × 123
	=
	£889 . 14


	£166 ×  ₈/₃₃
	=
	£40 . 4 . 10⁶/₃₃


	£187 . 6 . 7 × ³/₁₀₀
	=
	£5 . 12 . 4¾ ²/₂₅


	4s. 6½d. × 1121
	=
	£254 . 11 . 2½


	4s. 4d. × 4260
	=
	6s. 6d. × 2840





229. Suppose it required to find how many times 1s. 4¼d. is
contained in £3. 19. 10¾. The way to do this is to find the number
of farthings in each. By 219, in the first there are 65, and in the
second 3835 farthings. Now, 3835 contains 65 59 times; and therefore
the second quantity is 59 times as great as the first. In the case,
however, of pounds, shillings, and pence, it would be best to use
decimals of a pound, which will give a sufficiently exact answer.
Thus 1s. 4¼d. is £·067, and £3. 19. 10¾ is £3·994, and 3·994
divided by ·067 is 3994 by 67, or 59⁴¹/₆₇. This is an extreme case, for
the smaller the divisor, the greater the effect of an error in a given
place of decimals.

EXERCISES.

How many times does 6 cwt. 2 qrs. contain 1 qr. 14 lbs. 1 oz.? and 1ᵈ
2ʰ 0ᵐ 47ˢ contain 3ᵐ 46ˢ?

Answer, 17·30758 and 414·367257.

If 2 cwt. 3 qrs. 1 lb. cost £150. 13. 10, how much does 1 lb. cost?

Answer, 9s. 9d. ¹³/₃₀₉.

A grocer mixes 2 cwt. 15 lbs. of sugar at 11d. per pound with 14
cwt. 3 lbs. at 5d. per pound. At how much per pound must he sell
the mixture so as not to lose by mixing them?

Answer, 5d. ¾ ¹⁵³/₉₀₅.

230. There is a convenient method of multiplication called
Practice. Suppose I ask, How much do 153 tons cost
if each ton cost £2. 15. 7½? It is plain that if this sum be multiplied by 153,

the product is the price of the whole. But this is also evident,
that, if I buy 153 tons at £2. 15. 7½ each ton, payment may be
made by first putting down £2 for each ton, then 10s. for each, then
5s., then 6d., and then 1½d. These sums together
make up £2. 15. 7½, and the reason for this separation of £2. 15
. 7½ into different parts will be soon apparent. The process may be
carried on as follows:


1. 153 tons, at £2 each ton, will cost

£306  0 0

2. Since 10s. is £½, 153 tons, at 10s.
each, will cost £15³/₂, which is

76 10 0

3. Since 5s. is ½ of 10s., 153 tons,
at 5s., will cost half as much as the same number at 10s.
each, that is, ½ of £76 . 10, which is

38  5 0

4. Since 6d. is ⅒ of 5s., 153 tons,
at 6d. each, will cost ⅒ of what the same number costs at 5s.
each, that is, ⅒ of £38 . 5, which is

3 16 6

5. Since 1½ or 3 halfpence is ¼ of 6d.
or 12 halfpence, 153 tons, at 1½d. each, will cost ¼ of what
the same number costs at 6d. each, that is, ¼ of £3 . 16 . 6, which is

  0 19 1½

The sum of all these quantities is 425 10 7½



which is, therefore, £2 . 15 . 7½ × 153.

The whole process may be written down as follows:



	 
	 
	or what

153 tons

would

cost at
	 


	 
	£153  0  0
	 
	£1 per ton.


	£2 is 2 × £1
	306  0  0
	2  0  0 


	10s. is ½ of £1
	76 10  0
	0  10   0


	10s. is ½ of £1
	76 10  0
	0  10   0


	5s. is ½ of 10s.
	38  5  0
	0  5  0 


	6d. is ⅒ of 5s.
	3 16  6
	0   0  6 


	1½d. is ¼ of 6d.
	0 19  1½
	0   0  1½


	Sum
	£425 10  7½
	0   0  1½







ANOTHER EXAMPLE.

What do 1735 lbs. cost at 9s. 10¾d. per lb.? The
price 9s. 10¾d. is made up of 5s., 4s.,
10d., ½d., and ¼d.; of which 5s. is ¼ of
£1, 4s. is ⅕ of £1, 10d. is ⅙ of 5s., ½d.
is ¹/₂₀ of 10d., and ¼d. is ½ of ½d. Follow the
same method as in the last example, which gives the following:



	 
	 
	or what

1735 tons

would

cost at
	 


	 
	£1735  0  0
	 
	£1 per ton.


	5s. is ¼ of £1
	433 15  0
	0  5   0  


	4s. is ⅕ of £1
	347 0  0
	0  4   0  


	10d. is ⅙ of 5s.
	72  5 10
	0  0  10 


	½d. is ¹/₂₀ of 10d.
	3 12  3½
	0  0   0½


	¼d. is ½ of ½d.
	1 16  1¾
	0  0   0¼


	by addition ...
	£858 9 3¼
	£0  9 10¾





In all cases, the price must first be divided into a number of parts,
each of which is a simple fraction[47]
of some one which goes before. No rule can be given for doing this,
but practice will enable the student immediately to find out the best
method for each case. When that is done, he must find how much the
whole quantity would cost if each of these parts were the price, and
then add the results together.

EXERCISES.

What is the cost of

243 cwt. at £14 . 18 . 8¼ per cwt.?—Answer, £3629 . 1 . 0¾.

169 bushels at £2 . 1 . 3¼ per bushel?—Answer, £348 . 14 . 9¼.

273 qrs. at 19s. 2d. per quarter?—Answer, £261 . 12. 6.

2627 sacks at 7s. 8½d. per sack?—Answer, £1012 . 9 . 9½.


231. Throughout this section it must be observed, that the rules can be
applied to cases where the quantities given are expressed in common or
decimal fractions, instead of the measures in the tables. The following
are examples:

What is the price of 272·3479 cwt. at £2. 1. 3½ per cwt.?

Answer, £562·2849, or

£562. 5. 8¼. 66½lbs. at 1s. 4½d. per lb. cost £4. 11. 5¼.

How many pounds, shillings, and pence, will 279·301 acres let for if
each acre lets for £3·1076?—Answer, £867·9558, or £867. 19. 1¼.

What does ¼ of ³/₁₃ of 17 bush. cost at ⅙ of ⅔ of £17. 14 per bushel?

Answer, £2·3146, or £2. 6. 3½.

What is the cost of 19lbs. 8oz. 12dwt. 8gr. at £4. 4. 6 per
ounce?—Answer, £999. 14. 1¼ ⅙.

232. It is often required to find to how much a certain sum per day
will amount in a year. This may be shortly done, since it happens that
the number of days in a year is 240 + 120 + 5; so that a penny per day
is a pound, half a pound, and 5 pence per year. Hence the following
rule: To find how much any sum per day amounts to in a year, turn it
into pence and fractions of a penny; to this add the half of itself,
and let the pence be pounds, and each farthing five shillings; then
add five times the daily sum, and the total is the yearly amount.
For example, what does 12s. 3¾d. amount to in a year?
This is 147¾d., and its half is 73⅞d., which added to
147¾d. gives 221⅝d., which turned into pounds is £221.
12. 6. Also, 12s. 3¾d. × 5 is £3. 1. 6¾, which added
to the former sum gives £224. 14. 0¾ for the yearly amount. In the
same way the yearly amount of 2s. 3½d. is £41. 16. 5½;
that of 6¾d. is £10. 5. 3¾; and that of 11d. is £16. 14. 7.

233. An inverse rule may be formed, sufficiently correct for every
purpose, in the following way: If the year consisted of 360 days, or
³/₂ of 240, the subtraction of one-third from any sum per year would
give the proportion which belongs to 240 days; and every pound so
obtained would be one penny per day. But as the year is not 360, but
365 days, if we divide each day’s share into 365 parts, and take 5
away, the whole of the subtracted sum, or 360 × 5 such parts, will give

360 parts for each of the 5 days which we neglected at first. But 360
such parts are left behind for each of the 360 first days; therefore,
this additional process divides the whole annual amount equally among
the 365 days. Now, 5 parts out of 365 is one out of 73, or the 73d
part of the first result must be subtracted from it to produce the
true result. Unless the daily sum be very large, the 72d part will
do equally well, which, as 72 farthings are 18 pence, is equivalent
to subtracting at the rate of one farthing for 18d., or
½d. for 3s., or 10d. for £3. The rule, then, is
as follows: To find how much per day will produce a given sum per
year, turn the shillings, &c. in the given sum into decimals of a
pound (221); subtract one-third; consider the result as pence; and
diminish it by one farthing for every eighteen pence, or ten pence
for every £3. For example, how much per day will give £224. 14. 0¾
per year? This is 224·703, and its third is 74·901, which subtracted
from 224·703, gives 149·802, which, if they be pence, amounts to
12s. 5·802d., in which 1s. 6d. is contained
8 times. Subtract 8 farthings, or 2d., and we have 12s.
3·802d., which differs from the truth only about ¹/₂₀ of a
farthing. In the same way, £100 per year is 5s. 5¾d. per day.

234. The following connexion between the measures of length and the
measures of surface is the foundation of the application of arithmetic
to geometry.





Suppose an oblong figure, a, b, c, d, as here drawn (which is
called a rectangle in geometry), with the side a b 6
inches, and the side a c 4 inches. Divide a b
and c d (which are equal) each into 6 inches by the points a,
b, c, l, m, &c.; and a c and b d
(which are also equal) into 4 inches by the points f, g, h, x, y, and

z. Join a and l, b and m, &c., and
f and x, &c. Then, the figure a b c d is
divided into a number of squares; for a square is a rectangle whose
sides are equal, and therefore a a f
e is square, since a a is of the same length as
a f, both being 1 inch. There are
also four rows of these squares, with six squares in each row; that
is, there are 6 × 4, or 24 squares altogether. Each of these squares
has its sides 1 inch in length, and is what was called in (215)
a square inch. By the same reasoning, if one side had contained
6 yards, and the other 4 yards, the surface would have
contained 6 × 4 square yards; and so on.





235. Let us now suppose that the sides of a b c d, instead of
being a whole number of inches, contain some inches and a fraction.
For example, let a b be 3½ inches, or (114) ⁷/₂ of an inch,
and let a c contain 2½ inches, or ⁹/₄ of an inch. Draw a e
twice as long as a b, and a f four times as
long as a c, and complete the rectangle a e f g.
The rest of the figure needs no description. Then, since a e
is twice a b, or twice ⁷/₂ inches, it is 7 inches. And since
a f is four times a c, or four times ⁹/₄ inches,
it is 9 inches. Therefore, the whole rectangle a e f g contains,
by (234), 7 × 9 or 63 square inches. But the rectangle a e f g
contains 8 rectangles, all of the same figure as a b c d; and
therefore a b c d is one-eighth part of a e f g,
and contains ⁶³/₈ square inches. But ⁶³/₈ is made by multiplying ⁹/₄ and
⁷/₂ together (118). From this and the last article it appears, that,
whether the sides of a rectangle be a whole or a fractional number of
inches, the number of square inches in its surface is the product of
the numbers of inches in its sides. The square itself is a rectangle
whose sides are all equal, and therefore the number of square inches
which a square contains is found by multiplying the number of inches in
its side by itself. For example, a square whose side is 13 inches in
length contains 13 × 13 or 169 square inches.

236. EXERCISES.

What is the content, in square feet and inches, of a room whose sides
are 42 ft. 5 inch. and 31 ft. 9 inch.? and supposing the piece from

which its carpet is taken to be three quarters of a yard in breadth,
what length of it must be cut off?—Answer, The content is 1346
square feet 105 square inches, and the length of carpet required is 598
feet 6⁵/₉ inches.

The sides of a rectangular field are 253 yards and a quarter of a mile;
how many acres does it contain?—Answer, 23.

What is the difference between 18 square miles, and a square of
18 miles long, or 18 miles square?—Answer, 306 square miles.

237. It is by this rule that the measure in (215) is deduced from
that in (214); for it is evident that twelve inches being a foot, the
square foot is 12 × 12 or 144 square inches, and so on. In a similar
way it may be shewn that the content in cubic inches of a cube, or
parallelepiped,[48]
may be found by multiplying together the number of inches in those
three sides which meet in a point. Thus, a cube of 6 inches contains 6
× 6 × 6, or 216 cubic inches; a chest whose sides are 6, 8, and 5 feet,
contains 6 × 8 × 5, or 240 cubic feet. By this rule the measure in
(216) was deduced from that in (214).

SECTION II.

RULE OF THREE.

238. Suppose it required to find what 156 yards will cost, if 22
yards cost 17s. 4d. This quantity, reduced to pence,
is 208d.; and if 22 yards cost 208d., each yard costs
²⁰⁸/₂₂d. But 156 yards cost 156 times the price of one yard, and
therefore cost



	208
	 × 156 pence, or  
	208 × 156
	 pence (117).


	22
	22





Again, if 25½ French francs be 20 shillings sterling, how many
francs are in £20. 15? Since 25½ francs are 20 shillings, twice the number of
francs must be twice the number of shillings; that is, 51 francs are 40

shillings, and one shilling is the fortieth part of 51 francs, or ⁵¹/₄₀
francs. But £20 15s. contain 415 shillings (219); and since 1
shilling is ⁵¹/₄₀ francs, 415 shillings is



	⁵¹/₄₀ × 415 francs, or (117)  
	51 × 415
	 francs.


	40





239. Such questions as the last two belong to the most extensive rule
in Commercial Arithmetic, which is called the Rule of Three,
because in it three quantities are given, and a fourth is required to
be found. From both the preceding examples the following rule may be
deduced, which the same reasoning will shew to apply to all similar cases.

It must be observed, that in these questions there are two quantities
which are of the same sort, and a third of another sort, of which last
the answer must be. Thus, in the first question there are 22 and 156
yards and 208 pence, and the thing required to be found is a number
of pence. In the second question there are 20 and 415 shillings and
25½ francs, and what is to be found is a number of francs. Write the
three quantities in a line, putting that one last which is the only
one of its kind, and that one first which is connected with the last
in the question.[49]
Put the third quantity in the middle. In the first question the
quantities will be placed thus:

22 yds.  156 yds.  17s. 4d.

In the second question they will be placed thus:

20s.  £20 15s.  25½ francs.

Reduce the first and second quantities, if necessary, to quantities of
the same denomination. Thus, in the second question, £20 15s.
must be reduced to shillings (219). The third quantity may also be
reduced to any other denomination, if convenient; or the first and
third may be multiplied by any quantity we please, as was done in the

second question; and, on looking at the answer in (238), and at (108),
it will be seen that no change is made by that multiplication. Multiply
the second and third quantities together, and divide by the first. The
result is a quantity of the same sort as the third in the line, and is
the answer required. Thus, to the first question the answer is (238)



	208 × 156
	 pence, or, which is the same thing,  
	17s. 4d. × 156
	 .


	22
	22





240. The whole process in the first question is as follows:[50]


	yds.     yds. s.   d.

	22   :   156   ∷   17 . 4

	 12

	208  pence.

	156

	1248

	1040

	208  

	22)32448(1474¾d. and ¹⁴/₂₂, or ⁷/₁₁ of a farthing,

	22   or (219) £6 . 2 . 10¾-⁷/₁₁.

	104

	  88

	 164

	 154  

	108

	  88

	  20

	(228)   4

	  80

	  66

	  14



The question might have been solved without reducing
17s. 4d. to pence, thus:



	yds.     yds. s.   d.

	22   :   156   ∷   17 . 4

	    156(227)

	22) £135 . 4 . 0(£6 . 2 . 10¾-⁷/₁₁  (228)

	132

	3 × 20 + 4 = 64

	 44

	 20 × 12 = 240

	220

	20 × 4 = 80

	66

	14



The student must learn by practice which is the most convenient method
for any particular case, as no rule can be given.

241. It may happen that the three given quantities are all of one
denomination; nevertheless it will be found that two of them are of
one, and the third of another sort. For example: What must an income of
£400 pay towards an income-tax of 4s. 6d. in the pound?
Here the three given quantities are, £400, 4s. 6d., and
£1, which are all of the same species, viz. money. Nevertheless, the
first and third are income; the second is a tax, and the answer is also
a tax; and therefore, by (152), the quantities must be placed thus:

£1 : £400 ∷ 4s. 6d.

242. The following exercises either depend directly upon this rule,
or can be shewn to do so by a little consideration. There are many
questions of the sort, which will require some exercise of ingenuity
before the method of applying the rule can be found.

EXERCISES.

If 15 cwt. 2 qrs. cost £198. 15. 4, what does 1 qr. 22 lbs. cost?

Answer, £5 . 14 . 5 ¾ ¹⁸⁵/₂₁₇.

If a horse go 14 m. 3 fur. 27 yds. in 3ʰ 26ᵐ 12ˢ, how long will he be
in going 23 miles?

Answer, 5ʰ 29ᵐ 34ˢ(²⁴⁶²/₂₅₃₂₇).


Two persons, A and B, are bankrupts, and owe exactly the same sum; A
can pay 15s. 4½d. in the pound, and B only 7s.
(6¾)d. At the same time A has in his possession £1304. 17 more
than B; what do the debts of each amount to?

Answer, £3340 . 8 . 3 ¾ ⁹/₂₅.

For every (12½) acres which one country contains, a second contains
(56¼). The second country contains 17,300 square miles. How much does
the first contain? Again, for every 3 people in the first, there are 5
in the second; and there are in the first 27 people on every 20 acres.
How many are there in each country?—Answer, The number of
square miles in the first is 3844⁴/₉, and its population 3,321,600; and
the population of the second is 5,536,000.

If (42½) yds. of cloth, 18 in. wide, cost £59. 14. 2, how much will
(118¼) yds. cost, if the width be 1 yd.?

Answer, £332. 5. (2⁴/₁₇).

If £9. 3. 6 last six weeks, how long will £100 last?

Answer, (65¹⁴⁵/₃₆₇) weeks.

How much sugar, worth (9¾d). a pound, must be given for 2 cwt. of tea,
worth 10d. an ounce?

Answer, 32 cwt. 3 qrs. 7 lbs. ³⁵/₃₉.

243. Suppose the following question asked: How long will it take 15 men
to do that which 45 men can finish in 10 days? It is evident that one
man would take 45 × 10, or 450 days, to do the same thing, and that 15
men would do it in one-fifteenth part of the time which it employs one
man, that is, in (450 ÷ 15) or 30 days. By this and similar reasoning
the following questions can be solved.

EXERCISES.

If 15 oxen eat an acre of grass in 12 days, how long will it take 26
oxen to eat 14 acres?

Answer, (96¹²/₁₃) days.

If 22 masons build a wall 5 feet high in 6 days, how long will it take
43 masons to build 10 feet?

Answer, (6⁶/₄₃) days.

244. The questions in the preceding article form part of a more general
class of questions, whose solution is called the Double Rule
of Three, but which might, with more correctness, be called the Rule
of Five, since five quantities are given, and a sixth is to be
found. The following is an example: If 5 men can make 30 yards of cloth
in 3 days, how long will it take 4 men to make 68 yards? The first thing

to be done is to find out, from the first part of the question, the
time it will take one man to make one yard. Now, since one man, in 3
days, will do the fifth part of what 5 men can do, he will in 3 days
make ³⁰/₅, or 6 yards. He will, therefore, make one yard in ³/₆6 or (3 × 5)/30
of a day. From this we are to find how long it will take 4 men
to make 68 yards. Since one man makes a yard in



	3 × 5
	 of a day, he will make 68 yards in   
	3 × 5
	 × 68 days,


	30
	30







	or (116) in  
	3 × 5 × 68
	 days; and 4 men will do this in one-fourth;


	30







	of the time, that is (123), in  
	3 × 5 × 68
	 days, or in 8½ days.  


	30 × 4





Again, suppose the question to be: If 5 men can make 30 yards in 3
days, how much can 6 men do in 12 days? Here we must first find the
quantity one man can do in one day, which appears, on reasoning similar
to that in the last example, to be 30/(3 × 5) yards. Hence, 6 men, in
one day, will make



	6 × 30
	 yards, and in 12 days will make 
	12 × 6 × 30
	 or 144 yards.


	5 × 3
	5 × 3





From these examples the following rule may be drawn. Write the given
quantities in two lines, keeping quantities of the same sort under one
another, and those which are connected with each other, in the same line.
In the two examples above given, the quantities must be written thus:





SECOND EXAMPLE.





Draw a curve through the middle of each line, and the extremities
of the other. There will be three quantities on one curve and two on
the other. Divide the product of the three by the product of the two,
and the quotient is the answer to the question.


If necessary, the quantities in each line must be reduced to more
simple denominations (219), as was done in the common Rule of Three (238).

EXERCISES.

If 6 horses can, in 2 days, plough 17 acres, how many acres will 93
horses plough in 4½ days?

Answer, 592⅞.

If 20 men, in 3¼ days, can dig 7 rectangular fields, the sides of each
of which are 40 and 50 yards, how long will 37 men be in digging 53
fields, the sides of each of which are 90 and 125½ yards?



	Answer, 75 
	2451
	 days.


	20720





If the carriage of 60 cwt. through 20 miles cost £14 10s., what
weight ought to be carried 30 miles for £5. 8. 9?

Answer, 15 cwt.

If £100 gain £5 in a year, how much will £850 gain in 3 years and 8
months?

Answer, £155. 16. 8.

SECTION III.

INTEREST, ETC.

245. In the questions contained in this Section, almost the only
process which will be employed is the taking a fractional part of a
sum of money, which has been done before in several cases. Suppose it
required to take 7 parts out of 40 from £16, that is, to divide £16
into 40 equal parts, and take 7 of them. Each of these parts is



	£
	16
	 and 7 of them make 
	16
	 × 7, or  
	16 × 7
	 pounds (116).


	40
	40
	40





The process may be written as below:


	£16

	   7

	40)112(£2 . 16s.

	80

	32

	  20

	640

	40  

	240

	240

	0




Suppose it required to take 13 parts out of a hundred from £56. 13. 7½.


	56 . 13 .  7½

	     13

	100) 736 . 17 . 1½ ( £7 . 7 . 4 ¼ ¹/₄₁

	700

	36 × 20 + 17 = 737

	700

	37 × 12 + 1 = 445

	400

	45 × 4 × 2 = 182

	100

	82



Let it be required to take 2½ parts out of a hundred from £3
12s. The result, by the same rule is



	£3 12s. × 2½
	 , or 123 £3 12s. ×  
	5
	 ;


	100
	200





so that taking 2½ out of a hundred is the same as
taking 5 parts out of 200.

EXERCISES.

Take 7⅓ parts out of 53 from £1 10s.



	Answer, 4s. 1 
	129
	 d.


	159





Take 5 parts out of 100 from £107 13s. 4¾d.

Answer, £5. 7. 8 and ³/₂₀ of a farthing.

£56 3s. 2d. is equally divided among 32 persons. How much
does the share of 23 of them exceed that of the rest?

Answer, £24. 11. 4½ ½.

246. It is usual, in mercantile business, to mention the fraction which
one sum is of another, by saying how many parts out of a hundred must
be taken from the second in order to make the first. Thus, instead of
saying that £16 12s. is the half of £33 4s., it is said
that the first is 50 per cent of the second. Thus, £5 is 2½ per cent of
£200; because, if £200 be divided into 100 parts, 2½ of those parts are
£5. Also, £13 is 150 per cent of £8. 13. 4, since the first is the
second and half the second. Suppose it asked, How much per cent is 23

parts out of 56 of any sum? The question amounts to this: If he who has
£56 gets £100 for them, how much will he who has 23 receive? This, by
238, is 23 × ¹⁰⁰/₅₆ or ²³⁰⁰/₅₆ or 41¹/₁₄. Hence, 23 out of 56 is 41¹/₁₄
per cent.

Similarly 16 parts out of 18 is 16 × ¹⁰⁰/₁₈, or 88⁸/₉ per cent, and 2
parts out of 5 is 2 × ¹⁰⁰/₅, or 40 per cent.

From which the method of reducing other fractions to the rate per cent
is evident.

Suppose it asked, How much per cent is £6. 12. 2 of £12. 3? Since
the first contains 1586d., and the second 2916d., the
first is 1586 out of 2916 parts of the second; that is, by the last
rule, it is ¹⁵⁸⁶⁰⁰/₂₉₁₆, or 54¹¹³⁶/₂₉₁₆, or £54. 7. 9½ per cent,
very nearly. The more expeditious way of doing this is to reduce the
shillings, &c. to decimals of a pound. Three decimal places will
give the rate per cent to the nearest shilling, which is near enough
for all practical purposes. For instance, in the last example, which
is to find how much £6·608 is of £12·15, 6·608 × 100 is 660·8, which
divided by 12·15 gives £54·38, or £54. 7. Greater correctness may be
had, if necessary, as in the Appendix.

EXERCISES.

How much per cent is 198¼ out of 233 parts?—Ans. £85. 1. 8¾.

Goods which are bought for £193. 12, are sold for £216. 13. 4; how
much per cent has been gained by them?

Answer, A little less than £11. 18. 6.

A sells goods for B to the amount of £230. 12, and is allowed a
commission[51]
of 3 per cent; what does that amount to?

Answer, £6 . 18. 4¼ ⁷/₂₅.

A stockbroker buys £1700 stock, brokerage being at £⅛ per cent; what
does he receive?—Answer, £2. 2. 6.


A ship whose value is £15,423 is insured at 19⅔ per cent; what does the
insurance amount to?—Answer, £3033. 3. 9½ ²/₅.

247. In reckoning how much a bankrupt is able to pay his creditors, as
also to how much a tax or rate amounts, it is usual to find how many
shillings in the pound is paid. Thus, if a person who owes £100 can
only pay £50, he is said to pay 10s. in the pound. The rule is
easily derived from the same reasoning as in 246. For example, £50 out
of £82 is



	£ 
	50
	 out of £1, or  
	50 × 20
	 shillings,


	82
	82





or 12s. 2½ ¹⁵/₄₁ in the pound.

248. Interest is money paid for the use of other money,
and is always a per-centage upon the sum lent. It may be paid either yearly,
half-yearly, or quarterly; but when it is said that £100 is lent at 4
per cent, it must be understood to mean 4 per cent per annum; that is,
that 4 pounds are paid every year for the use of £100.

The sum lent is called the principal, and the interest upon it is of
two kinds. If the borrower pay the interest as soon as, from the agreement,
it becomes due, it is evident that he has to pay the same sum
every year; and that the whole of the interest which he has to pay in
any number of years is one year’s interest multiplied by the number of
years. But if he do not pay the interest at once, but keeps it in his
hands until he returns the principal, he will then have more of his
creditor’s money in his hands every year, and if it were so agreed
will have to pay interest upon each year’s interest for the time during
which he keeps it after it becomes due. In the first case, the interest
is called simple, and in the second compound. The interest
and principal together are called the amount.

249. What is the simple interest of £1049. 16. 6 for 6 years and
one-third, at 4½ per cent? This interest must be 6⅓ times the interest

of the same sum for one year, which (245) is found by multiplying the
sum by 4½, and dividing by 100. The process is as follows:



	(230)
	(a)
	 £1049 .
	16 .
	 6


	 
	a × 4
	4199 .
	6 .
	 0


	 
	a × ½
	524 .
	18 .
	 3





(82)  100) 47,24 .  4 . 3(£47 . 4 . 10¹¹/₁₀₀



	 
	  20
	 


	(228)  
	4,84
	[52]


	 
	    12
	 


	 
	10,11
	[53]







	(b)
	 £47 .
	 4 .
	 10¹¹/₁₀₀
	Int. for one yr.


	b × 6
	283 .
	9 .
	0⁶⁶/₁₀₀
	 


	b × ⅓
	15 .
	 14 .
	 11³⁷/₁₀₀
	 


	 
	£299 .
	 4 .
	 0³/₁₀₀
	Int. for 6⅓ yrs.





EXERCISES.

What is the interest of £105. 6. 2 for 19 years and 7 weeks at 3 per cent?

Answer, £60. 9, very nearly.

What is the difference between the interest of £50. 19 for 7 years at
3 per cent, and for 8 years at 2½ per cent?

Answer, 10s. (2½)d.

What is the interest of £157. 17. 6 for one year at 5 per cent?

Answer, £7. 17. 10½.

Shew that the interest of any sum for 9 years at 4 per cent is the same
as that of the same sum for 4 years at 9 per cent.

250. In order to find the interest of any sum at compound interest, it
is necessary to find the amount of the principal and interest at the
end of every year; because in this case (248) it is the amount of both

principal and interest at the end of the first year, upon which interest
accumulates during the second year. Suppose, for example, it is required
to find the interest, for 3 years, on £100, at 5 per cent, compound
interest. The following is the process:



	 
	£100
	 
	 
	First principal.


	 
	    5
	 
	 
	First year’s interest.


	 
	105
	 
	 
	Amount at the end of the first year.


	 (249)  
	  5  .  5
	 
	Interest for the second year on £105.


	 
	110
	.  5
	 
	Amount at the end of two years.


	    5  . 10 . 3
	Interest due for the third year.


	115
	 . 15
	 . 3
	Amount at the end of three years.


	100 .  0 .  0
	First principal.


	15
	 . 15
	 . 3
	Interest gained in the three years.





When the number of years is great, and the sum considerable, this
process is very troublesome; on which account tables[54]
are constructed to shew the amount of one pound, for different numbers
of years, at different rates of interest. To make use of these tables
in the present example, look into the column headed “5 per cent;” and
opposite to the number 3, in the column headed “Number of years,” is
found 1·157625; meaning that £1 will become £1·157625 in 3 years. Now,
£100 must become 100 times as great; and 1·157625 × 100 is 115·7625
(141); but (221) £·7625 is 15s. 3d.; therefore the whole
amount of £100 is £115. 15. 3, as before.

251. Suppose that a sum of money has lain at simple interest 4 years,
at 5 per cent, and has, with its interest, amounted to £350; it is
required to find what the sum was at first. Whatever the sum was, if we
suppose it divided into 100 parts, 5 of those parts were added every
year for 4 years, as interest; that is, 20 of those parts have been
added to the first sum to make £350. If, therefore, £350 be divided
into 120 parts, 100 of those parts are the principal which we want to

find, and 20 parts are interest upon it; that is, the principal is
£(350 × 100)/150, or £291. 13. 4.

252. Suppose that A was engaged to pay B £350 at the end of four years
from this time, and that it is agreed between them that the debt shall
be paid immediately; suppose, also, that money can be employed at 5 per
cent, simple interest; it is plain that A ought not to pay the whole
sum, £350, because, if he did, he would lose 4 years’ interest of the
money, and B would gain it. It is fair, therefore, that he should only
pay to B as much as will, with interest, amount in four years
to £350, that is (251), £291. 13. 4. Therefore, £58. 6. 8 must
be struck off the debt in consideration of its being paid before the
time. This is called Discount;[55]
and £291. 13. 4 is called the present value of £350 due four
years hence, discount being at 5 per cent. The rule for finding the
present value of a sum of money (251) is: Multiply the sum by 100, and
divide the product by 100 increased by the product of the rate per
cent and number of years. If the time that the debt has yet to run
be expressed in years and months, or months only, the months must be
reduced to the equivalent fraction of a year.

EXERCISES.

What is the discount on a bill of £138. 14. 4, due 2 years hence,
discount being at 4½ per cent?

Answer, £11. 9. 1.

What is the present value of £1031. 17, due 6 months hence, interest
being at 3 per cent?

Answer, £1016. 12.

253. If we multiply by a + b, or by a-b,
when we should multiply by a, the result is wrong by the fraction



	 b 
	 + b, or  
	b
	 ,


	a
	a - b





of itself: being too great in the first case, and too small
in the second. Again, if we divide by a + b, where we should
have divided by a, the result is too small by the fraction
b/a of itself; while, if we divide by a-b
instead of a, the result is too great by the same fraction of
itself. Thus, if we divide by 20 instead of 17, the result is ³/₁₇ of

itself too small; and if we divide by 360 instead of 365, the result is
too great by ⁵/₃₆₅, or ¹/₇₃ of itself.

If, then, we wish to find the interest of a sum of money for a portion
of a year, and have not the assistance of tables, it will be found
convenient to suppose the year to contain only 360 days, in which case
its 73d part (the 72d part will generally do) must be subtracted from
the result, to make the alteration of 360 into 365. The number 360 has
so large a number of divisors, that the rule of Practice (230) may
always be readily applied. Thus, it is required to find the portion
which belongs to 274 days, the yearly interest being £18. 9. 10, or 18·491.



	274
	 
	18·491


	180
	is ½ of 360  
	9·246


	94
	 


	90
	is ½ of 180  
	4·623


	4
	  is ¹/₉₀ of 360
	  ·205


	 
	  9)14·074


	 
	8)1·564


	 
	·196


	
	
	





13·878 = £13 . 17 . 7 Answer.

But if the nearest farthing be wanted, the best way is to take 2-tenths
of the number of days as a multiplier, and 73 as a divisor; since
m ÷ 365 is 2m ÷ 730, or (²/₁₀)m ÷ 73. Thus, in
the preceding instance, we multiply by 54·8 and divide by 73; and 54·8
× 18·491 = 1013·3068, which divided by 73 gives 13·881, very nearly
agreeing with the former, and giving £13. 17. 7½, which is certainly
within a farthing of the truth.

254. Suppose it required to divide £100 among three persons in such a
way that their shares may be as 6, 5, and 9; that is, so that for every
£6 which the first has, the second may have £5, and the third £9. It is
plain that if we divide the £100 into 6 + 5 + 9, or 20 parts, the first
must have 6 of those parts, the second 5, and the third 9. Therefore
(245) their shares are respectively,



	£
	100 × 6
	 , £ 
	100 × 5
	 and £ 
	100 × 9


	20
	20
	20






or £30, £25, and £45.

EXERCISES.

Divide £394. 12 among four persons, so that their shares may be as 1,
6, 7, and 18.—Answer, £12. 6. 7½; £73. 19. 9; £86. 6. 4½;
£221. 19. 3.

Divide £20 among 6 persons, so that the share of each may be as much as
those of all who come before put together.—Answer, The first
two have 12s. 6d.; the third £1. 5; the fourth £2. 10;
the fifth £5; and the sixth £10.

255. When two or more persons employ their money together, and gain
or lose a certain sum, it is evidently not fair that the gain or loss
should be equally divided among them all, unless each contributed the
same sum. Suppose, for example, A contributes twice as much as B, and
they gain £15, A ought to gain twice as much as B; that is, if the
whole gain be divided into 3 parts, A ought to have two of them and B
one, or A should gain £10 and B £5. Suppose that A, B, and C engage in
an adventure, in which A embarks £250, B £130, and C £45. They gain
£1000. How much of it ought each to have? Each one ought to gain as
much for £1 as the others. Now, since there are 250 + 130 + 45, or 425
pounds embarked, which gain £1000, for each pound there is a gain of
£¹⁰⁰⁰/₄₂₄. Therefore A should gain 1000 × ²⁵⁰/₄₂₅ pounds, B should gain
1000 × ¹³⁰/₄₂₅ pounds, and C 1000 × ⁴⁵/₄₂₅ pounds. On these principles,
by the process in (245), the following questions may be answered.

A ship is to be insured, in which A has ventured £1928, and B £4963.
The expense of insurance is £474. 10. 2. How much ought each to pay
of it?

Answer, A must pay £132. 15. (2½).

A loss of £149 is to be made good by three persons, A, B, and C. Had
there been a gain, A would have gained 4 times as much as B, and C as
much as A and B together. How much of the loss must each bear?

Answer, A pays £59. 12, B £14. 18, and C £74. 10.

256. It may happen that several individuals employ several sums of
money together for different times. In such a case, unless there be a
special agreement to the contrary, it is right that the more time a sum

is employed, the more profit should be made upon it. If, for example,
A and B employ the same sum for the same purpose, but A’s money is
employed twice as long as B’s, A ought to gain twice as much as B. The
principle is, that one pound employed for one month, or one year, ought
to give the same return to each. Suppose, for example, that A employs
£3 for 6 months, B £4 for 7 months, and C £12 for 2 months, and the
gain is £100; how much ought each to have of it? Now, since A employs
£3 for six months, he must gain 6 times as much as if he employed it
one month only; that is, as much as if he employed £6 × 3, or £18, for
one month; also, B gains as much as if he had employed £4 × 7 for one
month; and C as if he had employed £12 × 2 for one month. If, then, we
divide £100 into 6 × 3 + 4 × 7 + 12 × 2, or 70 parts, A must have 6 ×
3, or 18, B must have 4 × 7, or 28, and C 12 × 2, or 24 of those parts.
The shares of the three are, therefore,



	£
	6 × 3 × 100
	 , £ 
	4 × 7 × 100
	 , and £ 
	12 × 2 × 100


	6 × 3 + 4 × 7 + 12 × 
	6 × 3 + 4 × 7 + 12 × 2
	6 × 3 + 4 × 7 + 12 × 2





EXERCISES.

A, B, and C embark in an undertaking; A placing £3. 6 for 2 years, B
£100 for 1 year, and C £12 for 1½ years. They gain £4276. 7 How much
must each receive of the gain?

Answer, A £226. 10. 4; B £3432. 1. 3; C £617. 15. 5.

A, B, and C rent a house together for 2 years, at £150 per annum. A
remains in it the whole time, B 16 months, and C 4½ months, during the
occupancy of B. How much must each pay of the rent?[56]

Answer, A should pay £190. 12. 6; B £90. 12. 6; C £18. 15.

257. These are the principal rules employed in the application of
arithmetic to commerce. There are others, which, as no one who
understands the principles here laid down can fail to see, are
virtually contained in those which have been given. Such is what
is commonly called the Rule of Exchange, for such questions as the

following: If 20 shillings be worth 25½ francs, in France, what is £160
worth? This may evidently be done by the Rule of Three. The rules here
given are those which are most useful in common life; and the student
who understands them need not fear that any ordinary question will be
above his reach. But no student must imagine that from this or any
other book of arithmetic he will learn precisely the modes of operation
which are best adapted to the wants of the particular kind of business
in which his future life may be passed. There is no such thing as a set
of rules which are at once most convenient for a butcher and a banker’s
clerk, a grocer and an actuary, a farmer and a bill-broker; but a
person with a good knowledge of the principles laid down in this
work, will be able to examine and meet his own future wants, or, at
worst, to catch with readiness the manner in which those who have gone
before him have done so for themselves.





APPENDIX TO



 THE FIFTH EDITION OF

DE MORGAN’S ELEMENTS OF ARITHMETIC.



I. ON THE MODE OF COMPUTING.



The rules in the preceding work are given in the usual form, and the
examples are worked in the usual manner. But if the student really wish
to become a ready computer, he should strictly follow the methods laid
down in this Appendix; and he may depend upon it that he will thereby
save himself trouble in the end, as well as acquire habits of quick and
accurate calculation.

I. In numeration learn to connect each primary decimal number, 10,
100, 1000, &c. not with the place in which the unit falls, but with
the number of ciphers following. Call ten a one-cipher number,
a hundred a two-cipher number, a million a six-cipher
number, and so on. If five figures be cut off from a number,
those that are left are hundred-thousands; for 100,000 is a
five-cipher number. Learn to connect tens, hundreds, thousands,
tens of thousands, hundreds of thousands, millions, &c. with 1, 2,
3, 4, 5, 6, &c. in the mind. What is a seventeen-cipher number?
For every 6 in seventeen say million, for the remaining 5 say
hundred-thousand: the answer is a hundred thousand millions of
millions. If twelve places be cut off from the right of a number, what
does the remaining number stand for?—Answer, As many millions
of millions as there are units in it when standing by itself.

II. After learning to count forwards and backwards with rapidity,
as in 1, 2, 3, 4, &c. or 30, 29, 28, 27, &c., learn to count
forwards or backwards by twos, threes, &c. up to nines at least,
beginning from any number. Thus, beginning from four and proceeding by

sevens, we have 4, 11, 18, 25, 32, &c., along which series you must
learn to go as easily as along the series 1, 2, 3, 4, &c.; that
is, as quick as you can pronounce the words. The act of addition must
be made in the mind without assistance: you must not permit yourself
to say, 4 and 7 are 11, 11 and 7 are 18, &c.; but only 4, 11, 18,
&c. And it would be desirable, though not so necessary, that you
should go back as readily as forward; by sevens for instance, from
sixty, as in 60, 53, 46, 39, &c.

III. Seeing a number and another both of one figure, learn to catch
instantly the number you must add to the smaller to get the greater.
Seeing 3 and 8, learn by practice to think of 5 without the necessity
of saying 3 from 8 and there remains 5. And if the second
number be the less, as 8 and 3, learn also by practice how to pass
up from 8 to the next number which ends with 3 (or 13), and to
catch the necessary augmentation, five, without the necessity
of formally undertaking in words to subtract 8 from 13. Take rows of
numbers, such as

4 2 6 0 5 0 1 8 6 4

and practise this rule upon every figure and the next, not
permitting yourself in this simple case ever to name the higher one. Thus, say
4 and 8 (4 first, 2 second, 4 from the next number that ends with 2, or
12, leaves 8), 2 and 4, 6 and 4, 0 and 5, 5 and 5, 0 and 1, 1 and 7, 8
and 8, 6 and 8.

IV. Study the same exercise as the last one with two figures and one.
Thus, seeing 27 and 6, pass from 27 up to the next number that ends
with 6 (or 36), catch the 9 through which you have to pass, and allow
yourself to repeat as much as “27 and 9 are 36.” Thus, the row of
figures 17729638109 will give the following practice: 17 and 0 are 17;
77 and 5 are 82; 72 and 7 are 79; 29 and 7 are 36; 96 and 7 are 103; 63
and 5 are 68; 38 and 3 are 41; 81 and 9 are 90; 10 and 9 are 19.

V. In a number of two figures, practise writing down the units at the
moment that you are keeping the attention fixed upon the tens. In the
preceding exercise, for instance, write down the results, repeating the
tens with emphasis at the instant of writing down the units.


VI. Learn the multiplication table so well as to name the product the
instant the factors are seen; that is, until 8 and 7, or 7 and 8,
suggest 56 at once, without the necessity of saying “7 times 8 are 56.”
Thus looking along a row of numbers, as 39706548, learn to name the
products of every successive pair of digits as fast as you can repeat
them, namely, 27, 63, 0, 0, 30, 20, 32.

VII. Having thoroughly mastered the last exercise, learn further, on
seeing three numbers, to augment the product of the first and second
by the third without any repetition of words. Practise until 3, 8, 4,
for instance, suggest 3 times 8 and 4, or 28, without the necessity of
saying “3 times 8 are 24, and 4 is 28.” Thus, 179236408 will suggest
the following practice, 16, 65, 21, 12, 22, 24, 8.

VIII. Now, carry the last still further, as follows: Seeing four
figures, as 2, 7, 6, 9, catch up the product of the first and second,
increased by the third, as in the last, without a helping word; name
the result, and add the next figure, name the whole result, laying
emphasis upon the tens. Thus, 2, 7, 6, 9, must immediately suggest “20
and 9 are 29.” The row of figures 773698974 will give the instances 52
and 6 are 58; 27 and 9 are 36; 27 and 8 are 35; 62 and 9 are 71; 81 and
7 are 88; 79 and 4 are 83.

IX. Having four numbers, as 2, 4, 7, 9, vary the last exercise as
follows: Catch the product of the first and second, increased by the
third; but instead of adding the fourth, go up to the next number
that ends with the fourth, as in exercise IV. Thus, 2, 4, 7, 9, are
to suggest “15 and 4 are 19.” And the row of figures 1723968929 will
afford the instances 9 and 4 are 13; 17 and 2 are 19; 15 and 1 are 16;
33 and 5 are 38; 62 and 7 are 69; 57 and 5 are 62; 74 and 5 are 79.

X. Learn to find rapidly the number of times a digit is contained
in given units and tens, with the remainder. Thus, seeing 8 and 53,
arrive at and repeat “6 and 5 over.” Common short division is the best
practice. Thus, in dividing 236410792 by 7,


	7)236410792

	  33772970,  remainder 2.



All that is repeated should be 3 and 2; 3 and 5; 7 and 5; 7 and 2; 2
and 6; 9 and 4; 7 and 0; 0 and 2.


In performing the several rules, proceed as follows:

Addition. Not one word more than repeating the numbers written
in the following process: the accented figure is the one to be written
down; the doubly accented figure is carried (and don’t say
“carry 3,” but do it).



	47963
	 6, 15, 17, 23, 31, 3″ 4′;


	1598
	11, 12, 21, 22, 31, 3″7′;


	26316
	 9, 17, 24, 27, 32, 4″1′;


	54792
	10, 14, 20, 21, 2″8′; 7, 9, 1′3′.


	819
	 


	6686


	138174





In verifying additions, instead of the usual way of omitting one line,
adding without it, and then adding the line omitted, verify each column
by adding it both upwards and downwards.

Subtraction. The following process is enough. The carriages,
being always of one, need not be mentioned.


	From 79436258190

	Take  58645962738

	 20790295452



8 and 2′, 4 and 5′, 7 and 4′, 3 and 5′,
6 and 9′, 10 and 2′, 6 and 0′, 4 and 9′, 7 and 7′, 9 and 0′, 5 and 2′.
It is useless to stop and say, 8 and 2 make 10; for as soon as the 2 is
obtained, there is no occasion to remember what it came from.

Multiplication. The following, put into words, is all that
need be repeated in the multiplying part; the addition is then done as
usual. The unaccented figures are carried.



	670383
	 


	9876


	4022298
	18′, 49′, 22′, 2′, 42′, 4′0′,


	4692681 
	21′, 58′, 26′, 2′, 49′, 4′6′,


	5363064  
	24′, 66′, 30′, 3′, 56′, 5′3′,


	6033447   
	27′, 74′, 34′, 3′, 63′, 6′0′.


	6620702508
	 





Verify each line of the multiplication and the final result by casting
out the nines. (Appendix II. p. 166.)

It would be almost as easy, for a person who has well practised the 8th
exercise, to add each line to the one before in the process, thus:




	670383
	 


	9876


	4022298
	8; 21 and 9 are 30′; 59 and 2


	50949108
	are 61′; 27 and 2 are 29; 2


	587255508
	and 2 are 4′; 49 and 0 are 49′;


	6620702508
	46 and 4 are 5′0′.





On the right is all the process of forming the second line, which
completes the multiplication by 76, as the third line completes that by
876, and the fourth line that by 9876.

Division. Make each multiplication and the following
subtraction in one step, by help of the process in the 9th exercise, as
follows:


	27693)441972809662(15959730

	165042

	265778

	165410

	269459

	202226

	83756

	6772



The number of words by which 26577 is obtained from 165402 (the
multiplier being 5) is as follows: 15 and 7′ are 2″2; 47 and 7′ are
5″4; 35 and 5′ are 4″0; 39 and 6′ are 4″5; 14 and 2′ are 16.

The processes for extracting the square root, and for the solution of
equations (Appendix XI.), should be abbreviated in the same
manner as the division.[57]





APPENDIX II.

ON VERIFICATION BY CASTING OUT
 NINES AND ELEVENS.



The process of casting out the nines, as it is called, is one
which the young computer should learn and practise, as a check upon
his computations. It is not a complete check, since if one figure were
made too small, and another as much too great, it would not detect
this double error; but as it is very unlikely that such a double error
should take place, the check furnishes a strong presumption of accuracy.

The proposition upon which this method depends is the following: If
a, b, c, d be four numbers, such that

a = bc + d,

and if m be any other number whatsoever,
and if a, b, c, d, severally divided by m, give the
remainders p, q, r, s, then

p and qr + s

give the same remainder when divided by m
(and perhaps are themselves equal).

For instance,  334 = 17 × 19 + 11;

divide these four numbers by 7, the remainders
are 5, 3, 5, and 4. And 5 and 5 × 3 + 4, or 5 and 19, both leave the
remainder 5 when divided by 7.

Any number, therefore, being used as a divisor, may be made a check
upon the correctness of an operation. To provide a check which may be
most fit for use, we must take a divisor the remainder to which is most
easily found. The most convenient divisors are 3, 9, and 11, of which 9
is far the most useful.

As to the numbers 3 and 9, the remainder is always the same as that
of the sum of the digits. For instance, required the remainder of
246120377 divided by 9. The sum of the digits is 2 + 4 + 6 + 1 + 2 + 0
+ 3 + 7 + 7, or 32, which gives the remainder 5. But the easiest way
of proceeding is by throwing out nines as fast as they arise in the
sum. Thus, repeat 2, 6 (2 + 4), 12 (6 + 6), say 3 (throwing out 9), 4,
6, 9 (throw this away), 7, 14, (or throwing out the 9) 5. This is the
remainder required, as would appear by dividing 246120377 by 9. A proof

may be given thus: It is obvious that each of the numbers, 1, 10, 100,
1000, &c. divided by 9, leaves a remainder 1, since they are 1,
9 + 1, 99 + 1, &c. Consequently, 2, 20, 200, &c. leave the
remainder 2; 3, 30, 300, the remainder 3; and so on. If, then, we
divide, say 1764 by 9 in parcels, 1000 will be one more than an exact
number of nines, 700 will be seven more, and 60 will be six more. So,
then, from 1, 7, 6, 4, put together, and the nines taken out, comes the
only remainder which can come from 1764.

To apply this process to a multiplication: It is asserted,
in page 32, that

10004569 × 3163 = 31644451747.

In casting out the nines from the first, all that is necessary to
repeat is, one, five, ten, one, seven; in the second, three,
four, ten, one, four; in the third, three, four, ten, one, five,
nine, four, nine, eight, twelve, three, ten, one. The remainders
then are, 7, 4, 1. Now, 7 × 4 is 28, which, casting out the nines,
gives 1, the same as the product.

Again, in page 43, it is asserted that

23796484 = 130000 × 183 + 6484.

Cast out the nines from 13000, 183, 6484, and we
have 4, 3, and 4. Now, 4 × 3 + 4, with the nines cast out, gives 7; and
so does 23796484.

To avoid having to remember the result of one side of the equation,
or to write it down, in order to confront it with the result of the
other side, proceed as follows: Having got the remainder of the more
complicated side, into which two or more numbers enter, subtract it
from 9, and carry the remainder into the simple side, in which there is
only one number. Then the remainder of that side ought to be 0. Thus,
having got 7 from the left-hand of the preceding, take 2, the rest
of 9, forget 7, and carry in 2 as a beginning to the left-hand side,
giving 2, 4, 7, 14, 5, 11, 2, 6, 14, 5, 9, 0.

Practice will enable the student to cast out nines with great rapidity.

This process of casting out the nines does not detect any errors
in which the remainder to 9 happens to be correct. If a process be
tedious, and some additional check be desirable, the method of casting
out elevens may be followed after that of casting out the nines.
Observe that 10 + 1, 100-1, 1000 + 1, 10000-1, &c. are all
divisible by eleven. From this the following rule for the remainder of

division by 11 may be deduced, and readily used by those who know the
algebraical process of subtraction. For those who have not got so far,
it may be doubted whether the rule can be made easier than the actual
division by 11.

Subtract the first figure from the second, the result from the third,
the result from the fourth, and so on. The final result, or the rest
of 11 if the figure be negative, is the remainder required. Thus, to
divide 1642915 by 11, and find the remainder, we have 1 from 6, 5; 5
from 4, -1; -1 from 2, 3; 3 from 9, 6; 6 from 1, -5; -5 from 5, 10;
and 10 is the remainder. But 164 gives-1, and 10 is the remainder;
164291 gives-5, and 6 is the remainder. With very little practice
these remainders may be read as rapidly as the number itself. Thus, for
127619833424 need only be repeated, 1, 6, 0, 1, 8, 0, 3, 0, 4, -2, 6,
and 6 is the remainder.

When a question has been tried both by nines and elevens, there can be
no error unless it be one which makes the result wrong by a number of
times 99 exactly.



APPENDIX III.

ON SCALES OF NOTATION.



We are so well accustomed to 10, 100, &c., as standing for ten, ten
tens, &c., that we are not apt to remember that there is no reason
why 10 might not stand for five, 100 for five fives, &c., or for
twelve, twelve twelves, &c. Because we invent different columns of
numbers, and let units in the different columns stand for collections
of the units in the preceding columns, we are not therefore bound to
allow of no collections except in tens.

If 10 stood for 2, that is, if every column had its unit double of the
unit in the column on the right, what we now represent by 1, 2, 3, 4,
5, 6, &c., would be represented by 1, 10, 11, 100, 101, 110, 111,
1000, 1001, 1010, 1011, 1100, &c. This is the binary scale.

If we take the ternary scale, in which 10 stands for 3, we
have 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 102, 110, &c.
In the quinary scale, in which 10 is five, 234 stands for
2 twenty-fives, 3 fives, and 4, or sixty-nine. If we take the
duodenary scale, in which 10 is twelve, we must invent new
symbols for ten and eleven, because 10 and 11 now stand for twelve
and thirteen; use the letters t and e. Then 176 means 1
twelve-twelves, 7 twelves, and 6, or two hundred and thirty-four; and
1te means two hundred and seventy-five.

The number which 10 stands for is called the radix of the
scale of notation. To change a number from one scale into
another, divide the number, written as in the first scale, by the
number which is to be the radix of the new scale; repeat this division
again and again, and the remainders are the digits required. For
example, what, in the quinary scale, is that number which, in the
decimal scale, is 17036?


	5)17036

	5)3407  Remʳ.  1

	5)681   2

	5)136 1

	5)27 1

	5)5 2

	5)1   0

	 01





	Answer 1021121
	 


	Quinary.
	 
	Decimal.


	Verification, 1000000
	  means 
	15625


	20000
	 
	1250


	1000
	125


	100
	25


	20
	10


	1
	1


	1021121
	17036





The reason of this rule is easy. Our process of division is nothing
but telling off 17036 into 3407 fives and 1 over; we then find 3407
fives to be 681 fives of fives and 2 fives over. Next we form
681 fives of fives into 136 fives of fives of fives and 1 five of fives
over; and so on.

It is a useful exercise to multiply and divide numbers represented in
other scales of notation than the common or decimal one. The rules are
in all respects the same for all systems, the number carried being
always the radix of the system. Thus, in the quinary system we
carry fives instead of tens. I now give an example of multiplication
and division:




	Quinary.
	 
	Decimal.


	42143
	  means 
	2798


	1234
	 
	194


	324232
	11192


	232034 
	25182 


	134341  
	2798  


	42143   
	 


	114332222
	542812





 



	Duodecimal.
	Decimal.


	4t9)76t4e08(16687
	705)22610744(32071


	 4t9
	  1460


	 2814
	   5074


	 2546
	    1394


	28te
	     689


	2546
	 


	 3650


	 3320


	  3308


	  2t33


	   495





Another way of turning a number from one scale into another is as
follows: Multiply the first digit by the old radix in the new
scale, and add the next digit; multiply the result again by the old
radix in the new scale, and take in the next digit, and so on to the
end, always using the radix of the scale you want to leave, and the
notation of the scale you want to end in.

Thus, suppose it required to turn 16687 (duodecimal) into the decimal
scale, and 16432 (septenary) into the quaternary scale:



	16687
	16432


	Duodecimals into Decimals.
	  Septenaries into Quaternaries.


	1 × 12 + 6 = 18
	1 × 7 + 6 = 31


	× 12 + 6
	× 7 + 4


	222 
	1133 


	× 12 + 8
	× 7 + 3


	2672 
	22130 


	× 12 + 7
	× 7 + 2


	Answer 32071  
	1021012  






Owing to our division of a foot into 12 equal parts, the duodecimal
scale often becomes very convenient. Let the square foot be also
divided into 12 parts, each part is 12 square inches, and the 12th of
the 12th is one square inch. Suppose, now, that the two sides of an
oblong piece of ground are 176 feet 9 inches 7-12ths of an inch, and
65 feet 11 inches 5-12ths of an inch. Using the duodecimal scale, and
duodecimal fractions, these numbers are 128·97 and 55·e5.
Their product, the number of square feet required, is thus found:


	128·97

	55·e5

	617ee

	116095

	617ee

	617ee

	 68e8144e



Answer, 68e8·144e (duod.) square feet, or 11660
square feet 16 square inches ⁴/₁₂ and ¹¹/₁₄₄ of a square inch.

It would, however, be exact enough to allow 2-hundredths of a foot
for every quarter of an inch, an additional hundredth for every 3
inches,[58]
and 1-hundredth more if there be a 12th or 2-12ths above
the quarter of an inch. Thus, 9⁷/₁₂ inches should be ·76 + ·03 + ·01,
or ·80, and 11⁵/₁₂ would be ·95; and the preceding might then be found
decimally as 176·8 × 65·95 as 11659·96 square feet, near enough for
every practical purpose.



APPENDIX IV.

ON THE DEFINITION OF FRACTIONS.



The definition of a fraction given in the text shews that ⁷/₉, for
instance, is the ninth part of seven, which is shewn
to be the same thing as seven-ninths of a unit. But there are
various modes of speech under which a fraction may be signified, all of
which are more or less in use.



1. In ⁷/₉ we have the 9th part of 7.

2. 7-9ths of a unit.

3. The fraction which 7 is of 9.

4. The times and parts of a time (in this case part of a time only)
which 7 contains 9.

5. The multiplier which turns nines into sevens.

6. The ratio of 7 to 9, or the proportion of 7 to 9.

7. The multiplier which alters a number in the ratio of 9 to 7.

8. The 4th proportional to 9, 1, and 7.



The first two views are in the text. The third is deduced thus: If
we divide 9 into 9 equal parts, each is 1, and 7 of the parts are 7;
consequently the fraction which 7 is of 9 is ⁷/₉. The fourth view
follows immediately: For a time is only a word used to express
one of the repetitions which take place in multiplication, and we allow
ourselves, by an easy extension of language, to speak of a portion of
a number as being that number taken a part of a time. The fifth
view is nothing more than a change of words: A number reduced to ⁷/₉
of its amount has every 9 converted into a 7, and any fraction of a 9
which may remain over into the corresponding fraction of 7. This is
completely proved when we prove the equation ⁷/₉ of a = 7 times
a/9. The sixth, seventh, and eighth views are illustrated in the
chapter on proportion.

When the student comes to algebra, he will find that, in all the
applications of that science, fractions such as a/b most
frequently require that a and b should be themselves
supposed to be fractions. It is, therefore, of importance that he
should learn to accommodate his views of a fraction to this more
complicated case.



	Suppose we take 
	2½
	 .


	 4³/₅ 





We shall find that we have, in this case, a better
idea of the views from and after the third inclusive, than of the first
and second, which are certainly the most simple ways of conceiving ⁷/₉.
We have no notion of the (4³/₅)th part of 2½,



	nor of 2
	1
	(
	 4
	3
	)


	 2 
	 5 





of a unit; indeed, we coin a new species of
adjective when we talk of the (4³/₅)th part of anything. But we can
readily imagine that 2½ is some fraction of 4³/₅; that the first is
some part of a time the second; that there must be some
multiplier which turns every 4³/₅ in a number into 2½; and so on. Let
us now see whether we can invent a distinct mode of applying the first
and second views to such a compound fraction as the above.


We can easily imagine a fourth part of a length, and a fifth part,
meaning the lines of which 4 and 5 make up the length in question;
and there is also in existence a length of which four lengths and
two-fifths of a length make up the original length in question. For
instance, we might say that 6, 6, 2 is a division of 14 into 2⅓ equal
parts—2 equal parts, 6, 6, and a third of a part, 2. So we might agree
to say, that the (2⅓)th, or (2⅓)rd, or (2⅓)st (the reader may coin the
adjective as he pleases) part of 14 is 6. If we divide the line a b
into eleven equal parts in c, d, e, &c., we must then
say that a c is the 11th part,





a d the (5½)th, a e the (3⅔)th, a f the
(2¾)th, a g the (2⅕)th, a h the (1⅚)th, a i
the (1⁴/₇)th, a k the (1⅜)th, a l the (1²/₉)th,
a m the (1⅒)th, and a b itself the 1st part of
a b. The reader may refuse the language if he likes (though it is
not so much in defiance of etymology as talking of multiplying
by ½); but when a b is called 1, he must either call
a f 1/(2¾), or make one definition of one class of fractions
and another of another. Whatever abbreviations they may choose, all
persons will agree that a/b is a direction to find such
a fraction as, repeated b times, will give 1, and then to take
that fraction a times.

So, to get 2½/4⅗, the simplest way is to divide the whole unit into 46
parts; 10 of these parts, repeated 4⅗ times, give the whole. The





4⅗th is then ¹⁰/₄₆, and 2½ such parts is ²⁵/₄₆, or a c.
The student should try several examples of this mode of interpreting
complex fractions.

But what are we to say when the denominator itself is less than unity,
as in 3¼/⅖? Are we to have a (⅖)th part of a unit? and what is it? Had

there been a 5 in the denominator, we should have taken the part of
which 5 will make a unit. As there is ⅖ in the denominator, we must
take the part of which ⅖ will be a unit. That part is larger than a
unit; it is 2½ units; 2½ is that of which ⅖ is 1. The above fraction
then directs us to repeat 2½ units 3¼ times. By extending our word
‘multiplication’ to the taking of a part of a time, all multiplications
are also divisions, and all divisions multiplications, and all the
terms connected with either are subject to be applied to the results of
the other.

If 2⅓ yards cost 3½ shillings, how much does one yard cost? In such a
case as this, the student looks at a more simple question. If 5 yards
cost 10 shillings, he sees that each yard costs ¹⁰/₅, or 2 shillings,
and, concluding that the same process will give the true result when
the data are fractional, he forms 3½/2⅓, reduces it by rules to ³/₂
or 1½, and concludes that 1 yard costs 18 pence. The answer happens
to be correct; but he is not to suppose that this rule of copying for
fractions whatever is seen to be true of integers is one which requires
no demonstration. In the above question we want money which, repeated
2⅓ times, shall give 3½ shillings. If we divide the shilling into 14
equal parts, 6 of these parts repeated 2⅓ times give the shilling. To
get 3½ times as much by the same repetition, we must take 3½ of these 6
parts at each step, or 21 parts. Hence, ²¹/₁₄, or 1½, is the number of
shillings in the price.



APPENDIX V.

ON CHARACTERISTICS.



When the student comes to use logarithms, he will find what follows
very useful. In the mean while, I give it merely as furnishing a rapid
rule for finding the place of a decimal point in the quotient before
the division is commenced.

When a bar is written over a number, thus,  7  let the number be called
negative, and let it be thus used: Let it be augmented by additions of
its own species, and diminished by subtractions; thus,  7 
and  2  give
 9 , and let  7 
with  2  subtracted give  5 .
But let the addition

of a number without the bar diminish the negative number, and
the subtraction increase it. Thus,  7 
and 4 are  3 ,  7  and
12 make 5,  7  with 8 subtracted is
 15 . In fact, consider 1, 2, 3,
&c., as if they were gains, and  1 ,
 2 ,  3 ,
as if they were losses:
let the addition of a gain or the removal of a loss be equivalent
things, and also the removal of a gain and the addition of a loss.
Thus, when we say that  4  diminished
by  11  gives 7, we say that a loss
of 4 incurred at the moment when a loss of 11 is removed, is, on the
whole, equivalent to a gain of 7; and saying that  4 
diminished by 2 is  6 , we say that a loss of 4,
accompanied by the removal of a gain of 2, is altogether a loss of 6.

By the characteristic of a number understand as follows: When
there are places before the decimal point, it is one less than the
number of such places. Thus, 3·214, 1·0083, 8 (which is 8·00 ...) 9·999,
all have 0 for their characteristics. But 17·32, 48, 93·116, all have
1; 126·03 and 126 have 2; 11937264·666 has 7. But when there are no
places before the decimal point, look at the first decimal place which
is significant, and make the characteristic negative accordingly. Thus,
·612, ·121, ·9004, in all of which significance begins in the first
decimal place, have the characteristic  1 ;
but ·018 and ·099 have  2 ;
·00017 has  4 ;
·000000001 has  9 .

To find the characteristic of a quotient, subtract the characteristic
of the divisor from that of the dividend, carrying one before
subtraction if the first significant figures of the divisor are greater
than those of the dividend. For instance, in dividing 146·08 by ·00279.
The characteristics are 2 and  3 ;
and 2 with  3  removed would be 5. But
on looking, we see that the first significant figures of the divisor,
27, taken by themselves, and without reference to their local value,
mean a larger number than 14, the first two figures of the dividend.
Consequently, to  3  we carry 1 before
subtracting, and it then becomes  2 ,
which, taken from 2, gives 4. And this 4 is the characteristic of
the quotient, so that the quotient has 5 places before the decimal
point. Or, if abcdef be the first figures of the quotient, the
decimal point must be thus placed, abcde·f. But if it had been
to divide ·00279 by 146·08, no carriage would have been required; and

 3  diminished by 2 is
 5 ; that is, the first significant figure
of the quotient is in the 5th place. The quotient, then, has ·0000 before
any significant figure. A few applications of this rule will make it
easy to do it in the head, and thus to assign the meaning of the first
figure of the quotient even before it is found.



APPENDIX VI.

ON DECIMAL MONEY.



Of all the simplifications of commercial arithmetic, none is comparable
to that of expressing shillings, pence, and farthings as decimals of a
pound. The rules are thereby put almost upon as good a footing as if
the country possessed the advantage of a real decimal coinage.

Any fraction of a pound sterling may be decimalised by rules which can
be made to give the result at once.



	Two shillings is
	£·100
	 


	One shilling is
	£·050


	Sixpence is
	£·025


	One farthing is
	£·001
	04⅙





Thus, every pair of shillings is a unit in the
first decimal place; an odd shilling is a 50 in the second and third
places; a farthing is so nearly the thousandth part of a pound, that
to say one farthing is ·001, two farthings is ·002, &c., is so
near the truth that it makes no error in the first three decimals till
we arrive at sixpence, and then 24 farthings is exactly ·025 or 25
thousandths. But 25 farthings is ·026, 26 farthings is ·027, &c.
Hence the rule for the first three places is

One in the first for every pair of shillings; 50 in the second
and third for the odd shilling, if any; and 1 for every farthing
additional, with 1 extra for sixpence.




	Thus,
	0s.
	3½d. = £·014


	 
	0s.
	7¾d. = £·032


	1s.
	2½d. = £·060


	1s.
	11¼d. = £·096


	2s.
	6d. = £·125


	2s.
	9½d. = £·139


	3s.
	2¾d. = £·161


	13s.
	10¾d. = £·694





In the fourth and fifth places, and those which
follow, it is obvious that we have no produce from any farthings except
those above sixpence. For at every sixpence, ·00004⅙ is converted into
·001, and this has been already accounted for. Consequently, to fill up
the fourth and fifth places,

Take 4 for every farthing[59]
above the last sixpence, and an additional 1 for every six farthings, or three halfpence.

The remaining places arise altogether from ·00000⅙ for every farthing
above the last three halfpence; for at every three halfpence complete,
·00000⅙ is converted into ·00001, and has been already accounted for.
Consequently, to fill up all the places after the fifth,

Let the number of farthings above the last three halfpence be a
numerator, 6 a denominator, and annex the figures of the corresponding
decimal fraction.

It may be easily remembered that




	The figures of
	¹/₆
	  are  
	166666...


	”
	²/₆
	...
	333333...


	”
	³/₆
	...
	5


	”
	⁴/₆
	...
	666666...


	”
	⁵/₆
	...
	833333...





 



	0s.
	3½d. =
	·014
	58
	3333...


	0s.
	7¾d. =
	·032
	29
	1666...


	1s.
	2½d. =
	·060
	41
	6666...


	1s.
	11¼d. =
	·096
	87
	83333...


	2s.
	6d.  =
	·125
	00
	0000...


	2s.
	9½d. =
	·139
	58
	3333...


	3s.
	2¾d. =
	·161
	45
	83333...


	13s.
	10¾d. =
	694
	79
	1666...





The following examples will shew the use of this rule, if the student
will also work them in the common way.

To turn pounds, &c., into farthings: Multiply the pounds by 960,
or by 1000-40, or by 1000(1-⁴/₁₀₀); that is, from 1000 times the
pounds subtract 4 per cent of itself. Thus, required the number of
farthings in £1663. 11. 9¾.



	1663·590625 × 1000
	 = 
	1663590·625


	4 per cent of this, 
	 
	  66543·625


	No. of farthings required,
	 
	1597047





What is 47½ per cent of £166. 13. 10 and ·6148 of £2971. 16. 9?



	 
	166·691 


	40 p. c.
	66·6764


	5 p. c.
	8·3346


	2½ p. c.
	4·1673


	 
	79·1783


	£79.3.6¾
	 


	 


	 
	2971·837


	·6
	1783·1022


	·01
	29·7184


	·004
	11·8873


	·0008
	2·3775


	 
	1827·0854


	£1827.1.8½
	 





The inverse rule for turning the decimal of a pound into shillings,
pence, and farthings, is obviously as follows:

A pair of shillings for every unit in the first place; an odd
shilling for 50 (if there be 50) in the second and third places; and a
farthing for every thousandth left, after abating 1 if the number of
thousandths so left exceed 24.

The direct rule (with three places) gives too little, the inverse rule
too much, except at the end of a sixpence, when both are accurate.
Thus, £·183 is rather less than 3s. 8d., and 6s.
4¾d. is rather greater than £319; or when the two do not exactly
agree, the common money is the greatest. But £·125 and £·35 are
exactly 2s. 6d. and 7s.


Required the price of 17 cwt. 81 lb. 13½ oz. at £3.11.9¾ per cwt.
true to the hundredth of a farthing.



	 
	3·590625


	17


	61·040625


	lb.
	56 ½
	1·795313


	 
	16 ⅐
	·512946


	7 ⅛
	·224414


	2 ⅛
	·064118


	oz.
	8 ¼
	·016029


	 
	4 ½
	·008015


	1 ¼
	·002004


	½ ½
	·001002


	 
	£63·664466


	£63.13.3½
	 





Three men, A, B, C, severally invest £191.12.7¾, £61.14.8, and
£122.1.9½ in an adventure which yields £511.12.6½. How ought the
proceeds to be divided among them?



	  A,  
	191·63229
	 


	B,
	61·73333
	 


	C,
	122·08958
	Produce of £1.


	 
	375·45520)511·62708
	(1·362686


	136·17188
	 


	23·53532


	1·00801


	25710


	3183


	180









	1·362686
	 
	1·362686
	 
	1·362686


	92·236191
	33·33716 
	85·980221


	1·362686
	8·17612 
	1·362686


	1·226417
	13627 
	272537


	13627
	9538 
	27254


	8176
	409 
	1090


	409
	41 
	122


	27
	4 
	7


	3
	8·41231 
	1


	1
	 
	1·663697


	2·611346
	 
	 







	261·1346 ...
	  A’s  
	  share  
	£261.2.8¼


	84·1231 ...
	B’s
	...
	84.2.5¾


	166·3697 ...
	C’s
	...
	166.7.4¾


	511·6274  
	 
	£511.2.6¾





If ever the fraction of a farthing be wanted, remember that the
coinage-result is larger than the decimal of a pound, when we
use only three places. From 1000 times the decimal take 4 per cent,
and we get the exact number of farthings, and we need only look at the
decimal then left to set the preceding right. Thus, in



	134·6 
	 
	123·1 
	 
	369·7 


	  5·38
	  4·92
	 14·79


	·22
	·18
	·91





we see that (if we use four decimals only) the
pence of the above results are nearly 8d. ·22 of a farthing,
5½d. ·18, and 4½d. ·91.

A man can pay £2376. 4. 4½, his debts being £3293. 11. 0¾. How much
per cent can he pay, and how much in the pound?


	3293·553)2376·2180(·7214756

	70·7309

	4·8598

	1·5662

	2488

	183

	18

	 

	Answer, £72. 2.11½ per cent.

	0.14. 5¼ per pound.





APPENDIX VII.

ON THE MAIN PRINCIPLE

OF BOOK-KEEPING.



A brief notice of the principle on which accounts are kept (when they
are properly kept) may perhaps be useful to students who are
learning book-keeping, as the treatises on that subject frequently give
too little in the way of explanation.

Any person who is engaged in business must desire to know accurately,
whenever an investigation of the state of his affairs is made.


1, What he had at the commencement of the account, or immediately after
the last investigation was made; 2, What he has gained and lost in the
interval in all the several branches of his business; 3, What he is now
worth. From the first two of these things he obviously knows the third.
In the interval between two investigations, he may at any one time
desire to know how any one account stands.

An account is a recital of all that has happened, in reference
to any class of dealings, since the last investigation. It can only
consist of receipts and expenditures, and so it is said to have two
sides, a debtor and a creditor side.

All accounts are kept in money. If goods be bought, they are
estimated by the money paid for them. If a debtor give a bill of
exchange, being a promise to pay a certain sum at a certain time, it is
put down as worth that sum of money. All the tools, furniture, horses,
&c. used in the business are rated at their value in money. All the
actual coin, bank-notes, &c., which are in or come in, being the
only money in the books which really is money, is called cash.

The accounts are kept as if every different sort of account belonged
to a separate person, and had an interest of its own, which every
transaction either promotes or injures. If the student find that it
helps him, he may imagine a clerk to every account: one to take charge
of, and regulate, the actual cash; another for the bills which the
house is to receive when due; another for those which it is to pay when
due; another for the cloth (if the concern deal in cloth); another
for the sugar (if it deal in sugar); one for every person who has an
account with the house; one for the profits and losses; and so on.

All these clerks (or accounts) belonging to one merchant, must account
to him in the end—must either produce all they have taken in charge,
or relieve themselves by shewing to whom it went. For all that they
have received, for every responsibility they have undertaken to
the concern itself, they are bound, or are debtors; for
everything which has passed out of charge, or about which they are
relieved from answering to the concern, they are unbound, or are
creditors. These words must be taken in a very wide sense by any

one to whom book-keeping is not to be a mystery. Thus, whenever
any account assumes responsibility to any parties out of the
concern, it must be creditor in the books, and debtor whenever it
discharges any other parties of their responsibility. But whenever an
account removes responsibility from any other account in the same books
it is debtor, and creditor whenever it imposes the same.

To whom are all these parties, or accounts, bound, and from whom are
they released? Undoubtedly the merchant himself, or, more properly,
the balance-clerk, presently mentioned. But it is customary to
say that the accounts are debtors to each other, and creditors
by each other. Thus, cash debtor to bills receivable,
means that the cash account (or the clerk who keeps it) is bound to
answer for a sum which was paid on a bill of exchange due to the
house. At full length it would be: “Mr. C (who keeps the cash-box)
has received, and is answerable for, this sum which has been paid in
by Mr. A, when he paid his bill of exchange.” On the other hand, the
corresponding entry in the account of bills receivable runs—bills
receivable, creditor by cash. At full length: “Mr. B (who keeps
the bills receivable) is freed from all responsibility for Mr. A’s
bill, which he once held, by handing over to Mr. C, the cash-clerk, the
money with which Mr. A took it up.” Bills receivable creditor by
cash is intelligible, but cash debtor to bills receivable is
a misnomer. The cash account is debtor to the merchant by the
sum received for the bill, and it should be cash debtor by bill
receivable. The fiction of debts, not one of which is ever paid to the
party to whom it is said to be owing, though of no consequence
in practice, is a stumbling-block to the learner; but he must keep the
phrase, and remember its true meaning.

The account which is made debtor, or bound, is said to be
debited; that which is made creditor, or released, is
said to be credited. All who receive must be debited; all
who give must be credited.

No cancel is ever made. If cash received be afterwards repaid, the
sum paid is not struck off the receipts (or debtor-side of the cash
account), but a discharge, or credit, is written on the expenditure
(or credit) side.


The book in which the accounts are kept is called a ledger.
It has double columns, or else the debtor-side is on one page, and the
creditor side on the opposite, of each account. The debtor-side is
always the left. Other books are used, but they are only to help in
keeping the ledger correct. Thus there may be a waste-book, in
which all transactions are entered as they occur, in common language;
a journal, in which the transactions described in the waste-book
are entered at stated periods, in the language of the ledger. The items
entered in the journal have references to the pages of the ledger
to which they are carried, and the items in the ledger have also
references to the pages of the journal from which they come; and by
this mode of reference it is easy to make a great deal of abbreviation
in the ledger. Thus, when it happens, in making up the journal to a
certain date, that several different sums were paid or received at or
near the same time, the totals may be entered in the ledger, and the
cash account may be made debtor to, or creditor by, sundry accounts,
or sundries; the sundry accounts being severally credited or debited
for their shares of the whole. The only book that need be explained is
the ledger. All the other books, and the manner in which they are kept,
important as they may be, have nothing to do with the main principle
of the method. Let us, then, suppose that all the items are entered
at once in the ledger as they arise. It has appeared that every item
is entered twice. If A pay on account of B, there is an entry, “A,
creditor by B;” and another, “B, debtor to A.” This is what is called
double-entry; and the consequence of it is, that the sum of
all the debtor items in the whole book is equal to the sum of all the
creditor items. For what is the first set but the second with the
items in a different order? If it were convenient, one entry of each
sum might be made a double-entry. The multiplication table is called
a table of double-entry, because 42, for instance, though it
occurs only once, appears in two different aspects, namely, as 6 times
7 and as 7 times 6. Suppose, for example, that there are five accounts,
A, B, C, D, E, and that each account has one transaction of its own
with every other account; and let the debits be in the columns,
the credits in the rows, as follows:




	Debtor
	  A  
	  B  
	  C  
	  D  
	  E  


	A, Creditor
	 
	23
	19
	32
	 4


	B, Creditor
	17
	 
	 6
	11
	25


	C, Creditor
	 9
	41
	 
	10
	 2


	D, Creditor
	14
	28
	16
	 
	 3


	E, Creditor
	15
	 4
	60
	 1
	 


	 





Here the 16 is supposed to appear in D’s account as D creditor by C,
and in C’s account as C debtor to D. And to say that the sum of debtor
items is the same as that of creditor items, is merely to say that the
preceding numbers give the same sum, whether the rows or the columns be
first added up.

If it be desired to close the ledger when it stands as above, the
following is the way the accounts will stand: the lines in italics will
presently be explained.




	 


	A, Debtor.
	A, Creditor.
	B, Debtor.
	B, Creditor.


	To B 	17
	By B 	23
	To A 	23
	By A 	17


	To C 	9
	By C 	19
	To C 	41
	By C 	6


	To D 	14
	By D 	32
	To D 	28
	By D 	11


	To E 	15
	By E 	4
	To E 	4
	By E 	25


	To Balance   	23
	  	 
	  	 
	By Balance   	37


	  	78
	  	78
	  	96
	  	96


	C, Debtor.
	C, Creditor.
	D, Debtor.
	D, Creditor.


	To A 	19
	By A 	9
	To A 	32
	By A 	14


	To B 	6
	By B 	41
	To B 	11
	By B 	28


	To D 	16
	By D 	10
	To C 	10
	By C 	16


	To E 	60
	By E 	2
	To E 	1
	By E 	3


	  	 
	By Balance   	39
	To Balance   	7
	  	 


	  	101
	  	101
	  	61
	  	61


	E, Debtor.
	E, Creditor.
	Balance, Debtor.
	Balance, Cred.


	To A 	4
	By A 	15
	To B 	37
	By A 	23


	To B 	25
	By B 	4
	To C 	39
	By D 	7


	To C 	2
	By C 	60
	  	 
	By E 	46


	 	
	 	
	 	
	 	


	To D 	3
	By D 	1
	  	76
	  	76


	To Balance 	46
	  	 
	  	 
	  	 


	  	80
	  	80
	  	 
	  	 


	 





In all the part of the above which is printed in Roman letters we see
nothing but the preceding table repeated. But when all the accounts
have been completed, and no more entries are left to be made, there
remains the last process, which is termed balancing the ledger.
To get an idea of this, suppose a new clerk, who goes round all the
accounts, collecting debts and credits, and taking them all upon
himself, that he alone may be entitled to claim the debts and to be
responsible for the assets of the concern. To this new clerk, whom I
will call the balance-clerk, every account gives up what it has,
whether the same be debt or credit. The cash-clerk gives up all the
cash; the clerks of the two kinds of bills give up all their documents,
whether bills receivable or entries of bills payable (remember that
any entry against which there is money set down in the books counts as
money when given up, that is, as money due or money owing); the clerks
of the several accounts of goods give up all their unsold remainders
at cost prices; the clerks of the several personal accounts give up
vouchers for the sums owing to or from the several parties; and so
on. But where more has been paid out than received, the balance-clerk

adjusts these accounts by giving instead of receiving; in fact, he so
acts as to make the debtor and creditor sides of the accounts he visits
equal in amount. For instance, the A account is indebted to the concern
55, while payments or discharges to the amount of 78 have been made by
it. The balance-clerk accordingly hands over 23 to that account, for
which it becomes debtor, while the balance enters itself as creditor to
the same amount. But in the B account there is 96 of receipt, and only
59 of payment or discharge. The balance-clerk then receives 37 from
this account, which is therefore credited by balance, while the balance
acknowledges as much of debt. The balance account must, of course,
exactly balance itself, if the accounts be all right; for of all the
equal and opposite entries of which the ledger consists, so far as
they do not balance one another, one goes into one side of the balance
account, and the other into the other. Thus the balance account becomes
a test of the accuracy of one part of the work: if its two sides do not
give the same sums, either there have been entries which have not had
their corresponding balancing entries correctly made, or else there has
been error in the additions.

But since the balance account must thus always give the same
sum on both sides, and since balance debtor implies what
is favourable to the concern, and balance creditor what is
unfavourable, does it not appear as if this system could only be
applied to cases in which there is neither loss nor gain? This brings
us to the two accounts in which are entered all that the concern
began with, and all that it gains or loses—the
stock account, and the profit-and-loss account. In order
to make all that there was to begin with a matter of double entry, the
opening of the ledger supposes the merchant himself to put his several
clerks in charge of their several departments. In the stock account,
stock, which here stands for the owner of the books, is made
creditor by all the property, and debtor by all the liabilities; while
the several accounts are made debtors for all they take from the stock,
and creditors by all the responsibilities they undertake. Suppose, for
instance, there are £500 in cash at the commencement of the ledger.
There will then appear that the merchant has handed over to the
cash-box £500, and in the stock account will appear, “Stock creditor by

cash, £500;” while in the cash account will appear, “Cash debtor to
stock, £500.” Suppose that at the beginning there is a debt outstanding
of £50 to Smith and Co., then there will appear in the stock account,
“Stock debtor to Smith and Co. £50,” and in Smith and Co.’s account
will appear “Smith and Co. creditors by stock, £50.” Thus there is
double entry for all that the concern begins with by this contrivance
of the stock account.

The account to which everything is placed for which an actual
equivalent is not seen in the books is the profit-and-loss
account. This profit-and-loss account, or the clerk who keeps it, is
made answerable for every loss, and the supposed cause of every gain.
This account, then, becomes debtor for every loss, and creditor by
every gain. If goods be damaged to the amount of £20 by accident,
and a loss to that amount occur in their sale, say they cost £80 and
sell for £60 cash, it is clear that there is an entry “Cash debtor to
goods £60,” and “Goods creditor by cash £60.” Now, there is an entry
of £80 somewhere to the debit of the goods for cash laid out, or bills
given, for the whole of the goods. It would affect the accuracy of
the accounts to take no notice of this; for when the balance-clerk
comes to adjust this account, he would find he receives £20 less than
he might have reckoned upon, without any explanation of the reason;
and there would be a failure of the principle of double-entry. Since
it is convenient that the balance account of the goods should merely
represent the stock in hand at the close, the account of goods
therefore lays the responsibility of £20 upon the profit-and-loss
account, or there is the entry “Goods creditor by profit-and-loss,
£20,” and also “Profit-and-loss debtor to goods, £20.” Again, in
all payments which are not to bring in a specific return, such as
house and trade expenses, wages, &c. these several accounts are
supposed to adjust matters with the profit-and-loss account before the
balance begins. Thus, suppose the outgoings from the mere premises
occupied exceed anything those premises yield by £200, or the debits
of the house account exceed its credits by £200, the account should
be balanced by transferring the responsibility to the profit-and-loss

account, under the entries “House expenses creditor by profit-and-loss,
£200”, “Profit-and-loss debtor to house expenses, £200.” In this way
the profit-and-loss account steps in from time to time before the
balance account commences its operations, in order that that same
balance account may consist of nothing but the necessary matters of
account for the next year’s ledger.

This transference of accounts, or transfusion of one account
into another, requires attentive consideration. The receiving account
becomes creditor for the credits, and debtor for the debits, of the
transmitting account. The rule, therefore, is: Make the transmitting
account balance itself, and, on whichever side it is necessary to enter
a balancing sum, make the account debtor or creditor, as the case may
be, to the receiving account, and the latter creditor or debtor to the
former. Thus, suppose account A is to be transferred to account B, and
the latter is to arrange with the balance account. If the two stand as
in Roman letters, the processes in Italic letters will occur before the
final close.



	 


	A, Debtor.
	A, Creditor.
	B, Debtor.
	B, Creditor.


	To sundries   	£100
	By sundries   	£500
	To sundries   	£600
	By sundries   	£400


	To B 	400
	  	 
	To Balance 	200
	By A 	400


	  	£500
	  	£500
	  	£800
	  	£800


	 





And the entry in the balance account will be, “Creditor by B, £200,”
shewing that, on these two accounts, the credits exceed the debits by £200.

Still, before the balance account is made up, it is desirable that the
profit-and-loss account should be transferred to the stock account;
for the profit and loss of this year is of no moment as a part of
next year’s ledger, except in so far as it affects the stock at the
commencement of the latter. Let this be done, and the balance account
may then be made in the form required.

The stock account and the profit-and-loss account, the latter being the
only direct channel of alteration for the former, differ in a peculiar
manner[60]
from the other preliminary accounts, and the balance account

is a species of umpire. They represent the merchant: their interests
are his interests; he is solvent upon the excess of their credits
over their debits, insolvent upon the excess of their debits over
their credits. It is exactly the reverse in all the other accounts.
If a malicious person were to get at the ledger, and put on a cipher
to the pounds in various items, with a view of making the concern
appear worse than it really is, he would make his alterations on
the debtor sides of the stock and profit-and-loss accounts,
and on the creditor sides of all the others. Accordingly, in
the balance account, the net stock, after the incorporation of the
profit-and-loss account, appears on the creditor side (if not,
it should be called amount of insolvency, not stock), and
the debts of the concern appear on the same side. But on the debit side
of the balance account appear all the assets of the concern (for which
the balance-clerk is debtor to the clerks from whom he has taken them).

The young student must endeavour to get the enlarged view of the words
debtor and creditor which is requisite, and must then learn by practice
(for nothing else will give it) facility in allotting the actual
entries in the waste-book to the proper sides of the proper accounts.
I do not here pretend to give more than such a view of the subject as
may assist him in studying a treatise on book-keeping, which he will
probably find to contain little more than examples.





APPENDIX VIII.

ON THE REDUCTION OF FRACTIONS TO

OTHERS OF NEARLY EQUAL VALUE.



There is a useful method of finding fractions which shall be nearly
equal to a given fraction, and with which the computer ought to be
acquainted. Proceed as in the rule for finding the greatest common
measure of the numerator and denominator, and bring all the quotients
into a line. Then write down,



	1
	 
	2nd Quot.


	1st Quot.
	1st Quot. × 2d Quot. + 1





Then take the third quotient, multiply the
numerator and denominator of the second by it, and add to the products
the preceding numerator and denominator. Form a third fraction with the
results for a numerator and denominator. Then take the fourth quotient,
and proceed with the third and second fractions in the same way; and so
on till the quotients are exhausted. For example, let the fraction be
⁹¹³¹/₁₃₁₂₈.


	9131)13128(1, 2

	1137   3997(3, 1

	551    586(1, 15

	201      35(1, 2

	26        9(1, 8

	8        1



This is the process for finding the greatest common measure of 9131 and
13128 in its most compact form, and the quotients and fractions are:



	1
	2
	3
	1
	1
	15
	1
	2
	1
	8


	1
	2
	7
	9
	16
	249
	265
	779
	1044
	9131


	 1 
	 3 
	 10 
	 13 
	 23 
	 358 
	 381 
	 1120 
	 1501 
	 13128 





It will be seen that we have thus a set of fractions ending with the
original fraction itself, and formed by the above rule, as follows:



	1st Fraction = 
	  1
	 = 
	1
	 
	 
	 


	1st Quot.
	 1 
	 


	2d Fraction = 
	2d Quot.
	 = 
	2


	1st Quot. × 2d Quot. + 1
	 3 
	 


	3d Fraction = 
	2d Numʳ. × 3d Quot. + 1st Numʳ.
	 = 
	2 × 3 + 1
	 = 
	7


	2d Denʳ. × 3d Quot. + 1st Denʳ.
	3 × 3 + 1
	10


	4th Fraction = 
	3d Numʳ. × 4th Quot. + 2d Numʳ.
	 = 
	7 × 1 + 2 
	 = 
	9
	 ;


	3d Denʳ. × 4th Quot. + 2d Denʳ.
	10 × 1 + 3
	13






and so on. But we have done something more than merely reascend to the
original fraction by means of the quotients. The set of fractions, ¹/₁,
²/₃, ⁷/₁₀, ⁹/₁₃, &c. are continually approaching in value to the
original fraction, the first being too great, the second too small, the
third too great, and so on alternately, but each one being nearer to
the given fraction than any of those before it. Thus, ¹/₁ is too great,
and ²/₃ is too small; but ²/₃ is not so much too small as ¹/₁ is too
great. And again, ⁷/₁₀, though too great, is not so much too great as
²/₃ is too small.

Moreover, the difference of any of the fractions from the original
fraction is never greater than a fraction having unity for its
numerator and the product of the denominator and the next denominator
for its denominator. Thus, ¹/₁ does not err by so much as ¹/₃, nor ²/₃
by so much as ¹/₃₀, nor ⁷/₁₀ by so much as ¹/₁₃₀, nor ⁹/₁₃ by so much
as ¹/₂₉₉, &c.

Lastly, no fraction of a less numerator and denominator can come
so near to the given fraction as any one of the fractions in the
list. Thus, no fraction with a less numerator than 249, and a less
denominator than 358, can come so near to



	9131
	 as 
	249
	 .


	13128
	358





The reader may take any example for himself, and the test of the
accuracy of the process is the ultimate return to the fraction begun
with. Another test is as follows: The numerator of the difference of
any two consecutive approximating fractions ought to be unity. Thus,
in our instance, we have ¹⁶/₂₃ and ²⁴⁹/₃₅₈, which, with
a common denominator, 23 × 358, have 5728 and 5727 for their numerators.

As another example, let us examine this question: The length of the
year is 365·24224 days, which is called in common life 365¼ days. Take
the fraction ²⁴²²⁴/₁₀₀₀₀₀, and proceed as in the rule.


	24224)100000(4, 7, 1, 4, 9, 2

	2496     3104

	64       608

	0         32





	1
	7
	8
	39
	359
	757


	 4 
	 29 
	 33 
	 161 
	 1482 
	 3125 





and ⁷⁵⁷/₃₁₂₅ is ·24224 in its
lowest terms. Hence, it appears that the excess of the year over
365 days amounts to about 1 day in 4 years,  which is not wrong by so much as 1 day in
116 years; more accurately, to 7 days in 29 years, which is not wrong
by so much as 1 day in 957 years; more accurately still, to 8 days in
33 years, which is not wrong by so much as 1 day in 5313 years; and so
on.

This method may be applied to finding fractions nearly equal to the
square roots of integers, in the following manner:


	    

	√43 = 6 + ...





	6
	1 5 4 5 5 4 5 1 6 6
	1 5 4, &c.


	1
	7 6 3 9 2 9 3 6 7 1
	7 6 3, &c.


	6
	1 1 3 1 5 1 3 1 1 1 2
	1 1 3, &c.





Set down the number whose square root is wanted, say 43. This square
root is 6 and a fraction. Set down the integer 6 in the first and third
row, and 1 in the second row always. Form the successive rows each from
the one before, in the following manner:



	One row

being
	The next row has b′, a′, c′, formed
 in this order, thus,


	a
	a′ = excess of b′c′, already formed, over a.


	b
	b′ = quotient of 43 - a² divided by b.


	c
	c′ = integer in the quotient of 6 + a divided by b′.


	Thus the second row is formed from the first, as under:


	6
	1 = excess of 7 × 1 (both just found) over 6.


	1
	7 = 43 - 6 × 6 divided by 1.


	6
	1 = integer of 6 + 6 divided by 7 (just found).


	The third row is formed from the second, thus:


	1 
	5 = excess of 1 × 6 over 1.


	7 
	6 = 43 - 1 × 1 divided by 7.


	1 
	1 = integer of 6 + 1 divided by 6;





and so on. In process of time the second column,
1, 7, 1, occurs again, after which the several columns are repeated in
the same order. As a final process, take the set in the lowest line
(excluding the first, 6), namely, 1, 1, 3, 1, 5, 1, 3, &c. and use
them by the rule given at the beginning of this article, as follows:



	1
	1
	3
	1
	5
	1
	3
	1
	1,
	 &c.


	1
	1
	4
	5
	29
	34
	131
	165
	296
	 


	 1 
	 2 
	 7 
	 9 
	 52 
	 61 
	 235 
	 296 
	 531 






Hence, 6¹⁶⁵/₂₉₆ is very near the square root of 43, not erring by so
much as



	1
	 .


	296 × 531





If we try it, we shall find (⁶¹⁶⁵/₂₉₆) to be ¹⁹⁴¹/₂₉₆,
the square of which is ³⁷⁶⁷⁴⁸¹/₈₇₆₁₆, or 43⁷/₈₇₆₁₆.

This rule is of use when it is frequently wanted to use one square
root, and therefore desirable to ascertain whether any easy
approximation exists by means of a common fraction. For example, √2 is
often used.



	√2
	 = 1 + ...


	1
	1  1


	1
	1  1


	1
	2  2    2    2    2    2







	1
	2
	5
	12
	29
	70
	 &c.


	 2 
	 5 
	 12 
	 29 
	 70 
	 169 





Here it appears that



	1
	29
	 does not err by 
	1
	 ;


	70
	70 × 169





 



	consequently,
	99
	 or 
	100 - 1
	 is,


	70
	70





considering the ease of the operation, a fair approximation.
In fact, ⁹⁹/₇₀ is 1·4142857 ... the truth being 1·4142135 ...

The following is an additional example:



	√
	19
	 = 4 + ...


	 
	4
	2    3    3    2    4    4    2


	1
	3    5    2    5    3    1    3


	4
	2    1    3    1    2    8    2    1    3    1    2, &c.







	1
	1
	4
	5
	14
	, &c.


	 2 
	 3 
	 11 
	 14 
	 39 







APPENDIX IX.

ON SOME GENERAL PROPERTIES OF NUMBERS.



Prop. 1. If a fraction be reduced to
its lowest terms, so called,[61]
that is, if neither, numerator nor denominator be divisible by any
integer greater than unity, then no fraction of a smaller numerator and
denominator can have the same value.

Let a/b be a fraction in which a and b
have no common measure greater than unity: and, if possible, let
c/d be a fraction of the same value, c being less
than a, and d less than b. Now, since



	 a 
	 = 
	 c 
	 we have 
	 a 
	 = 
	 b 
	 ;


	b
	d
	c
	d






let m be the integer quotient of these last fractions (which
must exist, since a > c, b > d), and let
e and f be the remainders. Then



	 a 
	 or 
	 mc + e 
	 = 
	 c 
	 = 
	 mc 


	b
	md + f
	d
	md





Hence,



	 e 
	 and 
	 mc 
	 must be equal,  for if not,


	f
	md







	mc + e
	 would lie between 
	 mc 
	 and 
	 e 
	 ,


	md + f
	md
	f





instead of being equal to the former. Hence,



	 a 
	 = 
	 e 
	 ;


	b
	f





so that if a fraction whose numerator and denominator have
no common measure greater than unity, be equal to a fraction of lower numerator
and denominator, it is equal to another in which the numerator and
denominator are still lower. If we proceed with



	 a 
	 = 
	 e 
	 in a similar manner, we find


	b
	f







	 a 
	 = 
	 g 
	 where g < e, h < f,


	b
	h





and so on. Now, if there be any process which perpetually
diminishes the terms of a fraction by one or more units at every step, it must
at last bring either the numerator or denominator, or both, to 0. Let



	 a 
	 = 
	 v 


	b
	w





be one of the steps,
and let a = kv + x, b = kw + y; so that



	kv + x
	 = 
	 v 


	kw + y
	w





Now, if x = 0 but not y, this is absurd, for it gives



	kv
	 = 
	 kv 
	 .


	kw + y
	kw





A similar absurdity follows if y be 0, but not x; and if
both x and y be = 0, then a = kv, b
= kw, or a and b have a common measure, k.
Now k must be greater than 1, for v and w are less
than c and d, which by hypothesis are less than a
and b. Consequently a and b have a common measure
k greater than 1, which by hypothesis they have not. If, then,
a and b be integers not divisible by any integer greater
than 1, the fraction a/b is really in its lowest
terms. Also a and b are said to be prime to one
another.

Prop. 2. If the product ab be divisible
by c, and if c be prime to b, it must divide a. Let



	ab
	 = d, then 
	 b 
	 = 
	 d 
	 .


	c
	c
	c





Now b/c is in its lowest terms; therefore, by
the last proposition, d and a must have a common measure. Let the
greatest common measure be k, and let a = kl,
d = km. Then



	 b 
	 = 
	 km 
	 = 
	 m 
	,  and  
	 m 


	c
	kl
	l
	l





is also in its lowest terms; but so is b/c;
therefore we must have m = b, l = c, for otherwise
a fraction in its lowest terms would be equal to another of lower terms.
Therefore a = kc, or a is divisible by c.
And from this it follows, that if a number be prime to two others, it

is prime to their product. Let a be prime to b and
c, then no measure of a can measure either b or
c, and no such measure can measure the product bc; for
any measure of bc which is prime to one must measure the other.

Prop. 3. If a be prime to b, it is prime to
all the powers of b. Every measure[62]
of a is prime to b, and therefore does not divide
b. Hence, by the last, no measure of a divides b²;
hence, a is prime to b², and so is every measure of it;
therefore, no measure of a divides bb², consequently
a is prime to b³, and so on.

Hence, if a be prime to b, a cannot divide without
remainder any power of b. This is the reason why no fraction
can be made into a decimal unless its denominator be measured by no
prime[63]
numbers except 2 and 5. For if



	 a 
	 = 
	  c  
	 ,


	b
	10ⁿ





which last is the general form of a decimal fraction, let



	 a 
	 be in its lowest terms; then 
	 10ⁿa 
	 ,


	b
	b





is an integer, whence (Prop. 2)
b must divide 10ⁿ, and so must all the divisors of b. If, then, among
the divisors of b there be any prime numbers except 2 and 5,
we have a prime number (which is of course a number prime to 10) not
dividing 10, but dividing one of its powers, which is absurd.

Prop. 4. If b be prime to a, all
the multiples of b, as b, 2b, ... up to (a-1)b
must leave different remainders when divided by a. For if,
m being greater than n, and both less than a, we
have mb and nb giving the same remainder, it follows that
mb-nb, or (m-n)b, is divisible
by a; whence (Prop. 2), a divides
m-n, a number less than itself, which is absurd.



If a number be divided into its prime factors, or reduced to a product
of prime numbers only (as in 360 = 2 × 2 × 2 × 3 × 3 × 5), and if
a, b, c, &c. be the prime factors, and α, β,
γ, &c. the number of times they severally enter, so that the number
is aα × bᵝ × cᵞ × &c., then this can be
done in only one way: For any prime number v, not included in

the above list, is prime to a, and therefore to aα,
to b and therefore to bᵝ and therefore to aα ×
bᵝ Proceeding in this way, we prove that v is prime to
the complete product above, or to the given number itself.

The number of divisors which the preceding number
aαbᵝcᵞ ... can have, 0 and itself included, is
(α + 1)(β+ 1)(γ + 1).... For aα
as the divisors 1, a, a² ... aα
and no others, α + 1 in all. Similarly, bᵝ has β+ 1 divisors, and so
on. Now as all the divisors are made by multiplying together one out of each
set, their number (page 202) is (α + 1)(β + 1)(γ+ 1)....

If a number, n, be divisible by certain prime numbers, say 3,
5, 7, 11, then the third part of all the numbers up to n is
divisible by 3, the fifth part by 5, and so on. But more than this:
when the multiples of 3 are omitted, exactly the fifth part of those
which remain are divisible by 5; for the fifth part of the whole
are divisible by 5, and the fifth part of those which are removed
are divisible by 5, therefore the fifth part of those which are left
are divisible by 5. Again, because the seventh part of the whole are
divisible by 7, and the seventh part of those which are divisible by 3,
or by 5, or by 15, it follows that when all those which are multiples
of 3 or 5, or both, are removed, the seventh part of those which
remain are divisible by 7; and so on. Hence, the number of numbers not
exceeding n, which are not divisible by 3, 5, 7, or 11, is ¹⁰/₁₁
of ⁶/₇ of ⁴/₅ of ²/₃ of n. Proceeding in
this way, we find that the number of numbers which are prime to
n, that is, which are not divisible by any one of its prime
factors, a, b, c, ... is



	n 
	 a -1 
	 
	 b - 1 
	 
	 c - 1 
	 ...


	a
	b
	c





or aα-1bβ-1cγ-1 ...
(a - 1)(b - 1)(c - 1)....

Thus, 360 being 2³3²5, its number of divisors is 4 × 3 × 2,
or 24, and there are 2³3.1.2.4 or 96 numbers less than 360 which are prime to it.

Prop. 5. If a be prime to b, then the terms
of the series, a, a², a³, ... severally divided by
b, must all leave different remainders, until 1 occurs as a
remainder, after which the cycle of remainders will be again repeated.

Let a + b give the remainder r (not unity); then
a² ÷ b gives the same remainder as ra +
b, which (Prop. 4) cannot be r: let it be s.

Then aˢ ÷ b gives the same remainder as sa
÷ b, which (Prop. 4) cannot be either r
or s, unless s be 1: let it be t. Then aᵗ ÷ b
gives the same remainder as ta ÷ b; if t be not
1, this cannot be either r, s, or t: let it be
u. So we go on getting different remainders, until 1 occurs as
a remainder; after which, at the next step, the remainder of a
÷ b is repeated. Now, 1 must come at last; for division by
b cannot give any remainders but 0, 1, 2, ... b-
1; and 0 never arrives (Prop. 3), so that as soon as
b-2 different remainders have occurred, no one of which is unity,
the next, which must be different from all that precede, must be 1. If
not before, then at aᵇ⁻¹ we must have a remainder 1; after which
the cycle will obviously be repeated.

Thus, 7, 7², 7³, 7⁴, &c. will, when divided by 5, be found to give
the remainders 2, 4, 3, 1, &c.

Prop. 6. The difference of two
mth powers is always divisible without remainder by the
difference of the roots; or aᵐ -bᵐ is divisible by
a-b; for

aᵐ - bᵐ = aᵐ - aᵐ⁻¹b + aᵐ⁻¹b - bᵐ

= aᵐ⁻¹(a - b) + b(aᵐ⁻¹ - bᵐ⁻¹)

From which, if aᵐ⁻¹-bᵐ⁻¹ is divisible
by a - b, so is aᵐ-bᵐ. But a - b
is divisible by a - b; so therefore is a²- b²;
so therefore is a³-b³; and so on.

Therefore, if a and b, divided by c, leave the
same remainder, a² and b², a³ and b³,
&c. severally divided by c, leave the same remainders;
for this means that a - b is divisible by c.
But aᵐ - bᵐ is divisible by a - b, and
therefore by every measure of a-b, or by c; but
aᵐ - bᵐ cannot be divisible by c, unless aᵐ
and bᵐ, severally divided by c, give the same remainder.

Prop. 7. If b be a prime
number, and a be not divisible by b, then aᵇ and
(a-1)ᵇ + 1 leave the same remainder when divided by
b. This proposition cannot be proved here, as it requires a
little more of algebra than the reader of this work possesses.[64]


Prop. 8. In the last case, aᵇ⁻¹ divided
by b leaves a remainder 1. From the last, aᵇ-a leaves the
same remainder as (a-1)ᵇ + 1-a or (a-1)ᵇ-
(a-1); that is, the remainder of aᵇ - a is not
altered if a be reduced by a unit. By the same rule, it may be
reduced another unit, and so on, still without any alteration of the
remainder. At last it becomes 1ᵇ-1, or 0, the remainder of which is
0. Accordingly, aᵇ - a, which is a(aᵇ⁻¹- 1),
is divisible by b; and since b is prime to a,
it must (Prop. 2) divide aᵇ⁻¹-1; that is,
aᵇ⁻¹, divided by b, leaves a remainder 1, if b be a prime
number and a be not divisible by b.

From the above it appears (Prop. 5 and 7),
that if a be prime to b, the set 1, a, a², a³,
&c. successively divided by b, give a set of remainders beginning
with 1, and in which 1 occurs again at aᵇ⁻¹, if not before, and
at aᵇ⁻¹ certainly (whether before or not), if b be a
prime number. From the point at which 1 occurs, the cycle of remainders
recommences, and 1 is always the beginning of a cycle. If, then,
aᵐ be the first power which gives 1 for remainder, m
must either be b-1, or a measure of it, when b is a prime
number.

But if we divide the terms of the series m, ma,
ma², ma³, &c. by b, m being less than
b, we have cycles of remainders beginning with m. If 1,
r, s, t, &c. be the first set of remainders,
then the second set is the set of remainders arising from m,
mr, ms, mt, &c. If 1 never occur in the first
set before aᵇ⁻¹ (except at the beginning), then all the
numbers under b-1 inclusive are found among the set 1, r,
s, t, &c.; and if m be prime to b
(Prop. 4), all the same numbers are found,
in a different order, among the remainders of m, mr,
&c. But should it happen that the set 1, r, s,
t, &c. is not complete, then m, mr, ms,
&c. may give a different set of remainders.

All these last theorems are constantly verified in the process for
reducing a fraction to a decimal fraction. If m be prime to
b, or the fraction m/b in its lowest terms, the
process involves the successive division of m, m × 10,
m × 10², &c. by b. This process can never come to
an end unless some power of 10, say 10ⁿ, is divisible by b;
which cannot be, if b contain any prime factors except 2 and 5.
In every other case the quotient repeats itself, the repeating part
sometimes commencing from the first figure, sometimes from a later

figure. Thus, ¹/₇ yields ·142857142857, &c., but ¹/₁₄ gives
·07(142857)(142857), &c., and ¹/₂₈ gives ·03(571428)(571428),
&c.

In m/b, the quotient always repeats from the very
beginning whenever b is a prime number and m is less
than b; and the number of figures in the repeating part is then
always b-1, or a measure of it. That it must be so, appears
from the above propositions.

Before proceeding farther, we write down the repeating part of a
quotient, with the remainders which are left after the several figures
are formed. Let the fraction be ¹/₁₇, we have

0₁₀5₁₅8₁₄8₄2₆3₉5₅2₁₆9₇4₂1₃1₁₃7₁₁6₈4₁₂7₁

This may be read thus: 10 by 17, quotient 0, remainder 10;
10² by 17, quotient 05, remainder 15; 10³ by 17, quotient 058, remainder 14; and
so on. It thus appears that 10¹⁶ by 17 leaves a remainder 1, which is
according to the theorem.

If we multiply 0588, &c. by any number under 17, the same
cycle is obtained with a different beginning. Thus, if we multiply by
13, we have

7647058823529411

beginning with what comes after remainder 13 in
the first number. If we multiply by 7, we have 4117, &c. The reason
is obvious: ¹/₁₇ × 13, or ¹³/₁₇, when turned into a decimal fraction,
starts with the divisor 130, and we proceed just as we do in forming
¹/₁₇, when within four figures of the close of the cycle.

It will also be seen, that in the last half of the cycle the quotient
figures are complements to 9 of those in the first half, and that the
remainders are complements to 17. Thus, in 0₁₀5₁₅8₁₄8₄, &c. and
9₇4₂1₃1₁₃, &c. we see 0 + 9 = 9, 5 + 4 = 9, 8 + 1 = 9, &c.,
and 10 + 7 = 17, 15 + 2 = 17, 14 + 3 = 17, &c. We may shew the
necessity of this as follows: If the remainder 1 never occur till we
come to use aᵇ⁻¹, then, b being prime, b-1 is
even; let it be 2k. Accordingly, a²ᵏ-1 is divisible by
b; but this is the product of aᵏ-1 and aᵏ + 1,
one of which must be divisible by b. It cannot be aᵏ - 1,
for then a power of a preceding the (b - 1)th would leave
remainder 1, which is not the case in our instance: it must then be
aᵏ + 1, so that aᵏ divided by b leaves a remainder

b-1; and the kth step concludes the first half of the process. Accordingly,
in our instance, we see, b being 17 and a being 10, that remainder 16
occurs at the 8th step of the process. At the next step, the remainder
is that yielded by 10(b-1), or 9b + b - 10, which gives the remainder b-10.
But the first remainder of all was 10, and 10 + (b - 10) = b. If ever this
complemental character occur in any step, it must continue, which we
shew as follows: Let r be a remainder, and b - r a subsequent remainder,
the sum being b. At the next step after the first remainder, we divide
10r by b, and, at the next step after the second remainder, we divide
10b - 10r by b. Now, since the sum of 10r and 10b - 10r is divisible
by b, the two remainders from these new steps must be such as added
together will give b, and so on; and the quotients added together must
give 9, for the sum of the remainders 10r and 10b - 10r yields a quotient
10, of which the two remainders give 1.

If ¹/₅₉ and ¹/₆₁ be taken, the repeating parts will be found
to contain 58 and 60 figures. Of these we write down only the first halves, as the
reader may supply the rest by the complemental property just given.

01694915254237288135593220338, &c.

016393442622950819672131147540, &c.

Here, then, are two numbers, the first of which multiplied
by any number under 59, and the second by any number under 61, can have the
products formed by carrying certain of the figures from one end to the other.

But, b being still prime, it may happen that remainder 1 may
occur before b - 1 figures are obtained; in which case, as
shewn, the number of figures must be a measure of b - 1. For
example, take ¹/₄₁. The repeating quotient, written as above, has only
5 figures, and 5 measures 41 - 1.

0₁₀2₁₈4₁₆3₃₇9₁

Now, this period, it will be found, has its figures merely
transposed, if we multiply by 10, 18, 16, or 37. But if we multiply by any other
number under 41, we convert this period into the period of another

fraction whose denominator is 41. The following are 8 periods which may
be found.



	0₁₀2₁₈4₁₆3₃₇9₁   
	1₉2₈1₃₉9₂₁5₅


	0₂₀4₃₆8₃₂7₃₃8₂
	1₁₉4₂₆6₁₄3₁₇4₆


	0₃₀7₁₃3₇1₂₉7₃
	2₂₈6₃₄8₁₂2₃₈9₁₁


	0₄₀9₈₁7₂₃5₂₅6₄
	3₂₇6₂₄5₃₅8₂₂5₁₅





To find m/41, look out for m among the remainders,
and take the period in which it is, beginning after the remainder. Thus,
³⁴/₄₁ is ·8292682926, &c., and ¹⁵/₄₁ is ·3658536585, &c.
These periods are complemental, four and four, as 02439 and 97560, 07317 and
92682, &c. And if the first number, 02439, be multiplied by any
number under 41, look for that number among the remainders, and the
product is found in the period of that remainder by beginning after the
remainder. Thus, 02439 multiplied by 23 gives 56097, and by 6 gives 14634.

The reader may try to decipher for himself how it is that, with no more
figures than the following, we can extend the result of our division.
The fraction of which the period is to be found is ¹/₈₇.


	87)100(01149425

	130

	430

	82001149425 × 25

	37028735625 × 25

	220718390625 × 25

	46017959765625 × 25

	25448994140625

	0114942528735625

	718390625

	1795976 5625

	448994

	0114942528735632183908045977|011494

	|





APPENDIX X.

ON COMBINATIONS.



There are some things connected with combinations which I place in an
appendix, because I intend to demonstrate them more briefly than the
matters in the text.


Suppose a number of boxes, say 4, in each of which there are counters,
say 5, 7, 3, and 11 severally. In how many ways can one counter be
taken out of each box, the order of going to the boxes not being
regarded. Answer, in 5 × 7 × 3 × 11 ways. For out of the first
box we may draw a counter in 5 different ways, and to each such drawing
we may annex a drawing from the second in 7 different ways—giving 5 ×
7 ways of making a drawing from the first two. To each of these we may
annex a drawing from the third box in 3 ways—giving 5 × 7 × 3 drawings
from the first three; and so on. The following statements may now be
easily demonstrated, and similar ones made as to other cases.

If the order of going to the boxes make a difference, and if a,
b, c, d be the numbers of counters in the several
boxes, there are 4 × 2 × 3 × 1 × a × b × c ×
d distinct ways. If we want to draw, say 2 out of the first box,
3 out of the second, 1 out of the third, and 3 out of the fourth, and
if the order of the boxes be not considered, the number of ways is



	a 
	 a -1 
	  ×  
	 b - 1 
	 
	 b - 2 
	 × c × d 
	 d - 1 
	 
	 d - 2 


	2
	2
	3
	2
	3





If the order of going to the boxes be considered,
we must multiply the preceding by 4 × 3 × 2 × 1. If the order of the
drawings out of the boxes makes a difference, but not the order of the
boxes, then the number of ways is

a(a-1)b(b-1)(b-2)cd(d-1)(d-2)

The nth power of a, or aⁿ, represents the number of
ways in which a counters differently marked can be
distributed in n boxes, order of placing them in each box not
being considered. Suppose we want to distribute 4 differently-marked
counters among 7 boxes. The first counter may go into either box,
which gives 7 ways; the second counter may go into either; and any of
the first 7 allotments may be combined with any one of the second 7,
giving 7 × 7 distinct ways; the third counter varies each of these in 7
different ways, giving 7 × 7 × 7 in all; and so on. But if the counters
be undistinguishable, the problem is a very different thing.

Required the number of ways in which a number can be compounded of

other numbers, different orders counting as different ways. Thus, 1 +
3 + 1 and 1 + 1 + 3 are to be considered as distinct ways of making 5.
It will be obvious, on a little examination, that each number can be
composed in exactly twice as many ways as the preceding number. Take
8 for instance. If every possible way of making 7 be written down, 8
may be made either by increasing the last component by a unit, or by
annexing a unit at the end. Thus, 1 + 3 + 2 + 1 may yield 1 + 3 + 2
+ 2, or 1 + 3 + 2 + 1 + 1: and all the ways of making 8 will thus be
obtained; for any way of making 8, say a + b + c
+ d, must proceed from the following mode of making 7, a
+ b + c + (d - 1). Now, (d - 1) is either
0—that is, d is unity and is struck out—or (d - 1)
remains, a number 1 less than d. Hence it follows that the
number of ways of making n is 2ⁿ⁻¹. For there is obviously 1 way
of making 1, 2 of making 2; then there must be, by our rule, 2² ways of
making 3, 2³ ways of making 4; and so on.



	 1 
	 
	 
	 
	 
	
	1 + 1 + 1 + 1


	 
	 
	
	1 + 1 + 1 
	1 + 1 + 2


	
	1 + 1 
	 
	1 + 2 + 1


	 
	1 + 2
	1 + 3


	 


	 
	
	2 + 1
	
	2 + 1 + 1


	2
	 
	2 + 2


	 
	 
	3
	3 + 1


	 
	4





This table exhibits the ways of making 1, 2, 3, and 4. Hence it follows
(which I leave the reader to investigate) that there are twice as many
ways of forming a + b as there are of forming a
and then annexing to it a formation of b; four times as many
ways of forming a + b + c as there are of annexing
to a formation of a formations of b and of c; and
so on. Also, in summing numbers which make up a + b,
there are ways in which a is a rest, and ways in which it is
not, and as many of one as of the other.

Required the number of ways in which a number can be compounded of
odd numbers, different orders counting as different ways. If a
be the number of ways in which n can be so made, and b
the number of ways in which n + 1 can be made, then a +
b must be the number of ways in which n + 2 can be made;
for every way of making 12 out of odd numbers is either a way of making

10 with the last number increased by 2, or a way of making 11 with a 1
annexed. Thus, 1 + 5 + 3 + 3 gives 12, formed from 1 + 5 + 3 + 1 giving
10. But 1 + 9 + 1 + 1 is formed from 1 + 9 + 1 giving 11. Consequently,
the number of ways of forming 12 is the sum of the number of ways of
forming 10 and of forming 11. Now, 1 can only be formed in 1 way, and 2
can only be formed in 1 way; hence 3 can only be formed in 1 + 1 or 2
ways, 4 in only 1 + 2 or 3 ways. If we take the series 1, 1, 2, 3, 5,
8, 13, 21, 34, 55, 89, &c. in which each number is the sum of the
two preceding, then the nth number of this set is the number of
ways (orders counting) in which n can be formed of odd numbers.
Thus, 10 can be formed in 55 ways, 11 in 89 ways, &c.

Shew that the number of ways in which mk can be made of numbers
divisible by m (orders counting) is 2ᵏ⁻¹.

In the two series, 1 1 1 2 3 4 6 9 13 19 28, &c.

   0 1 0 1 1 1 2 2   3   4   5, &c.,

the first has each new term after the third equal
to the sum of the last and last but two; the second has each new term
after the third equal to the sum of the last but one and last but two.
Shew that the nth number in the first is the number of ways in
which n can be made up of numbers which, divided by 3, leave a
remainder 1; and that the nth number in the second is the number
of ways in which n can be made up of numbers which, divided by
3, leave a remainder 2.

It is very easy to shew in how many ways a number can be made up of
a given number of numbers, if different orders count as different
ways. Suppose, for instance, we would know in how many ways 12 can
be thus made of 7 numbers. If we write down 12 units, there are 11
intervals between unit and unit. There is no way of making 12 out of 7
numbers which does not answer to distributing 6 partition-marks in the
intervals, 1 in each of 6, and collecting all the units which are not
separated by partition-marks. Thus, 1 + 1 + 3 + 2 + 1 + 2 + 2, which is
one way of making 12 out of 7 numbers, answers to



	 
	 
	 
	 
	 
	 
	 


	1 
	 1 
	 111 
	 11 
	 1 
	 11 
	 11


	 
	 
	 
	 
	 
	 
	 






in which the partition-marks come in the 1st, 2d, 5th, 7th, 8th, and
10th of the 11 intervals. Consequently, to ask in how many ways 12 can
be made of 7 numbers, is to ask in how many ways 6 partition-marks can
be placed in 11 intervals; or, how many combinations or selections can
be made of 6 out of 11. The answer is,



	11 × 10 × 9 × 8 × 7 × 6
	,  or 462.


	1 × 2 × 3 × 4 × 5 × 6





Let us denote by mₙ the number of ways in which m
things can be taken out of n things, so that mₙ is the
abbreviation for



	n × 
	n - 1
	 × 
	n - 2
	 ... as far as 
	n - m + 1


	2
	3
	m





Then mₙ also represents the number of ways
in which m + 1 numbers can be put together to make n + 1.
What we proved above is, that 6₁₁ is the number of ways in which we can
put together 7 numbers to make 12. There will now be no difficulty in
proving the following:

2ⁿ = 1 + 1ₙ + 2ₙ + 3ₙ ... + nₙ

In the preceding question, 0 did not enter into the list of numbers
used. Thus, 3 + 1 + 0 + 0 was not considered as one of the ways of
putting together four numbers to make 5. But let us now ask, what is
the number of ways of putting together 7 numbers to make 12, allowing
0 to be in the list of numbers. There can be no more (nor fewer)
ways of doing this than of putting 7 numbers together, among which 0
is not included, to make 19. Take every way of making 12 (0
included), and put on 1 to each number, and we get a way of making
19 (0 not included). Take any way of making 19 (0 not included), and
strike off 1 from each number, and we have one of the ways of making
12 (0 included). Accordingly, 6₁₈ is the number of ways of putting
together 7 numbers (0 being allowed) to make 12. And (m-
1)ₙ₊ₘ₋₁ is the number of ways of putting together m numbers to
make n, 0 being included.

This last amounts to the solution of the following: In how many
ways can n counters (undistinguishable from each other) be
distributed into m boxes? And the following will now be easily
proved: The number of ways of distributing c undistinguishable

counters into b boxes is (b - 1)b + c -
1, if any box or boxes may be left empty. But if there must be 1 at
least in each box, the number of ways is (b - 1)c - 1;
if there must be 2 at least in each box, it is (b - 1)c-
b-1; if there must be 3 at least in each box, it is
(b - 1)c - 2b - 1; and so on.

The number of ways in which m odd numbers can be put together to
make n, is the same as the number of ways in which m even
numbers (0 included) can be put together to make n-m;
and this is the number of ways in which m numbers (odd or
even, 0 included) can be put together to make ½(n-m).
Accordingly, the number of ways in which m odd numbers can be put
together to make n is the same as the number of combinations of
m-1 things out of ½(n-m) + m-1, or
½(n + m)-1. Unless n and m be both even
or both odd, the problem is evidently impossible.

There are curious and useful relations existing between numbers of
combinations, some of which may readily be exhibited, under the simple
expression of mₙ to stand for the number of ways in which
m things may be taken out of n. Suppose we have to take
5 out of 12: Let the 12 things be marked a, b, c, &c. and
set apart one of them, a. Every collection of 5 out of the 12
either does or does not include a. The number of the latter
sort must be 5₁₁; the number of the former sort must be 4₁₁, since it
is the number of ways in which the other four can be chosen out
of all but a. Consequently, 5₁₂ must be 5₁₁ + 4₁₁, and thus we
prove in every case,

mₙ′ = mₙ₋₁ + (m - 1)ₙ₋₁

0ₙ and nₙ both are 1; for there is but one way of taking
none, and but one way of taking all. And again mₙ
and (n-m)ₙ are the same things. And if m be
greater than n, mₙ is 0; for there are no ways of doing
it. We make one of our preceding results more symmetrical if we write
it thus,

2ⁿ = 0ₙ + 1ₙ + 2ₙ + ... + nₙ

If we now write down the table of symbols in which the (m + 1)th




	 
	0
	1
	2
	3
	&c.


	1
	0₁
	1₁
	2₁
	3₁,
	&c.


	2
	0₂
	1₂
	2₂
	3₂,
	&c.


	3
	0₃
	1₃
	2₃
	3₃,
	&c.


	&c. 
	&c.
	&c.
	&c.
	&c.
	 





number of the nth row represents mₙ,
the number of combinations of m out of n, we see it
proved above that the law of formation of this table is as follows:
Each number is to be the sum of the number above it and the number
preceding the number above it. Now, the first row must be 1, 1, 0, 0,
0, &c. and the first column must be 1, 1, 1, 1, &c. so that we
have a table of the following kind, which may be carried as far as we please:



	 
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10


	1 
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0


	2 
	1
	2
	1
	0
	0
	0
	0
	0
	0
	0
	0


	3 
	1
	3
	3
	1
	0
	0
	0
	0
	0
	0
	0


	4 
	1
	4
	6
	4
	1
	0
	0
	0
	0
	0
	0


	5 
	1
	5
	10
	10
	5
	1
	0
	0
	0
	0
	0


	6 
	1
	6
	15
	20
	15
	6
	1
	0
	0
	0
	0


	7 
	1
	7
	21
	35
	35
	21
	7
	1
	0
	0
	0


	8 
	1
	8
	28
	56
	70
	56
	28
	8
	1
	0
	0


	9 
	1
	9
	36
	84
	126
	126
	84
	36
	9
	1
	0


	10 
	1
	10
	45
	120
	210
	252
	210
	120
	45
	10
	1





Thus, in the row 9, under the column headed 4, we see 126, which is 9
× 8 × 7 × 6 ÷ (1 × 2 × 3 × 4), the number of ways in which 4 can be
chosen out of 9, which we represent by 4-{9}.

If we add the several rows, we have 1 + 1 or 2, 1 + 2 + 1 or 2², next
1 + 3 + 3 + 1 or 2³, &c. which verify a theorem already announced; and
the law of formation shews us that the several columns are formed thus:



	1 1   
	   
	1 2 1   
	   
	1 3 3 1   
	 


	1 1
	 
	1 2 1
	 
	1 3 3 1
	 


	1 2 1
	 
	1 3 3 1
	 
	1 4 6 4 1
	, &c.





so that the sum in each row must be double of the sum in
the preceding. But we can carry the consequences of this mode of formation
further. If we make the powers of 1 + x by actual algebraical

multiplication, we see that the process makes the same oblique addition in
the formation of the numerical multipliers of the powers of x.


	1 + x

	1 + x

	1 + x

	x + x²

	 1 + 2x + x²

	 

	1 + 2x +   x²

	1 +    x

	 1 + 2x +    x²

	x + 2x² + x³

	 1 + 3x + 3x² + x³



Here are the second and third powers of 1 + x:
the fourth, we can tell beforehand from the table, must be
1 + 4x + 6x² + 4x³ + x⁴; and so on.
Hence we have

(1 + x)ⁿ = 0ₙ + 1ₙx + 2ₙx²
                           + 3ₙx³ + ... + nₙxⁿ

which is usually written with the symbols 0ₙ, 1ₙ, &c.
at length, thus,



	(1 + x)ⁿ = 1 + nx + n 
	n - 1
	 x² + n 
	n - 1
	 
	n - 2
	 x³ + &c.


	2
	2
	3





This is the simplest case of what in algebra is
called the binomial theorem. If instead of 1 + x we use
x + a, we get

(x + a)ⁿ = xⁿ + 1ₙaxⁿ⁻¹ + 2ₙa²xⁿ⁻² + 3ₙa³xⁿ⁻³ + ... + nₙaⁿ

We can make the same table in another form. If we
take a row of ciphers beginning with unity, and setting down the first,
add the next, and then the next, and so on, and then repeat the process
with one step less, and then again with one step less, we have the following:



	 1 
	 0 
	 0 
	 0 
	 0 
	 0 
	 0 


	1
	1
	1
	1
	1
	1
	1


	1
	2
	3
	4
	5
	6
	 


	1
	3
	6
	10 
	15 
	 


	1
	4
	10 
	20 
	 


	1
	5
	15 
	 


	1
	6
	 


	1
	 





In the oblique columns we see 1 1, 1 2 1, 1 3 3
1, &c. the same as in the original table, and formed by the same

additions. If, before making the additions, we had always multiplied by
a, we should have got the several components of the powers of
1 + a, thus,



	 1 
	 0
	 0
	 0
	 0


	1
	 a
	 a²
	 a³
	a⁴


	1
	2a
	3a²
	4a³
	 


	1
	3a
	6a²
	 


	1
	4a
	 


	1
	 





where the oblique columns 1 + a, 1 + 2a + a²,
1 + 3a + 3a² + a³, &c., give the several powers
of 1 + a. If instead of beginning with 1, 0, 0, &c. we
had begun with p, 0, 0, &c. we should have got p,
p × 4a, p × 6a², &c. at the bottom
of the several columns; and if we had written at the top x⁴,
x³, x², x, 1, we should have had all the materials
for forming p(x + a)⁴ by multiplying the terms at
the top and bottom of each column together, and adding the results.

Suppose we follow this mode of forming p(x + a)³
+ q(x + a)² + r(x + a) + s.



	x³
	x²
	x
	1
	  
	x²
	x
	1
	  
	x
	1
	  
	1


	p
	0
	0
	0
	q
	0
	0
	r
	0
	1


	p 
	pa
	pa²
	pa³
	q
	qa
	qa²
	r
	ra


	p
	2pa
	3pa²
	 
	q
	2qa
	 
	r
	 
	 


	p
	3pa
	 
	 
	q
	 
	 
	 
	 
	 
	 


	p
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 





px³ + 3pax² + 3pa²x + pa³
           + qx² + 2qax + qa² + rx + ra + s

= px³ + (3pa + q)x² + (3pa²
      + 2qa + r)x + pa³ + qa² + ra + s

Now, observe that all this might be done in one process, by entering
q, r, and s under their proper powers of x
in the first process, as follows



	x³
	x²
	  
	x
	  
	1


	p
	q
	r
	s


	p
	pa + q
	pa² + qa + r
	pa³ + qa² + ra + s


	p
	2pa + q
	3pa² + 2qa + r
	 


	p
	3pa + q
	 
	 


	p
	 
	 
	 






This process[65]
is the one used in Appendix XI., with the slight
alteration of varying the sign of the last letter, and making
subtractions instead of additions in the last column. As it stands, it
is the most convenient mode of writing x + a instead of
x in a large class of algebraical expressions. For instance,
what does 2x⁵ + x⁴ + 3x² + 7x + 9 become
when x + 5 is written instead of x? The expression, made
complete, is,



	2x⁵ +
	1x⁴ +
	0x³ +
	3x² +
	7x +
	9


	   
	1
	0
	3
	7
	9


	2
	11
	55
	278
	1397
	6994


	2
	21
	160
	1078
	6787
	 


	2
	31
	315
	2653
	 
	 


	2
	41
	520
	 
	 
	 


	2
	51
	 
	 
	 
	 





Answer, 2x⁵ + 51x⁴ + 520x³
           + 2653x² + 6787x + 6994.



APPENDIX XI.

ON HORNER’S METHOD OF SOLVING EQUATIONS.



The rule given in this chapter is inserted on account of its excellence
as an exercise in computation. The examples chosen will require but
little use of algebraical signs, that they may be understood by those
who know no more of algebra than is contained in the present work.

To solve an equation such as

2x⁴ + x² - 3x = 416793,

or, as it is usually written,

2x⁴ + x² - 3x - 416793 = 0,

we must first ascertain by trial not only the first figure of
the root, but also the denomination of it: if it be a 2, for instance, we must
know whether it be 2, or 20, or 200, &c., or ·2, or ·02, or ·002, &c.

This must be found by trial; and the shortest way of making the
trial is as follows: Write the expression in its complete form. In the
preceding case the form is not complete, and the complete form is

2x⁴ + 0x³ + 1x² - 3x - 416793.

To find what this is when x is any number, for
instance, 3000, the best way is to take the first multiplier (2),
multiply it by 3000, and take in the next multiplier (0), multiply the
result by 3000, and take in the next multiplier (1), and so on to the
end, as follows:

2 × 3000 + 0 = 6000;    6000 × 3000 + 1 = 18000001

18000001 × 3000 - 3 = 54000002997

54000002997 × 3000 - 416793 = 162000008574207

Now try the value of the above when x = 30. We have then, for
the steps, 60 (2 × 30 + 0), 1801, 54027, and lastly,

1620810 - 416793,

or x = 30 makes the first terms greater than 416793. Now try
x = 20 which gives 40, 801, 16017, and lastly,

320340 - 416793,

or x = 20 makes the first terms less than 416793. Between 20
and 30, then, must be a value of x which makes 2x⁴ +
x²-3x equal to 416793. And this is the preliminary step of the
process.

Having got thus far, write down the coefficients +2, 0, +1,-3, and
-416793, each with its proper algebraical sign, except the last, in
which let the sign be changed. This is the most convenient way when the
last sign is-. But if the last sign be +, it may be more convenient
to let it stand, and change all which come before. Thus, in solving
x³-12x + 1 = 0, we might write

-1  0  +12  1

whereas in the instance before us, we write

+2  0  +1  -3  416793

Having done this, take the highest figure of the root, properly
named, which is 2 tens, or 20. Begin with the first column, multiply by 20,

and join it to the number in the next column; multiply that by 20,
and join it to the number in the next column; and so on. But when you
come to the last column, subtract the product which comes out of the
preceding column, or join it to the last column after changing its
sign. When this has been done, repeat the process with the numbers
which now stand in the columns, omitting the last, that is, the
subtracting step; then repeat it again, going only as far as the last
column but two, and so on, until the columns present a set of rows of
the following appearance:



	a
	b
	c
	d
	e


	 
	f
	g
	h
	i


	k
	l
	m
	 


	n
	o
	 


	p
	 





to the formation of which the following is the key:


	f = 20a + b,

	g = 20f + c,

	h = 20g + d,

	i =   e - 20h,

	k = 20a + f,

	l = 20k + g,

	m = 20l + h,

	n = 20a + k,

	o = 20n + l,

	p = 20a + n.



We call this Horner’s Process, from the name of its inventor. The
result is as follows:



	2
	0
	1
	-3
	416793
	(20


	 
	40
	801
	16017
	96453
	 


	80
	2401
	64037
	 


	120
	4801
	 


	160
	 





We have now before us the row

2   160   4801   64037    96453

which furnishes our means of guessing at the next, or units’ figure of
the root.

Call the last column the dividend, the last but one the
divisor, and all that come before antecedents. See how
often the dividend contains the divisor; this gives the guess at the

next figure. The guess is a true one,[66]
if, on applying Horner’s process, the divisor result, augmented as it
is by the antecedent processes, still go as many times in the dividend.
For example, in the case before us, 96453 contains 64037 once; let 1 be
put on its trial. Horner’s process is found to succeed, and we have for
the second process,



	2
	160
	4801
	64037
	96453


	 
	162
	4963
	69000
	27453


	164
	5127
	74127
	 


	166
	5293
	 


	168
	 





As soon as we come to the fractional portion of the root,
the process assumes a more[67]
methodical form.

The equation being of the fourth degree, annex four
ciphers to the dividend, three to the divisor, two to
the antecedent, and one to the previous antecedent, leaving the
first column as it is; then find the new figure by the dividend and
divisor, as before,[68]
and apply Horner’s process. Annex ciphers to the results, as before,
and proceed in the same way. The annexing of the ciphers prevents our
having any thing to do with decimal points, and enables us to use the
quotient-figures without paying any attention to their local
values. The following exhibits the whole process from the beginning,
carried as far as it is here intended to go before beginning the
contraction, which will give more figures, as in the rule for the square
root. The following, then, is the process as far as one decimal place:




	2
	0
	1
	-3
	416793(213


	 
	40
	801
	16017
	 96453


	80
	2401
	64037
	274530000


	120
	4801
	69000
	47339778


	160
	4963
	74127000
	 


	162
	5127
	75730074
	 


	164
	529300
	77348376
	 


	166
	534358
	 


	1680
	539434
	 


	1686
	544528
	 


	1692
	 


	1698
	 


	1704
	 





If we now begin the contraction, it is good to know beforehand on
what number of additional root-figures we may reckon. We may be
pretty certain of having nearly as many as there are figures in the
divisor when we begin to contract—one less, or at least two less.
Thus, there being now eight figures in the divisor, we may conclude
that the contraction will give us at least six more figures. To begin
the contraction, let the dividend stand, cut off one figure from the
divisor, two from the column before that, three from the one before
that, and so on. Thus, our contraction begins with



	 
	 
	 
	 
	 
	 
	 
	 
	 


	 
	0002  
	1
	704  
	5445
	28  
	7734837
	6  
	47339778


	 
	 
	 
	 
	 
	 
	 
	 
	 





The first column is rendered quite useless here.
Conduct the process as before, using only the figures which are not
cut off. But it will be better to go as far as the first figure cut off,
carrying from the second figure cut off. We shall then have as follows:



	 
	 
	 
	 
	 
	 
	 


	1
	704  
	5445
	28  
	7734837
	6  
	47339778(6


	 
	 
	5445
	5
	7767570
	6
	734354


	 
	5465
	7
	7800364
	8
	 


	 
	5475
	9
	 
	 


	 
	 
	 





At the next contraction the column 1|704 becomes
|001704, and is quite useless. The next step, separately written (which
is not, however, necessary in working), is




	 
	 
	 
	 
	 


	54
	759  
	780036
	48  
	734354(0


	 
	 
	 
	 
	 





Here the dividend 734354 does not contain the
divisor 780036, and we, therefore, write 0 as a root figure and make
another contraction, or begin with



	 
	 
	 
	 
	 


	 
	54759  
	78003
	648  
	734354(9


	 
	 
	78008
	5  
	32277  


	 
	 
	78013
	4
	 


	 
	 
	 
	 
	 





At the next contraction the first column becomes
|0054759, and is quite useless, so that the remainder of the process is
the contracted division.



	 
	 


	7801
	34)
	32277
	(4137


	 
	 
	1072
	 


	 
	292
	 


	 
	58
	 


	 
	3
	 





and the root required is 21·36094137.

I now write down the complete process for another equation, one
root of which lies between 3 and 4: it is

x³ - 10x + 1 = 0



	1  
	 0 
	 
	-10
	 
	-1(3·111039052073099
	0796


	 
	3
	 
	-1
	 
	 
	 2000
	 


	6
	 
	 1700
	 
	  209000


	9
	0
	 
	 
	 1791
	 
	   19769000


	9
	1
	 
	 
	 188300
	 
	743369000000   


	9
	2
	 
	 
	 189231
	 
	172311710273000


	9
	30
	 
	 
	 19016300
	 
	991247447681


	9
	31
	 
	 
	 19025631
	 
	39462875420


	9
	32
	 
	 
	 1903496300
	 0 
	 0 
	 
	 
	1391491559


	9
	33
	0
	 
	 1903524299
	0
	9
	 
	 
	58993123


	9
	33
	1
	 
	 1903552298
	2
	7
	 0 
	 0 
	1886047


	9
	33
	2
	 
	 1903560698
	0
	5
	9
	1
	172835


	9
	33
	30
	 0
	 1903569097
	8
	5
	6
	3
	1515


	9
	33
	30
	 3
	 1903569144
	5
	2
	2
	 
	183


	9
	33
	30
	 6
	 1903569191
	1
	8
	8
	 
	12


	9
	33
	30
	90
	 1903569193
	0
	6
	 
	 
	1


	9
	33
	30
	99
	 1903569194
	9
	3
	 


	9
	33
	31
	08
	 
	 
	 
	 


	 
	09 
	33
	31
	17
	 


	 
	 
	 
	 
	 





The student need not repeat the rows of figures so
far as they come under one another: thus, it is not necessary to repeat
190356. But he must use his own discretion as to how much it would be safe
for him to omit. I have set down the whole process here as a guide.


The following examples will serve for exercise:


	1. 2x³ - 100x - 7 = 0

	x = 7·10581133.

	2. x⁴ + x³ + x² + x = 6000

	x = 8·531437726.

	3. x³ + 3x² - 4x - 10 = 0

	x = 1·895694916504.

	4. x³ + 100x² - 5x - 2173 = 0

	x = 4·582246071058464.

	   _

	5. ∛2 = 1·259921049894873164767210607278.[69]

	6. x³ - 6x = 100

	x = 5·071351748731.

	7. x³ + 2x² + 3x = 300

	x = 5·95525967122398.

	8. x³ + x = 1000

	x = 9·96666679.

	9. 27000x³ + 27000x = 26999999

	x = 9·9666666.....

	10. x³ - 6x = 100

	x = 5·0713517487.

	11. x⁵ - 4x⁴ + 7x³ - 863 = 0

	x = 4·5195507.

	12. x³ - 20x + 8 = 0

	x = 4·66003769300087278.

	13. x³ + x² + x - 10 = 0

	x = 1·737370233.

	14. x³ - 46x² - 36x + 18 = 0

	x = 46·7616301847,

	or x = ·3471623192.

	15. x³ + 46x² - 36x - 18 = 0

	x = 1·1087925037.

	16. 8991x³ - 162838x² + 746271x - 81000 = 0

	x = ·111222333444555....

	17. 729x³ - 486x² + 99x - 6 = 0

	x = ·1111..., or ·2222..., or ·3333....

	18. 2x³ + 3x² - 4x = 500

	x = 5·93481796231515279.

	19. x³ + 2x² + x - 150 = 0

	x = 4·6684090145541983253742991201705899.

	20. x³ + x = x² + 500

	x = 8·240963558144858526963.

	21. x³ + 2x² + 3x - 10000 = 0

	x = 20·852905526009.

	22. x⁵ - 4x - 2000 = 0

	x = 4·581400362.

	23. 10x³ - 33x² - 11x - 100 = 0

	x = 4·146797808584278785.

	24. x⁴ + x³ + x² + x = 127694

	x = 18·64482373095.

	25. 10x³ + 11x² + 12x = 100000

	x = 21·1655995554508805.

	26. x³ + x = 13

	x = 2·209753301208849.

	27. x³ + x² - 4x - 1600 = 0

	x = 11·482837157.

	28. x³ - 2x = 5

	x = 2·094551481542326591482386540579302963857306105628239.

	29. x⁴ - 80x³ + 24x² - 6x - 80379639 = 0

	x = 123.[70]

	30. x³ - 242x² - 6315x + 2577096 = 0

	x = 123.[71]

	31. 2x⁴ - 3x³ + 6x - 8 = 0

	x = 1·414213562373095048803.[72]

	32. x⁴ - 19x³ + 132x² - 302x + 200 = 0

	x = 1·02804, or 4, or 6·57653, or 7·39543[73].

	33. 7x⁴ - 11x³ + 6x² + 5x = 215

	x = 2·70648049385791.[74]

	34. 7x⁵ + 6x⁴ + 5x³ + 4x² + 3x = 11

	x = ·770768819622658522379296505.[75]

	35. 4x⁶ + 7x⁵ + 9x⁴ + 6x³ + 5x² + 3x = 792

	x = 2·052042176879605365214043401281201973460275599545541724214.[76]

	36. 2187x⁴ - 2430x³ + 945x² - 150x + 8 = 0

	x = ·1111...., or ·2222...., or ·3333...., or ·4444....







APPENDIX XII.

RULES FOR THE APPLICATION OF
 ARITHMETIC TO GEOMETRY.



The student should make himself familiar with the most common terms of
geometry, after which the following rules will present no difficulty.
In them all, it must be understood, that when we talk of multiplying
one line by another, we mean the repetition of one line as often as
there are units of a given kind, as feet or inches, in another. In any
other sense, it is absurd to talk of multiplying a quantity by another
quantity. All quantities of the same kind should be represented in
numbers of the same unit; thus, all the lines should be either feet
and decimals of a foot, or inches and decimals of an inch, &c. And
in whatever unit a length is represented, a surface is expressed in
the corresponding square units, and a solid in the corresponding cubic
units. This being understood, the rules apply to all sorts of units.

To find the area of a rectangle. Multiply together the units in

two sides which meet, or multiply together two sides which meet; the
product is the number of square units in the area. Thus, if 6 feet and
5 feet be the sides, the area is 6 × 5, or 30 square feet. Similarly,
the area of a square of 6 feet long is 6 × 6, or 36 square feet (234).

To find the area of a parallelogram. Multiply one side by the
perpendicular distance between it and the opposite side; the product is
the area required in square units.

To find the area of a trapezium.[77]
Multiply either of the two sides which are not parallel by the perpendicular
let fall upon it from the middle point of the other.

To find the area of a triangle. Multiply any side by the
perpendicular let fall upon it from the opposite vertex, and take half
the product. Or, halve the sum of the three sides, subtract the three
sides severally from this half sum, multiply the four results together,
and find the square root of the product. The result is the number of
square units in the area; and twice this, divided by either side, is
the perpendicular distance of that side from its opposite vertex.

To find the radius of the internal circle which touches the three
sides of a triangle. Divide the area, found in the last paragraph,
by half the sum of the sides.

Given the two sides of a right-angled triangle, to find the
hypothenuse. Add the squares of the sides, and extract the square
root of the sum.

Given the hypothenuse and one of the sides, to find the other
side. Multiply the sum of the given lines by their difference, and
extract the square root of the product.

To find the circumference of a circle from its radius, very
nearly. Multiply twice the radius, or the diameter, by 3·1415927,
taking as many decimal places as may be thought necessary. For a
rough computation, multiply by 22 and divide by 7. For a very exact
computation, in which decimals shall be avoided, multiply by 355 and
divide by 113. See (131), last example.

To find the arc of a circular sector, very nearly, knowing the

radius and the angle. Turn the angle into seconds,[78]
multiply by the radius, and divide the product by 206265. The result
will be the number of units in the arc.

To find the area of a circle from its radius, very nearly.
Multiply the square of the radius by 3·1415927.

To find the area of a sector, very nearly, knowing the radius and
the angle. Turn the angle into seconds, multiply by the square of
the radius, and divide by 206265 × 2, or 412530.

To find the solid content of a rectangular parallelopiped.
Multiply together three sides which meet: the result is the number of
cubic units required. If the figure be not rectangular, multiply the
area of one of its planes by the perpendicular distance between it and
its opposite plane.

To find the solid content of a pyramid. Multiply the area of the
base by the perpendicular let fall from the vertex upon the base, and
divide by 3.

To find the solid content of a prism. Multiply the area of the
base by the perpendicular distance between the opposite bases.

To find the surface of a sphere. Multiply 4 times the square of
the radius by 3·1415927.

To find the solid content of a sphere. Multiply the cube of the
radius by 3·1415927 × ⁴/₃, or 4·18879.

To find the surface of a right cone. Take half the product of
the circumference of the base and slanting side. To find the solid
content, take one-third of the product of the base and the altitude.

To find the surface of a right cylinder. Multiply the
circumference of the base by the altitude. To find the solid
content, multiply the area of the base by the altitude.

The weight of a body may be found, when its solid content is known, if
the weight of one cubic inch or foot of the body be known. But it is

usual to form tables, not of the weights of a cubic unit of different
bodies, but of the proportion which these weights bear to some one
amongst them. The one chosen is usually distilled water, and the
proportion just mentioned is called the specific gravity. Thus,
the specific gravity of gold is 19·362, or a cubic foot of gold is
19·362 times as heavy as a cubic foot of distilled water. Suppose now
the weight of a sphere of gold is required, whose radius is 4 inches.
The content of this sphere is 4 × 4 × 4 × 4·1888, or 268·0832 cubic
inches; and since, by (217), each cubic inch of water weighs 252·458
grains, each cubic inch of gold weighs 252·458 × 19·362, or 4888·091
grains; so that 268·0832 cubic inches of gold weigh 268·0832 × 4888·091
grains, or 227½ pounds troy nearly. Tables of specific gravities may be
found in most works of chemistry and practical mechanics.

The cubic foot of water is 908·8488 troy ounces, 75·7374 troy pounds,
997·1369691 averdupois ounces, and 62·3210606 averdupois pounds. For
all rough purposes it will do to consider the cubic foot of water as
being 1000 common ounces, which reduces tables of specific gravities
to common terms in an obvious way. Thus, when we read of a substance
which has the specific gravity 4·1172, we may take it that a cubic foot
of the substance weighs 4117 ounces. For greater correctness, diminish
this result by 3 parts out of a thousand.

THE END.
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Footnotes:


[1]
Some separate copies of these Appendixes are printed, for
those who may desire to add them to the former editions.




[2]
It has been supposed that eleven and twelve
are derived from the Saxon for one left and two left
(meaning, after ten is removed); but there seems better reason to
think that leven is a word meaning ten, and connected with decem.




[3]
The references are to the preceding articles.




[4]
Any little computations which occur in the rest of this
section may be made on the fingers, or with counters.




[5]
This should be (23) a × a, but the sign ×
is unnecessary here. It is used with numbers, as in 2 × 7, to
prevent confounding this, which is 14, with 27.




[6]
In this and all other processes, the student is strongly
recommended to look at and follow the first Appendix.




[7]
Those numbers which have been altered are put in italics.




[8]
As it is usual to learn the product of numbers up to 12 times 12, I
have extended the table thus far. In my opinion, all pupils who shew a
tolerable capacity should slowly commit the products to memory as far
as 20 times 20, in the course of their progress through this work.




[9]
To speak always in the same way, instead of saying that
6 does not contain 13, I say that it contains it 0 times and 6 over,
which is merely saying that 6 is 6 more than nothing.




[10] If you
have any doubt as to this expression, recollect that it means “contains
more than two eighteens, but not so much as three.”




[11]
Among the even figures we include 0.




[12]
Including both ciphers and others.




[13]
For shortness, I abbreviate the words greatest common
measure into their initial letters, g. c. m.




[14]
Numbers which contain an exact number of units, such as 5,
7, 100, &c., are called whole numbers or integers,
when we wish to distinguish them from fractions.




[15]
A factor of a number is a number which divides it without
remainder: thus, 4, 6, 8, are factors of 24, and 6 × 4, 8 × 3,
2 × 2 × 2 × 3, are several ways of decomposing 24 into factors.




[16]
The method of solving this and the following question may be shewn
thus: If the number of days in which each could reap the field is
given, the part which each could do in a day by himself can be found,
and thence the part which all could do together; this being known, the
number of days which it would take all to do the whole can be found.




[17]
A formula is a name given to any algebraical expression
which is commonly used.




[18]
Or remove ciphers from the divisor; or make up the number
of ciphers partly by removing from the divisor and annexing to the
dividend, if there be not a sufficient number in the divisor.




[19]
These are not quite correct, but sufficiently so for every
practical purpose.




[20]
The 1′ here means that the 1 is in the multiplier.




[21]
This is written 7 instead of 6, because the figure which
is abandoned in the dividend is 9 (151).




[22]
Meaning, of course, a really fractional number, such as
⅞ or ¹⁵/₁₁, not one which, though fractional in form, is whole in
reality, such as ¹⁰/₅ or ²⁷/₃.




[23]
By square number I mean, a number which has a square root.
Thus, 25 is a square number, but 26 is not.




[24]
The term ‘root’ is frequently used as an abbreviation of square root.




[25]
Or, more simply, add the second figure of the root to the first divisor.




[26]
This is a very incorrect name, since the term ‘arithmetical’ applies
equally to every notion in this book. It is necessary, however, that
the pupil should use words in the sense in which they will be used in
his succeeding studies.




[27]
The same remark may be made here as was made in the note
on the term ‘arithmetical proportion,’ page 101. The word ‘geometrical’
is, generally speaking, dropped, except when we wish to distinguish
between this kind of proportion and that which has been called arithmetical.




[28]
A theorem is a general mathematical fact: thus, that every
number is divisible by four when its last two figures are divisible
by four, is a theorem; that in every proportion the product of the
extremes is equal to the product of the means, is another.




[29]
If bx be substituted for a in any expression
which is homogeneous with respect to a and b, the pupil
may easily see that b must occur in every term as often as
there are units in the degree of the expression: thus, aa +
ab becomes bxbx + bxb or bb(xx +
x); aaa + bbb becomes bxbxbx + bbb
or bbb(xxx + 1); and so on.




[30]
The difference between this problem and the last is left
to the ingenuity of the pupil.




[31]
It is not true, that if we choose any quantity as a
unit, any other quantity of the same kind can be exactly
represented either by a certain number of units, or of parts of a
unit. To understand how this is proved, the pupil would require more
knowledge than he can be supposed to have; but we can shew him that,
for any thing he knows to the contrary, there may be quantities which
are neither units nor parts of the unit. Take a mathematical line of
one foot in length, divide it into ten parts, each of those parts into
ten parts, and so on continually. If a point A be taken at hazard in
the line, it does not appear self-evident that if the decimal division
be continued ever so far, one of the points of division must at last
fall exactly on A: neither would the same appear necessarily true if
the division were made into sevenths, or elevenths, or in any other
way. There may then possibly be a part of a foot which is no exact
numerical fraction whatever of the foot; and this, in a higher branch
of mathematics, is found to be the case times without number. What is
meant in the words on which this note is written, is, that any part
of a foot can be represented as nearly as we please by a numerical
fraction of it; and this is sufficient for practical purposes.




[32]
Since this was first written, the accident has happened.
The standard yard was so injured as to be rendered useless by
the fire at the Houses of Parliament.




[33]
The minute and second are often marked thus, 1′, 1″: but
this notation is now almost entirely appropriated to the minute and
second of angular measure.




[34]
The measures in italics are those which it is most
necessary that the student should learn by heart.




[35]
The lengths of the pendulums which will vibrate in one
second are slightly different in different latitudes. Greenwich is
chosen as the station of the Royal Observatory. We may add, that much
doubt is now entertained as to the system of standards derived from
nature being capable of that extreme accuracy which was once attributed
to it.




[36]
The inch is said to have been originally obtained by
putting together three grains of barley.




[37]
‘Capacity’ is a term which cannot be better explained than
by its use. When one measure holds more than another, it is said to be
more capacious, or to have a greater capacity.




[38]
This measure, and those which follow, are used for dry goods only.




[39]
Since the publication of the third edition, the heaped measure,
which was part of the new system, has been abolished. The following
paragraph from the third edition will serve for reference to it:

“The other imperial measure is applied to goods which it is customary
to sell by heaped measure, and is as follows:



	2 gallons
	1 peck


	4 pecks
	1 bushel


	3 bushels
	1 sack


	12 sacks
	1 chaldron.





The gallon and bushel in this measure hold the same when only just
filled, as in the last. The bushel, however, heaped up as directed by the
act of parliament, is a little more than one-fourth greater than before.”




[40]
Pure water, cleared from foreign substances by
distillation, at a temperature of 62° Fahr.




[41]
It is more common to divide the ounce into four quarters
than into sixteen drams.




[42]
The English pound is generally called a pound sterling, which
distinguishes it from the weight called a pound, and also from foreign coins.




[43]
The coin called a guinea is now no longer in use, but the
name is still given, from custom, to 21 shillings. The pound, which was
not a coin, but a note promising to pay 20 shillings to the bearer, is
also disused for the present, and the sovereign supplies its place; but
the name pound is still given to 20 shillings.




[44]
Farthings are never written but as parts of a penny.
Thus, three farthings being ¾ of a penny, is written ¾, or ¾. One
halfpenny may be written either as 2/4 or ½; the latter is most common.




[45]
When a decimal follows a whole number, the decimal is
always of the same unit as the whole number. Thus, 5ᔆ·5 is five
seconds and five-tenths of a second. Thus, 0ᔆ·5 means
five-tenths of a second; 0ʰ·3, three-tenths of an hour.




[46]
Before reading this article and the next, articles (29)
and (42) should be read again carefully.




[47]
Any fraction of a unit, whose numerator is unity, is
generally called an aliquot part of that unit. Thus, 2s.
and 10s. are both aliquot parts of a pound, being £⅒ and £½.




[48]
A parallelepiped, or more properly, a rectangular
parallelepiped, is a figure of the form of a brick; its sides, however,
may be of any length; thus, the figure of a plank has the same name. A
cube is a parallelepiped with equal sides, such as is a die.




[49]
This generally comes in the same member of the sentence.
In some cases the ingenuity of the student must be employed in
detecting it. The reasoning of (238) is the best guide. The following
may be very often applied. If it be evident that the answer must be
less than the given quantity of its kind, multiply that given quantity
by the less of the other two; if greater, by the greater. Thus, in the
first question, 156 yards must cost more than 22; multiply, therefore, by 156.




[50]
It is usual to place points, in the manner here shewn,
between the quantities. Those who have read Section VIII. will see that
the Rule of Three is no more than the process for finding the fourth
term of a proportion from the other three.




[51]
Commission is what is allowed by one merchant to another
for buying or selling goods for him, and is usually a per-centage
on the whole sum employed. Brokerage is an allowance similar to
commission, under a different name, principally used in the buying and
selling of stock in the funds.

Insurance is a per-centage paid to those who engage to make good to the
payers any loss they may sustain by accidents from fire, or storms,
according to the agreement, up to a certain amount which is named,
and is a per-centage upon this amount. Tare, tret, and cloff, are
allowances made in selling goods by wholesale, for the weight of the
boxes or barrels which contain them, waste, &c.; and are usually either
the price of a certain number of pounds of the goods for each box or
barrel, or a certain allowance on each cwt.




[52]
Here the 4s. from the dividend is taken in.




[53]
Here the 3d. from the dividend is taken in.




[54]
Sufficient tables for all common purposes are contained in the article
on Interest in the Penny Cyclopædia; and ample ones in the Treatise on
Annuities and Reversions, in the Library of Useful Knowledge.




[55]
This rule is obsolete in business. When a bill, for instance, of £100
having a year to run, is discounted (as people now say) at 5 per
cent, this means that 5 per cent of £100, or £5, is struck off.




[56]
This question does not at first appear to fall under the
rule. A little thought will serve to shew that what probably will be
the first idea of the proper method of solution is erroneous.




[57]
The teacher will find further remarks on this subject in
the Companion to the Almanac for 1844, and in the Supplement
to the Penny Cyclopædia, article Computation.




[58]
And at discretion one hundredth more for a large fraction
of three inches.




[59]
The student should remember all the multiples of 4 up to 4
× 25, or 100.




[60]
The treatises on book-keeping have described this difference in
as peculiar a manner. They call these accounts the fictitious
accounts. Now they represent the merchant himself; their credits
are gain to the business, their debits losses or liabilities. If
the terms real and fictitious are to be used at all, they are the
real accounts, end all the others are as fictitious as
the clerks whom we have supposed to keep them.




[61]
This theorem shews that what is called reducing
a fraction to its lowest terms (namely, dividing numerator and
denominator by their greatest common measure), is correctly so called.




[62]
For that which measures a measure is itself a measure; so that if a
measure of a could have a measure in common with b,
a itself would have a common measure with b.




[63]
A prime number is one which is prime to all numbers except
its own multiples, or has no divisors except 1 and itself.




[64]
Expand (a-1)ᵇ by the binomial theorem; shew that
when b is a prime number every coefficient which is not unity is
divisible by b; and the proposition follows.




[65]
The principle of this mode of demonstration of Horner’s
method was stated in Young’s Algebra (1823), being the earliest
elementary work in which that method was given.




[66]
Various exceptions may arise when an equation has
two nearly equal roots. But I do not here introduce algebraical
difficulties; and a student might give himself a hundred examples,
taken at hazard, without much chance of lighting upon one which gives
any difficulty.




[67]
This form might be also applied to the integer portions;
but it is hardly needed in such instances as usually occur. See the
article Involution and Evolution in the Supplement to the
Penny Cyclopædia.




[68]
After the second step, the trial will rarely fail to give
the true figure.




[69]
The solution of x³ + 0x² + 0x-2 = 0.




[70]
Taken from a paper on the subject, by Mr. Peter Gray, in the Mechanics’ Magazine.




[71]
Taken from a paper on the subject, by Mr. Peter Gray, in the Mechanics’ Magazine.




[72]
Taken from a paper on the subject, by Mr. Peter Gray, in the Mechanics’ Magazine.




[73]
Taken from the late Mr. Peter Nicholson’s Essay on Involution and Evolution.




[74]
Taken from the late Mr. Peter Nicholson’s Essay on Involution and Evolution.




[75]
Taken from the late Mr. Peter Nicholson’s Essay on Involution and Evolution.




[76]
Taken from the late Mr. Peter Nicholson’s Essay on Involution and Evolution.




[77]
A four-sided figure, which has two sides parallel, and two
sides not parallel.




[78]
The right angle is divided into 90 equal parts called
degrees, each degree into 60 equal parts called minutes,
and each minute into 60 equal parts called seconds. Thus, 2° 15′
40″ means 2 degrees, 15 minutes, and 40 seconds.
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