

 [image:]

 The Project Gutenberg eBook of Free as in Freedom: Richard Stallman's Crusade for Free Software

This ebook is for the use of anyone anywhere in the United States and
most other parts of the world at no cost and with almost no restrictions
whatsoever. You may copy it, give it away or re-use it under the terms
of the Project Gutenberg License included with this ebook or online
at www.gutenberg.org. If you are not located in the United States,
you will have to check the laws of the country where you are located
before using this eBook.

*** This is a COPYRIGHTED Project Gutenberg eBook. Details Below. ***

*** Please follow the copyright guidelines in this file. ***

Title: Free as in Freedom: Richard Stallman's Crusade for Free Software

Author: Sam Williams

Release date: May 1, 2004 [eBook #5768]

 Most recently updated: August 21, 2012

Language: English

Credits: Produced by Craig Morehouse

*** START OF THE PROJECT GUTENBERG EBOOK FREE AS IN FREEDOM: RICHARD STALLMAN'S CRUSADE FOR FREE SOFTWARE ***

Produced by Craig Morehouse

Copyright (C) 2002 by Sam Williams.

Free As in Freedom: Richard Stallman's Crusade for Free Software.

By Sam Williams

Available on the web at: http://www.faifzilla.org/

Produced under the Free Documentation License

Table of Contents

Chapter 1 For Want of a Printer
Chapter 2 2001: A Hacker's Odyssey
Chapter 3 A Portrait of the Hacker as a Young Man
Chapter 4 Impeach God
Chapter 5 Small Puddle of Freedom
Chapter 6 The Emacs Commune
Chapter 7 A Stark Moral Choice
Chapter 8 St. Ignucius
Chapter 9 The GNU General Public License
Chapter 10 GNU/Linux
Chapter 11 Open Source
Chapter 12 A Brief Journey Through Hacker Hell
Chapter 13 Continuing the Fight
Chapter 14 Epilogue:
Chapter 15 Appendix A : Terminology
Chapter 16 Appendix B Hack, Hackers, and Hacking
Chapter 17 Appendix C GNU Free Documentation License (GFDL)

Preface

The work of Richard M. Stallman literally speaks for
itself. From the documented source code to the
published papers to the recorded speeches, few people
have expressed as much willingness to lay their
thoughts and their work on the line.

Such openness-if one can pardon a momentary un-Stallman
adjective-is refreshing. After all, we live in a
society that treats information, especially personal
information, as a valuable commodity. The question
quickly arises. Why would anybody want to part with so
much information and yet appear to demand nothing in return?

As we shall see in later chapters, Stallman does not
part with his words or his work altruistically. Every
program, speech, and on-the-record bon mot comes with a
price, albeit not the kind of price most people are
used to paying.

I bring this up not as a warning, but as an admission.
As a person who has spent the last year digging up
facts on Stallman's personal history, it's more than a
little intimidating going up against the Stallman
oeuvre. "Never pick a fight with a man who buys his ink
by the barrel," goes the old Mark Twain adage. In the
case of Stallman, never attempt the definitive
biography of a man who trusts his every thought to the
public record.

For the readers who have decided to trust a few hours
of their time to exploring this book, I can confidently
state that there are facts and quotes in here that one
won't find in any Slashdot story or Google search.
Gaining access to these facts involves paying a price,
however. In the case of the book version, you can pay
for these facts the traditional manner, i.e., by
purchasing the book. In the case of the electronic
versions, you can pay for these facts in the free
software manner. Thanks to the folks at O'Reilly &
Associates, this book is being distributed under the
GNU Free Documentation License, meaning you can help to
improve the work or create a personalized version and
release that version under the same license.

If you are reading an electronic version and prefer to
accept the latter payment option, that is, if you want
to improve or expand this book for future readers, I
welcome your input. Starting in June, 2002, I will be
publishing a bare bones HTML version of the book on the
web site, http://www.faifzilla.org. My aim is to update
it regularly and expand the Free as in Freedom story as
events warrant. If you choose to take the latter
course, please review Appendix C of this book. It
provides a copy of your rights under the GNU Free
Documentation License.

For those who just plan to sit back and read, online or
elsewhere, I consider your attention an equally
valuable form of payment. Don't be surprised, though,
if you, too, find yourself looking for other ways to
reward the good will that made this work possible.

One final note: this is a work of journalism, but it is
also a work of technical documentation. In the process
of writing and editing this book, the editors and I
have weighed the comments and factual input of various
participants in the story, including Richard Stallman
himself. We realize there are many technical details in
this story that may benefit from additional or refined
information. As this book is released under the GFDL,
we are accepting patches just like we would with any
free software program. Accepted changes will be posted
electronically and will eventually be incorporated into
future printed versions of this work. If you would like
to contribute to the further improvement of this book,
you can reach me at sam@inow.com. Comments and
Questions Please address comments and questions
concerning this book to the publisher: O'Reilly &
Associates, Inc. 1005 Gravenstein Highway North
Sebastopol, CA 95472 (800) 998-9938 (in the United
States or Canada) (707) 829-0515 (international/local)
(707) 829-0104 (fax) There is a web page for this book,
which lists errata, examples, or any additional
information. The site also includes a link to a forum
where you can discuss the book with the author and
other readers. You can access this site at:
http://www.oreilly.com/catalog/freedom/ To comment or
ask technical questions about this book, send email to:
bookquestions@oreilly.com For more information about
books, conferences, Resource Centers, and the O'Reilly
Network, see the O'Reilly web site at:
http://www.oreilly.com Acknowledgments Special thanks
to Henning Gutmann for sticking by this book. Special
thanks to Aaron Oas for suggesting the idea to Tracy in
the first place. Thanks to Laurie Petrycki, Jeffrey
Holcomb, and all the others at O'Reilly & Associates.
Thanks to Tim O'Reilly for backing this book. Thanks to
all the first-draft reviewers: Bruce Perens, Eric
Raymond, Eric Allman, Jon Orwant, Julie and Gerald Jay
Sussman, Hal Abelson, and Guy Steele. I hope you enjoy
this typo-free version. Thanks to Alice Lippman for the
interviews, cookies, and photographs. Thanks to my
family, Steve, Jane, Tish, and Dave. And finally, last
but not least: thanks to Richard Stallman for having
the guts and endurance to "show us the code."

Sam Williams

For Want of a Printer

I fear the Greeks. Even when they bring gifts.

—-Virgil The Aeneid

The new printer was jammed, again.

Richard M. Stallman, a staff software programmer at the
Massachusetts Institute of Technology's Artificial
Intelligence Laboratory (AI Lab), discovered the
malfunction the hard way. An hour after sending off a
50-page file to the office laser printer, Stallman, 27,
broke off a productive work session to retrieve his
documents. Upon arrival, he found only four pages in
the printer's tray. To make matters even more
frustrating, the four pages belonged to another user,
meaning that Stallman's print job and the unfinished
portion of somebody else's print job were still trapped
somewhere within the electrical plumbing of the lab's
computer network.

Waiting for machines is an occupational hazard when
you're a software programmer, so Stallman took his
frustration with a grain of salt. Still, the difference
between waiting for a machine and waiting on a machine
is a sizable one. It wasn't the first time he'd been
forced to stand over the printer, watching pages print
out one by one. As a person who spent the bulk of his
days and nights improving the efficiency of machines
and the software programs that controlled them,
Stallman felt a natural urge to open up the machine,
look at the guts, and seek out the root of the problem.

Unfortunately, Stallman's skills as a computer
programmer did not extend to the mechanical-engineering
realm. As freshly printed documents poured out of the
machine, Stallman had a chance to reflect on other ways
to circumvent the printing jam problem.

How long ago had it been that the staff members at the
AI Lab had welcomed the new printer with open arms?
Stallman wondered. The machine had been a donation from
the Xerox Corporation. A cutting edge prototype, it was
a modified version of the popular Xerox photocopier.
Only instead of making copies, it relied on software
data piped in over a computer network to turn that data
into professional-looking documents. Created by
engineers at the world-famous Xerox Palo Alto Research
Facility, it was, quite simply, an early taste of the
desktop-printing revolution that would seize the rest
of the computing industry by the end of the decade.

Driven by an instinctual urge to play with the best new
equipment, programmers at the AI Lab promptly
integrated the new machine into the lab's sophisticated
computing infrastructure. The results had been
immediately pleasing. Unlike the lab's old laser
printer, the new Xerox machine was fast. Pages came
flying out at a rate of one per second, turning a
20-minute print job into a 2-minute print job. The new
machine was also more precise. Circles came out looking
like circles, not ovals. Straight lines came out
looking like straight lines, not low-amplitude sine waves.

It was, for all intents and purposes, a gift too good
to refuse.

It wasn't until a few weeks after its arrival that the
machine's flaws began to surface. Chief among the
drawbacks was the machine's inherent susceptibility to
paper jams. Engineering-minded programmers quickly
understood the reason behind the flaw. As a
photocopier, the machine generally required the direct
oversight of a human operator. Figuring that these
human operators would always be on hand to fix a paper
jam, if it occurred, Xerox engineers had devoted their
time and energies to eliminating other pesky problems.
In engineering terms, user diligence was built into the system.

In modifying the machine for printer use, Xerox
engineers had changed the user-machine relationship in
a subtle but profound way. Instead of making the
machine subservient to an individual human operator,
they made it subservient to an entire networked
population of human operators. Instead of standing
directly over the machine, a human user on one end of
the network sent his print command through an extended
bucket-brigade of machines, expecting the desired
content to arrive at the targeted destination and in
proper form. It wasn't until he finally went to check
up on the final output that he realized how little of
the desired content had made it through.

Stallman himself had been of the first to identify the
problem and the first to suggest a remedy. Years
before, when the lab was still using its old printer,
Stallman had solved a similar problem by opening up the
software program that regulated the printer on the
lab's PDP-11 machine. Stallman couldn't eliminate paper
jams, but he could insert a software command that
ordered the PDP-11 to check the printer periodically
and report back to the PDP-10, the lab's central
computer. To ensure that one user's negligence didn't
bog down an entire line of print jobs, Stallman also
inserted a software command that instructed the PDP-10
to notify every user with a waiting print job that the
printer was jammed. The notice was simple, something
along the lines of "The printer is jammed, please fix
it," and because it went out to the people with the
most pressing need to fix the problem, chances were
higher that the problem got fixed in due time.

As fixes go, Stallman's was oblique but elegant. It
didn't fix the mechanical side of the problem, but it
did the next best thing by closing the information loop
between user and machine. Thanks to a few additional
lines of software code, AI Lab employees could
eliminate the 10 or 15 minutes wasted each week in
running back and forth to check on the printer. In
programming terms, Stallman's fix took advantage of the
amplified intelligence of the overall network.

"If you got that message, you couldn't assume somebody
else would fix it," says Stallman, recalling the logic.
"You had to go to the printer. A minute or two after
the printer got in trouble, the two or three people who
got messages arrive to fix the machine. Of those two or
three people, one of them, at least, would usually know
how to fix the problem."

Such clever fixes were a trademark of the AI Lab and
its indigenous population of programmers. Indeed, the
best programmers at the AI Lab disdained the term
programmer, preferring the more slangy occupational
title of hacker instead. The job title covered a host
of activities-everything from creative mirth making to
the improvement of existing software and computer
systems. Implicit within the title, however, was the
old-fashioned notion of Yankee ingenuity. To be a
hacker, one had to accept the philosophy that writing a
software program was only the beginning. Improving a
program was the true test of a hacker's skills.For more on the term "hacker,"
see Appendix B.

Such a philosophy was a major reason why companies like
Xerox made it a policy to donate their machines and
software programs to places where hackers typically
congregated. If hackers improved the software,
companies could borrow back the improvements,
incorporating them into update versions for the
commercial marketplace. In corporate terms, hackers
were a leveragable community asset, an auxiliary
research-and-development division available at minimal cost.

It was because of this give-and-take philosophy that
when Stallman spotted the print-jam defect in the Xerox
laser printer, he didn't panic. He simply looked for a
way to update the old fix or " hack" for the new
system. In the course of looking up the Xerox
laser-printer software, however, Stallman made a
troubling discovery. The printer didn't have any
software, at least nothing Stallman or a fellow
programmer could read. Until then, most companies had
made it a form of courtesy to publish source-code
files-readable text files that documented the
individual software commands that told a machine what
to do. Xerox, in this instance, had provided software
files in precompiled, or binary, form. Programmers were
free to open the files up if they wanted to, but unless
they were an expert in deciphering an endless stream of
ones and zeroes, the resulting text was pure gibberish.

Although Stallman knew plenty about computers, he was
not an expert in translating binary files. As a hacker,
however, he had other resources at his disposal. The
notion of information sharing was so central to the
hacker culture that Stallman knew it was only a matter
of time before some hacker in some university lab or
corporate computer room proffered a version of the
laser-printer source code with the desired source-code files.

After the first few printer jams, Stallman comforted
himself with the memory of a similar situation years
before. The lab had needed a cross-network program to
help the PDP-11 work more efficiently with the PDP-10.
The lab's hackers were more than up to the task, but
Stallman, a Harvard alumnus, recalled a similar program
written by programmers at the Harvard computer-science
department. The Harvard computer lab used the same
model computer, the PDP-10, albeit with a different
operating system. The Harvard computer lab also had a
policy requiring that all programs installed on the
PDP-10 had to come with published source-code files.

Taking advantage of his access to the Harvard computer
lab, Stallman dropped in, made a copy of the
cross-network source code, and brought it back to the
AI Lab. He then rewrote the source code to make it more
suitable for the AI Lab's operating system. With no
muss and little fuss, the AI Lab shored up a major gap
in its software infrastructure. Stallman even added a
few features not found in the original Harvard program,
making the program even more useful. "We wound up using
it for several years," Stallman says.

From the perspective of a 1970s-era programmer, the
transaction was the software equivalent of a neighbor
stopping by to borrow a power tool or a cup of sugar
from a neighbor. The only difference was that in
borrowing a copy of the software for the AI Lab,
Stallman had done nothing to deprive Harvard hackers
the use of their original program. If anything, Harvard
hackers gained in the process, because Stallman had
introduced his own additional features to the program,
features that hackers at Harvard were perfectly free to
borrow in return. Although nobody at Harvard ever came
over to borrow the program back, Stallman does recall a
programmer at the private engineering firm, Bolt,
Beranek & Newman, borrowing the program and adding a
few additional features, which Stallman eventually
reintegrated into the AI Lab's own source-code archive.

"A program would develop the way a city develops," says
Stallman, recalling the software infrastructure of the
AI Lab. "Parts would get replaced and rebuilt. New
things would get added on. But you could always look at
a certain part and say, `Hmm, by the style, I see this
part was written back in the early 60s and this part
was written in the mid-1970s.'"

Through this simple system of intellectual accretion,
hackers at the AI Lab and other places built up robust
creations. On the west coast, computer scientists at UC
Berkeley, working in cooperation with a few low-level
engineers at AT&T, had built up an entire operating
system using this system. Dubbed Unix, a play on an
older, more academically respectable operating system
called Multics, the software system was available to
any programmer willing to pay for the cost of copying
the program onto a new magnetic tape and shipping it.
Not every programmer participating in this culture
described himself as a hacker, but most shared the
sentiments of Richard M. Stallman. If a program or
software fix was good enough to solve your problems, it
was good enough to solve somebody else's problems. Why
not share it out of a simple desire for good karma?

The fact that Xerox had been unwilling to share its
source-code files seemed a minor annoyance at first. In
tracking down a copy of the source-code files, Stallman
says he didn't even bother contacting Xerox. "They had
already given us the laser printer," Stallman says.
"Why should I bug them for more?"

When the desired files failed to surface, however,
Stallman began to grow suspicious. The year before,
Stallman had experienced a blow up with a doctoral
student at Carnegie Mellon University. The student,
Brian Reid, was the author of a useful text-formatting
program dubbed Scribe. One of the first programs that
gave a user the power to define fonts and type styles
when sending a document over a computer network, the
program was an early harbinger of HTML, the lingua
franca of the World Wide Web. In 1979, Reid made the
decision to sell Scribe to a Pittsburgh-area software
company called Unilogic. His graduate-student career
ending, Reid says he simply was looking for a way to
unload the program on a set of developers that would
take pains to keep it from slipping into the public
domain. To sweeten the deal, Reid also agreed to insert
a set of time-dependent functions- "time bombs" in
software-programmer parlance-that deactivated freely
copied versions of the program after a 90-day
expiration date. To avoid deactivation, users paid the
software company, which then issued a code that defused
the internal time-bomb feature.

For Reid, the deal was a win-win. Scribe didn't fall
into the public domain, and Unilogic recouped on its
investment. For Stallman, it was a betrayal of the
programmer ethos, pure and simple. Instead of honoring
the notion of share-and-share alike, Reid had inserted
a way for companies to compel programmers to pay for
information access.

As the weeks passed and his attempts to track down
Xerox laser-printer source code hit a brick wall,
Stallman began to sense a similar money-for-code
scenario at work. Before Stallman could do or say
anything about it, however, good news finally trickled
in via the programmer grapevine. Word had it that a
scientist at the computer-science department at
Carnegie Mellon University had just departed a job at
the Xerox Palo Alto Research Center. Not only had the
scientist worked on the laser printer in question, but
according to rumor, he was still working on it as part
of his research duties at Carnegie Mellon.

Casting aside his initial suspicion, Stallman made a
firm resolution to seek out the person in question
during his next visit to the Carnegie Mellon campus.

He didn't have to wait long. Carnegie Mellon also had a
lab specializing in artificial-intelligence research,
and within a few months, Stallman had a
business-related reason to visit the Carnegie Mellon
campus. During that visit, he made sure to stop by the
computer-science department. Department employees
directed him to the office of the faculty member
leading the Xerox project. When Stallman reached the
office, he found the professor working there.

In true engineer-to-engineer fashion, the conversation
was cordial but blunt. After briefly introducing
himself as a visitor from MIT, Stallman requested a
copy of the laser-printer source code so that he could
port it to the PDP-11. To his surprise, the professor
refused to grant his request.

"He told me that he had promised not to give me a
copy," Stallman says.

Memory is a funny thing. Twenty years after the fact,
Stallman's mental history tape is notoriously blank in
places. Not only does he not remember the motivating
reason for the trip or even the time of year during
which he took it, he also has no recollection of the
professor or doctoral student on the other end of the
conversation. According to Reid, the person most likely
to have fielded Stallman's request is Robert Sproull, a
former Xerox PARC researcher and current director of
Sun Laboratories, a research division of the
computer-technology conglomerate Sun Microsystems.
During the 1970s, Sproull had been the primary
developer of the laser-printer software in question
while at Xerox PARC. Around 1980, Sproull took a
faculty research position at Carnegie Mellon where he
continued his laser-printer work amid other projects.

"The code that Stallman was asking for was leading-edge
state-of-the-art code that Sproull had written in the
year or so before going to Carnegie Mellon," recalls
Reid. "I suspect that Sproull had been at Carnegie
Mellon less than a month before this request came in."

When asked directly about the request, however, Sproull
draws a blank. "I can't make a factual comment," writes
Sproull via email. "I have absolutely no recollection
of the incident."

With both participants in the brief conversation
struggling to recall key details-including whether the
conversation even took place-it's hard to gauge the
bluntness of Sproull's refusal, at least as recalled by
Stallman. In talking to audiences, Stallman has made
repeated reference to the incident, noting that
Sproull's unwillingness to hand over the source code
stemmed from a nondisclosure agreement, a contractual
agreement between Sproull and the Xerox Corporation
giving Sproull, or any other signatory, access the
software source code in exchange for a promise of
secrecy. Now a standard item of business in the
software industry, the nondisclosure agreement, or NDA,
was a novel development at the time, a reflection of
both the commercial value of the laser printer to Xerox
and the information needed to run it. "Xerox was at the
time trying to make a commercial product out of the
laser printer," recalls Reid. "They would have been
insane to give away the source code."

For Stallman, however, the NDA was something else
entirely. It was a refusal on the part of Xerox and
Sproull, or whomever the person was that turned down
his source-code request that day, to participate in a
system that, until then, had encouraged software
programmers to regard programs as communal resources.
Like a peasant whose centuries-old irrigation ditch had
grown suddenly dry, Stallman had followed the ditch to
its source only to find a brand-spanking-new
hydroelectric dam bearing the Xerox logo.

For Stallman, the realization that Xerox had compelled
a fellow programmer to participate in this newfangled
system of compelled secrecy took a while to sink in. At
first, all he could focus on was the personal nature of
the refusal. As a person who felt awkward and out of
sync in most face-to-face encounters, Stallman's
attempt to drop in on a fellow programmer unannounced
had been intended as a demonstration of neighborliness.
Now that the request had been refused, it felt like a
major blunder. "I was so angry I couldn't think of a
way to express it. So I just turned away and walked out
without another word," Stallman recalls. "I might have
slammed the door. Who knows? All I remember is wanting
to get out of there."

Twenty years after the fact, the anger still lingers,
so much so that Stallman has elevated the event into a
major turning point. Within the next few months, a
series of events would befall both Stallman and the AI
Lab hacker community that would make 30 seconds worth
of tension in a remote Carnegie Mellon office seem
trivial by comparison. Nevertheless, when it comes time
to sort out the events that would transform Stallman
from a lone hacker, instinctively suspicious of
centralized authority, to a crusading activist applying
traditional notions of liberty, equality, and
fraternity to the world of software development,
Stallman singles out the Carnegie Mellon encounter for
special attention.

"It encouraged me to think about something that I'd
already been thinking about," says Stallman. "I already
had an idea that software should be shared, but I
wasn't sure how to think about that. My thoughts
weren't clear and organized to the point where I could
express them in a concise fashion to the rest of the world."

Although previous events had raised Stallman's ire, he
says it wasn't until his Carnegie Mellon encounter that
he realized the events were beginning to intrude on a
culture he had long considered sacrosanct. As an elite
programmer at one of the world's elite institutions,
Stallman had been perfectly willing to ignore the
compromises and bargains of his fellow programmers just
so long as they didn't interfere with his own work.
Until the arrival of the Xerox laser printer, Stallman
had been content to look down on the machines and
programs other computer users grimly tolerated. On the
rare occasion that such a program breached the AI Lab's
walls-when the lab replaced its venerable Incompatible
Time Sharing operating system with a commercial
variant, the TOPS 20, for example-Stallman and his
hacker colleagues had been free to rewrite, reshape,
and rename the software according to personal taste.

Now that the laser printer had insinuated itself within
the AI Lab's network, however, something had changed.
The machine worked fine, barring the occasional paper
jam, but the ability to modify according to personal
taste had disappeared. From the viewpoint of the entire
software industry, the printer was a wake-up call.
Software had become such a valuable asset that
companies no longer felt the need to publicize source
code, especially when publication meant giving
potential competitors a chance to duplicate something
cheaply. From Stallman's viewpoint, the printer was a
Trojan Horse. After a decade of failure, privately
owned software-future hackers would use the term "
proprietary" software-had gained a foothold inside the
AI Lab through the sneakiest of methods. It had come
disguised as a gift.

That Xerox had offered some programmers access to
additional gifts in exchange for secrecy was also
galling, but Stallman takes pains to note that, if
presented with such a quid pro quo bargain at a younger
age, he just might have taken the Xerox Corporation up
on its offer. The awkwardness of the Carnegie Mellon
encounter, however, had a firming effect on Stallman's
own moral lassitude. Not only did it give him the
necessary anger to view all future entreaties with
suspicion, it also forced him to ask the uncomfortable
question: what if a fellow hacker dropped into
Stallman's office someday and it suddenly became
Stallman's job to refuse the hacker's request for
source code?

"It was my first encounter with a nondisclosure
agreement, and it immediately taught me that
nondisclosure agreements have victims," says Stallman,
firmly. "In this case I was the victim. [My lab and I]
were victims."

It was a lesson Stallman would carry with him through
the tumultuous years of the 1980s, a decade during
which many of his MIT colleagues would depart the AI
Lab and sign nondisclosure agreements of their own.
Because most nondisclosure aggreements (NDAs) had
expiration dates, few hackers who did sign them saw
little need for personal introspection. Sooner or
later, they reasoned, the software would become public
knowledge. In the meantime, promising to keep the
software secret during its earliest development stages
was all a part of the compromise deal that allowed
hackers to work on the best projects. For Stallman,
however, it was the first step down a slippery slope.

"When somebody invited me to betray all my colleagues
in that way, I remembered how angry I was when somebody
else had done that to me and my whole lab," Stallman
says. "So I said, `Thank you very much for offering me
this nice software package, but I can't accept it on
the conditions that you're asking for, so I'm going to
do without it.'"

As Stallman would quickly learn, refusing such requests
involved more than personal sacrifice. It involved
segregating himself from fellow hackers who, though
sharing a similar distaste for secrecy, tended to
express that distaste in a more morally flexible
fashion. It wasn't long before Stallman, increasingly
an outcast even within the AI Lab, began billing
himself as "the last true hacker," isolating himself
further and further from a marketplace dominated by
proprietary software. Refusing another's request for
source code, Stallman decided, was not only a betrayal
of the scientific mission that had nurtured software
development since the end of World War II, it was a
violation of the Golden Rule, the baseline moral
dictate to do unto others as you would have them do
unto you.

Hence the importance of the laser printer and the
encounter that resulted from it. Without it, Stallman
says, his life might have followed a more ordinary
path, one balancing the riches of a commercial
programmer with the ultimate frustration of a life
spent writing invisible software code. There would have
been no sense of clarity, no urgency to address a
problem others weren't addressing. Most importantly,
there would have been no righteous anger, an emotion
that, as we soon shall see, has propelled Stallman's
career as surely as any political ideology or ethical belief.

"From that day forward, I decided this was something I
could never participate in," says Stallman, alluding to
the practice of trading personal liberty for the sake
of convenience-Stallman's description of the NDA
bargain-as well as the overall culture that encouraged
such ethically suspect deal-making in the first place.
"I decided never to make other people victims just like
I had been a victim."

2001: A Hacker's Odyssey

The New York University computer-science department
sits inside Warren Weaver Hall, a fortress-like
building located two blocks east of Washington Square
Park. Industrial-strength air-conditioning vents create
a surrounding moat of hot air, discouraging loiterers
and solicitors alike. Visitors who breach the moat
encounter another formidable barrier, a security
check-in counter immediately inside the building's
single entryway.

Beyond the security checkpoint, the atmosphere relaxes
somewhat. Still, numerous signs scattered throughout
the first floor preach the dangers of unsecured doors
and propped-open fire exits. Taken as a whole, the
signs offer a reminder: even in the relatively tranquil
confines of pre-September 11, 2001, New York, one can
never be too careful or too suspicious.

The signs offer an interesting thematic counterpoint to
the growing number of visitors gathering in the hall's
interior atrium. A few look like NYU students. Most
look like shaggy-aired concert-goers milling outside a
music hall in anticipation of the main act. For one
brief morning, the masses have taken over Warren Weaver
Hall, leaving the nearby security attendant with
nothing better to do but watch Ricki Lake on TV and
shrug her shoulders toward the nearby auditorium
whenever visitors ask about "the speech."

Once inside the auditorium, a visitor finds the person
who has forced this temporary shutdown of building
security procedures. The person is Richard M. Stallman,
founder of the GNU Project, original president of the
Free Software Foundation, winner of the 1990 MacArthur
Fellowship, winner of the Association of Computing
Machinery's Grace Murray Hopper Award (also in 1990),
corecipient of the Takeda Foundation's 2001 Takeda
Award, and former AI Lab hacker. As announced over a
host of hacker-related web sites, including the GNU
Project's own http://www.gnu.org site, Stallman is in
Manhattan, his former hometown, to deliver a much
anticipated speech in rebuttal to the Microsoft
Corporation's recent campaign against the GNU General
Public License.

The subject of Stallman's speech is the history and
future of the free software movement. The location is
significant. Less than a month before, Microsoft senior
vice president Craig Mundie appeared at the nearby NYU
Stern School of Business, delivering a speech blasting
the General Public License, or GPL, a legal device
originally conceived by Stallman 16 years before. Built
to counteract the growing wave of software secrecy
overtaking the computer industry-a wave first noticed
by Stallman during his 1980 troubles with the Xerox
laser printer-the GPL has evolved into a central tool
of the free software community. In simplest terms, the
GPL locks software programs into a form of communal
ownership-what today's legal scholars now call the
"digital commons"-through the legal weight of
copyright. Once locked, programs remain unremovable.
Derivative versions must carry the same copyright
protection-even derivative versions that bear only a
small snippet of the original source code. For this
reason, some within the software industry have taken to
calling the GPL a "viral" license, because it spreads
itself to every software program it touches. Actually, the GPL's powers are not
quite that potent.
According to section 10 of the GNU General Public
License, Version 2 (1991), the viral nature of the
license depends heavily on the Free Software
Foundation's willingness to view a program as a
derivative work, not to mention the existing license
the GPL would replace.

If you wish to incorporate parts of the Program into
other free programs whose distribution conditions are
different, write to the author to ask for permission.
For software that is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free
status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

"To compare something to a virus is very harsh," says
Stallman. "A spider plant is a more accurate
comparison; it goes to another place if you actively
take a cutting."

For more information on the GNU General Public License,
visit [http://www.gnu.org/copyleft/gpl.html.]

In an information economy increasingly dependent on
software and increasingly beholden to software
standards, the GPL has become the proverbial "big
stick." Even companies that once laughed it off as
software socialism have come around to recognize the
benefits. Linux, the Unix-like kernel developed by
Finnish college student Linus Torvalds in 1991, is
licensed under the GPL, as are many of the world's most
popular programming tools: GNU Emacs, the GNU Debugger,
the GNU C Compiler, etc. Together, these tools form the
components of a free software operating system
developed, nurtured, and owned by the worldwide hacker
community. Instead of viewing this community as a
threat, high-tech companies like IBM, Hewlett Packard,
and Sun Microsystems have come to rely upon it, selling
software applications and services built to ride atop
the ever-growing free software infrastructure.

They've also come to rely upon it as a strategic weapon
in the hacker community's perennial war against
Microsoft, the Redmond, Washington-based company that,
for better or worse, has dominated the PC-software
marketplace since the late 1980s. As owner of the
popular Windows operating system, Microsoft stands to
lose the most in an industry-wide shift to the GPL
license. Almost every line of source code in the
Windows colossus is protected by copyrights reaffirming
the private nature of the underlying source code or, at
the very least, reaffirming Microsoft's legal ability
to treat it as such. From the Microsoft viewpoint,
incorporating programs protected by the "viral" GPL
into the Windows colossus would be the software
equivalent of Superman downing a bottle of Kryptonite
pills. Rival companies could suddenly copy, modify, and
sell improved versions of Windows, rendering the
company's indomitable position as the No. 1 provider of
consumer-oriented software instantly vulnerable. Hence
the company's growing concern over the GPL's rate of
adoption. Hence the recent Mundie speech blasting the
GPL and the " open source" approach to software
development and sales. And hence Stallman's decision to
deliver a public rebuttal to that speech on the same
campus here today.

20 years is a long time in the software industry.
Consider this: in 1980, when Richard Stallman was
cursing the AI Lab's Xerox laser printer, Microsoft,
the company modern hackers view as the most powerful
force in the worldwide software industry, was still a
privately held startup. IBM, the company hackers used
to regard as the most powerful force in the worldwide
software industry, had yet to to introduce its first
personal computer, thereby igniting the current
low-cost PC market. Many of the technologies we now
take for granted-the World Wide Web, satellite
television, 32-bit video-game consoles-didn't even
exist. The same goes for many of the companies that now
fill the upper echelons of the corporate establishment,
companies like AOL, Sun Microsystems, Amazon.com,
Compaq, and Dell. The list goes on and on.

The fact that the high-technology marketplace has come
so far in such little time is fuel for both sides of
the GPL debate. GPL-proponents point to the short
lifespan of most computer hardware platforms. Facing
the risk of buying an obsolete product, consumers tend
to flock to companies with the best long-term survival.
As a result, the software marketplace has become a
winner-take-all arena.See Shubha Ghosh, "Revealing the Microsoft Windows
Source Code," Gigalaw.com (January, 2000).
http://www.gigalaw.com/articles/ghosh-2000-01-p1.html
 The current, privately owned software environment,
GPL-proponents say, leads to monopoly abuse and
stagnation. Strong companies suck all the oxygen out of
the marketplace for rival competitors and innovative startups.

GPL-opponents argue just the opposite. Selling software
is just as risky, if not more risky, than buying
software, they say. Without the legal guarantees
provided by private software licenses, not to mention
the economic prospects of a privately owned "killer
app" (i.e., a breakthrough technology that launches an
entirely new market),Killer apps don't have to be proprietary. Witness, of
course, the legendary Mosaic browser, a program whose
copyright permits noncommercial derivatives with
certain restrictions. Still, I think the reader gets
the point: the software marketplace is like the
lottery. The bigger the potential payoff, the more
people want to participate. For a good summary of the
killer-app phenomenon, see Philip Ben-David, "Whatever
Happened to the `Killer App'?" e-Commerce News
(December 7, 2000).
 companies lose the incentive to participate. Once
again, the market stagnates and innovation declines. As
Mundie himself noted in his May 3 address on the same
campus, the GPL's "viral" nature "poses a threat" to
any company that relies on the uniqueness of its
software as a competitive asset. Added Mundie: It also
fundamentally undermines the independent commercial
software sector because it effectively makes it
impossible to distribute software on a basis where
recipients pay for the product rather than just the
cost of distributionSee Craig Mundie, "The Commercial Software Model,"
senior vice president, Microsoft Corp. Excerpted from
an online transcript of Mundie's May 3,speech to the
New York University Stern School of Business.

http://www.ecommercetimes.com/perl/story/5893.html 001,

http://www.microsoft.com/presspass/exec/craig/05-03sharedsource.asp

 The mutual success of GNU/ LinuxThe acronym GNU stands for "GNU's not Unix."

In another

portion of the May 29, 2001, NYU speech, Stallman

summed up the acronym's origin: We hackers always look

for a funny or naughty name for a program, because

naming a program is half the fun of writing the

program. We also had a tradition of recursive acronyms,

to say that the program that you're writing is similar

to some existing program . . . I looked for a recursive

acronym for Something Is Not UNIX. And I tried all 26

letters and discovered that none of them was a word. I

decided to make it a contraction. That way I could have

a three-letter acronym, for Something's Not UNIX. And I

tried letters, and I came across the word "GNU." That

was it. Although a fan of puns, Stallman recommends

that software users pronounce the "g" at the beginning

of the acronym (i.e., "gah-new"). Not only does this

avoid confusion with the word "gnu," the name of the

African antelope, Connochaetes gnou , it also avoids

confusion with the adjective "new." "We've been working

on it for 17 years now, so it is not exactly new any

more," Stallman says. Source: author notes and online

transcript of "Free Software: Freedom and Cooperation,"

Richard Stallman's May 29, 2001, speech at New York University.

http://www.gnu.org/events/rms-nyu-2001-transcript.txt

, the amalgamated operating system built around the

GPL-protected Linux kernel, and Windows over the last

10 years reveals the wisdom of both perspectives.

Nevertheless, the battle for momentum is an important

one in the software industry. Even powerful vendors

such as Microsoft rely on the support of third-party

software developers whose tools, programs, and computer

games make an underlying software platform such as

Windows more attractive to the mainstream consumer.

Citing the rapid evolution of the technology

marketplace over the last 20 years, not to mention his

own company's admirable track record during that

period, Mundie advised listeners to not get too carried

away by the free software movement's recent momentum:

Two decades of experience have shown that an economic

model that protects intellectual property and a

business model that recoups research and development

costs can create impressive economic benefits and

distribute them very broadly. Such admonitions serve as

the backdrop for Stallman's speech today. Less than a

month after their utterance, Stallman stands with his

back to one of the chalk boards at the front of the

room, edgy to begin.

If the last two decades have brought dramatic changes
to the software marketplace, they have brought even
more dramatic changes to Stallman himself. Gone is the
skinny, clean-shaven hacker who once spent his entire
days communing with his beloved PDP-10. In his place
stands a heavy-set middle-aged man with long hair and
rabbinical beard, a man who now spends the bulk of his
time writing and answering email, haranguing fellow
programmers, and giving speeches like the one today.
Dressed in an aqua-colored T-shirt and brown polyester
pants, Stallman looks like a desert hermit who just
stepped out of a Salvation Army dressing room.

The crowd is filled with visitors who share Stallman's
fashion and grooming tastes. Many come bearing laptop
computers and cellular modems, all the better to record
and transmit Stallman's words to a waiting Internet
audience. The gender ratio is roughly 15 males to 1
female, and 1 of the 7 or 8 females in the room comes
in bearing a stuffed penguin, the official Linux
mascot, while another carries a stuffed teddy bear.

<Graphic file:/home/craigm/books/free_0201.png>

Richard Stallman, circa 2000. "I decided I would
develop a free software operating system or die trying
. . of old age of course." Photo courtesy of
http://www.stallman.org.

Agitated, Stallman leaves his post at the front of the
room and takes a seat in a front-row chair, tapping a
few commands into an already-opened laptop. For the
next 10 minutes Stallman is oblivious to the growing
number of students, professors, and fans circulating in
front of him at the foot of the auditorium stage.

Before the speech can begin, the baroque rituals of
academic formality must be observed. Stallman's
appearance merits not one but two introductions. Mike
Uretsky, codirector of the Stern School's Center for
Advanced Technology, provides the first.

"The role of a university is to foster debate and to
have interesting discussions," Uretsky says. "This
particular presentation, this seminar falls right into
that mold. I find the discussion of open source
particularly interesting."

Before Uretsky can get another sentence out, Stallman
is on his feet waving him down like a stranded motorist.

"I do free software," Stallman says to rising laughter.

"Open source is a different movement."

The laughter gives way to applause. The room is stocked
with Stallman partisans, people who know of his
reputation for verbal exactitude, not to mention his
much publicized 1998 falling out with the open source
software proponents. Most have come to anticipate such
outbursts the same way radio fans once waited for Jack
Benny's trademark, "Now cut that out!" phrase during
each radio program.

Uretsky hastily finishes his introduction and cedes the
stage to Edmond Schonberg, a professor in the NYU
computer-science department. As a computer programmer
and GNU Project contributor, Schonberg knows which
linguistic land mines to avoid. He deftly summarizes
Stallman's career from the perspective of a modern-day
programmer.

"Richard is the perfect example of somebody who, by
acting locally, started thinking globally [about]
problems concerning the unavailability of source code,"
says Schonberg. "He has developed a coherent philosophy
that has forced all of us to reexamine our ideas of how
software is produced, of what intellectual property
means, and of what the software community actually represents."

Schonberg welcomes Stallman to more applause. Stallman
takes a moment to shut off his laptop, rises out of his
chair, and takes the stage.

At first, Stallman's address seems more Catskills
comedy routine than political speech. "I'd like to
thank Microsoft for providing me the opportunity to be
on this platform," Stallman wisecracks. "For the past
few weeks, I have felt like an author whose book was
fortuitously banned somewhere."

For the uninitiated, Stallman dives into a quick free
software warm-up analogy. He likens a software program
to a cooking recipe. Both provide useful step-by-step
instructions on how to complete a desired task and can
be easily modified if a user has special desires or
circumstances. "You don't have to follow a recipe
exactly," Stallman notes. "You can leave out some
ingredients. Add some mushrooms, 'cause you like
mushrooms. Put in less salt because your doctor said
you should cut down on salt-whatever."

Most importantly, Stallman says, software programs and
recipes are both easy to share. In giving a recipe to a
dinner guest, a cook loses little more than time and
the cost of the paper the recipe was written on.
Software programs require even less, usually a few
mouse-clicks and a modicum of electricity. In both
instances, however, the person giving the information
gains two things: increased friendship and the ability
to borrow interesting recipes in return.

"Imagine what it would be like if recipes were packaged
inside black boxes," Stallman says, shifting gears.
"You couldn't see what ingredients they're using, let
alone change them, and imagine if you made a copy for a
friend. They would call you a pirate and try to put you
in prison for years. That world would create tremendous
outrage from all the people who are used to sharing
recipes. But that is exactly what the world of
proprietary software is like. A world in which common
decency towards other people is prohibited or prevented."

With this introductory analogy out of the way, Stallman
launches into a retelling of the Xerox laser-printer
episode. Like the recipe analogy, the laser-printer
story is a useful rhetorical device. With its
parable-like structure, it dramatizes just how quickly
things can change in the software world. Drawing
listeners back to an era before Amazon.com one-click
shopping, Microsoft Windows, and Oracle databases, it
asks the listener to examine the notion of software
ownership free of its current corporate logos.

Stallman delivers the story with all the polish and
practice of a local district attorney conducting a
closing argument. When he gets to the part about the
Carnegie Mellon professor refusing to lend him a copy
of the printer source code, Stallman pauses.

"He had betrayed us," Stallman says. "But he didn't
just do it to us. Chances are he did it to you."

On the word "you," Stallman points his index finger
accusingly at an unsuspecting member of the audience.
The targeted audience member's eyebrows flinch
slightly, but Stallman's own eyes have moved on. Slowly
and deliberately, Stallman picks out a second listener
to nervous titters from the crowd. "And I think, mostly
likely, he did it to you, too," he says, pointing at an
audience member three rows behind the first.

By the time Stallman has a third audience member picked
out, the titters have given away to general laughter.
The gesture seems a bit staged, because it is. Still,
when it comes time to wrap up the Xerox laser-printer
story, Stallman does so with a showman's flourish. "He
probably did it to most of the people here in this
room-except a few, maybe, who weren't born yet in
1980," Stallman says, drawing more laughs. "[That's]
because he had promised to refuse to cooperate with
just about the entire population of the planet Earth."

Stallman lets the comment sink in for a half-beat. "He
had signed a nondisclosure agreement," Stallman adds.

Richard Matthew Stallman's rise from frustrated
academic to political leader over the last 20 years
speaks to many things. It speaks to Stallman's stubborn
nature and prodigious will. It speaks to the clearly
articulated vision and values of the free software
movement Stallman helped build. It speaks to the
high-quality software programs Stallman has built,
programs that have cemented Stallman's reputation as a
programming legend. It speaks to the growing momentum
of the GPL, a legal innovation that many Stallman
observers see as his most momentous accomplishment.

Most importantly, it speaks to the changing nature of
political power in a world increasingly beholden to
computer technology and the software programs that
power that technology.

Maybe that's why, even at a time when most
high-technology stars are on the wane, Stallman's star
has grown. Since launching the GNU Project in 1984,5
Stallman has been at turns ignored, satirized,
vilified, and attacked-both from within and without the
free software movement. Through it all, the GNU Project
has managed to meet its milestones, albeit with a few
notorious delays, and stay relevant in a software
marketplace several orders of magnitude more complex
than the one it entered 18 years ago. So too has the
free software ideology, an ideology meticulously
groomed by Stallman himself.

To understand the reasons behind this currency, it
helps to examine Richard Stallman both in his own words
and in the words of the people who have collaborated
and battled with him along the way. The Richard
Stallman character sketch is not a complicated one. If
any person exemplifies the old adage "what you see is
what you get," it's Stallman.

"I think if you want to understand Richard Stallman the
human being, you really need to see all of the parts as
a consistent whole," advises Eben Moglen, legal counsel
to the Free Software Foundation and professor of law at
Columbia University Law School. "All those personal
eccentricities that lots of people see as obstacles to
getting to know Stallman really are Stallman: Richard's
strong sense of personal frustration, his enormous
sense of principled ethical commitment, his inability
to compromise, especially on issues he considers
fundamental. These are all the very reasons Richard did
what he did when he did."

Explaining how a journey that started with a laser
printer would eventually lead to a sparring match with
the world's richest corporation is no easy task. It
requires a thoughtful examination of the forces that
have made software ownership so important in today's
society. It also requires a thoughtful examination of a
man who, like many political leaders before him,
understands the malleability of human memory. It
requires an ability to interpret the myths and
politically laden code words that have built up around
Stallman over time. Finally, it requires an
understanding of Stallman's genius as a programmer and
his failures and successes in translating that genius
to other pursuits.

When it comes to offering his own summary of the
journey, Stallman acknowledges the fusion of
personality and principle observed by Moglen.
"Stubbornness is my strong suit," he says. "Most people
who attempt to do anything of any great difficulty
eventually get discouraged and give up. I never gave up."

He also credits blind chance. Had it not been for that
run-in over the Xerox laser printer, had it not been
for the personal and political conflicts that closed
out his career as an MIT employee, had it not been for
a half dozen other timely factors, Stallman finds it
very easy to picture his life following a different
career path. That being said, Stallman gives thanks to
the forces and circumstances that put him in the
position to make a difference.

"I had just the right skills," says Stallman, summing
up his decision for launching the GNU Project to the
audience. "Nobody was there but me, so I felt like,
`I'm elected. I have to work on this. If not me ,
who?'" Endnotes

1. Actually, the GPL's powers are not quite that
potent. According to section 10 of the GNU General
Public License, Version 2 (1991), the viral nature of
the license depends heavily on the Free Software
Foundation's willingness to view a program as a
derivative work, not to mention the existing license
the GPL would replace.

If you wish to incorporate parts of the Program into
other free programs whose distribution conditions are
different, write to the author to ask for permission.
For software that is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free
status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

"To compare something to a virus is very harsh," says
Stallman. "A spider plant is a more accurate
comparison; it goes to another place if you actively
take a cutting."

For more information on the GNU General Public License,
visit

[http://www.gnu.org/copyleft/gpl.html.]

A Portrait of the Hacker as a Young Man

Richard Stallman's mother, Alice Lippman, still
remembers the moment she realized her son had a special gift.

"I think it was when he was eight," Lippman recalls.

The year was 1961, and Lippman, a recently divorced
single mother, was wiling away a weekend afternoon
within the family's tiny one-bedroom apartment on
Manhattan's Upper West Side. Leafing through a copy of
Scientific American, Lippman came upon her favorite
section, the Martin Gardner-authored column titled
"Mathematical Games." A substitute art teacher, Lippman
always enjoyed Gardner's column for the brain-teasers
it provided. With her son already ensconced in a book
on the nearby sofa, Lippman decided to take a crack at
solving the week's feature puzzle.

"I wasn't the best person when it came to solving the
puzzles," she admits. "But as an artist, I found they
really helped me work through conceptual barriers."

Lippman says her attempt to solve the puzzle met an
immediate brick wall. About to throw the magazine down
in disgust, Lippman was surprised by a gentle tug on
her shirt sleeve.

"It was Richard," she recalls, "He wanted to know if I
needed any help."

Looking back and forth, between the puzzle and her son,
Lippman says she initially regarded the offer with
skepticism. "I asked Richard if he'd read the
magazine," she says. "He told me that, yes, he had and
what's more he'd already solved the puzzle. The next
thing I know, he starts explaining to me how to solve it."

Hearing the logic of her son's approach, Lippman's
skepticism quickly gave way to incredulity. "I mean, I
always knew he was a bright boy," she says, "but this
was the first time I'd seen anything that suggested how
advanced he really was."

Thirty years after the fact, Lippman punctuates the
memory with a laugh. "To tell you the truth, I don't
think I ever figured out how to solve that puzzle," she
says. "All I remember is being amazed he knew the answer."

Seated at the dining-room table of her second Manhattan
apartment-the same spacious three-bedroom complex she
and her son moved to following her 1967 marriage to
Maurice Lippman, now deceased-Alice Lippman exudes a
Jewish mother's mixture of pride and bemusement when
recalling her son's early years. The nearby dining-room
credenza offers an eight-by-ten photo of Stallman
glowering in full beard and doctoral robes. The image
dwarfs accompanying photos of Lippman's nieces and
nephews, but before a visitor can make too much of it,
Lippman makes sure to balance its prominent placement
with an ironic wisecrack.

"Richard insisted I have it after he received his
honorary doctorate at the University of Glasgow," says
Lippman. "He said to me, `Guess what, mom? It's the
first graduation I ever attended.'"1

Such comments reflect the sense of humor that comes
with raising a child prodigy. Make no mistake, for
every story Lippman hears and reads about her son's
stubbornness and unusual behavior, she can deliver at
least a dozen in return.

"He used to be so conservative," she says, throwing up
her hands in mock exasperation. "We used to have the
worst arguments right here at this table. I was part of
the first group of public city school teachers that
struck to form a union, and Richard was very angry with
me. He saw unions as corrupt. He was also very opposed
to social security. He thought people could make much
more money investing it on their own. Who knew that
within 10 years he would become so idealistic? All I
remember is his stepsister coming to me and saying,
`What is he going to be when he grows up? A fascist?'"

As a single parent for nearly a decade-she and
Richard's father, Daniel Stallman, were married in
1948, divorced in 1958, and split custody of their son
afterwards-Lippman can attest to her son's aversion to
authority. She can also attest to her son's lust for
knowledge. It was during the times when the two forces
intertwined, Lippman says, that she and her son
experienced their biggest battles.

"It was like he never wanted to eat," says Lippman,
recalling the behavior pattern that set in around age
eight and didn't let up until her son's high-school
graduation in 1970. "I'd call him for dinner, and he'd
never hear me. I'd have to call him 9 or 10 times just
to get his attention. He was totally immersed."

Stallman, for his part, remembers things in a similar
fashion, albeit with a political twist.

"I enjoyed reading," he says. "If I wanted to read, and
my mother told me to go to the kitchen and eat or go to
sleep, I wasn't going to listen. I saw no reason why I
couldn't read. No reason why she should be able to tell
me what to do, period. Essentially, what I had read
about, ideas such as democracy and individual freedom,
I applied to myself. I didn't see any reason to exclude
children from these principles."

The belief in individual freedom over arbitrary
authority extended to school as well. Two years ahead
of his classmates by age 11, Stallman endured all the
usual frustrations of a gifted public-school student.
It wasn't long after the puzzle incident that his
mother attended the first in what would become a long
string of parent-teacher conferences.

"He absolutely refused to write papers," says Lippman,
recalling an early controversy. "I think the last paper
he wrote before his senior year in high school was an
essay on the history of the number system in the west
for a fourth-grade teacher."

Gifted in anything that required analytical thinking,
Stallman gravitated toward math and science at the
expense of his other studies. What some teachers saw as
single-mindedness, however, Lippman saw as impatience.
Math and science offered simply too much opportunity to
learn, especially in comparison to subjects and
pursuits for which her son seemed less naturally
inclined. Around age 10 or 11, when the boys in
Stallman's class began playing a regular game of touch
football, she remembers her son coming home in a rage.
"He wanted to play so badly, but he just didn't have
the coordination skills," Lippman recalls. "It made him
so angry."

The anger eventually drove her son to focus on math and
science all the more. Even in the realm of science,
however, her son's impatience could be problematic.
Poring through calculus textbooks by age seven,
Stallman saw little need to dumb down his discourse for
adults. Sometime, during his middle-school years,
Lippman hired a student from nearby Columbia University
to play big brother to her son. The student left the
family's apartment after the first session and never
came back. "I think what Richard was talking about went
over his head," Lippman speculates.

Another favorite maternal anecdote dates back to the
early 1960s, shortly after the puzzle incident. Around
age seven, two years after the divorce and relocation
from Queens, Richard took up the hobby of launching
model rockets in nearby Riverside Drive Park. What
started as aimless fun soon took on an earnest edge as
her son began recording the data from each launch. Like
the interest in mathematical games, the pursuit drew
little attention until one day, just before a major
NASA launch, Lippman checked in on her son to see if he
wanted to watch.

"He was fuming," Lippman says. "All he could say to me
was, `But I'm not published yet.' Apparently he had
something that he really wanted to show NASA."

Such anecdotes offer early evidence of the intensity
that would become Stallman's chief trademark throughout
life. When other kids came to the table, Stallman
stayed in his room and read. When other kids played
Johnny Unitas, Stallman played Werner von Braun. "I was
weird," Stallman says, summing up his early years
succinctly in a 1999 interview. "After a certain age,
the only friends I had were teachers."See Michael Gross, "Richard Stallman:
High School
Misfit, Symbol of Free Software, MacArthur-certified
Genius" (1999). This interview is one of the most
candid Stallman interviews on the record. I recommend
it highly.

http://www.mgross.com/interviews/stallman1.html

Although it meant courting more run-ins at school,
Lippman decided to indulge her son's passion. By age
12, Richard was attending science camps during the
summer and private school during the school year. When
a teacher recommended her son enroll in the Columbia
Science Honors Program, a post-Sputnik program designed
for gifted middle- and high-school students in New York
City, Stallman added to his extracurriculars and was
soon commuting uptown to the Columbia University campus
on Saturdays.

Dan Chess, a fellow classmate in the Columbia Science
Honors Program, recalls Richard Stallman seeming a bit
weird even among the students who shared a similar lust
for math and science. "We were all geeks and nerds, but
he was unusually poorly adjusted," recalls Chess, now a
mathematics professor at Hunter College. "He was also
smart as shit. I've known a lot of smart people, but I
think he was the smartest person I've ever known."

Seth Breidbart, a fellow Columbia Science Honors
Program alumnus, offers bolstering testimony. A
computer programmer who has kept in touch with Stallman
thanks to a shared passion for science fiction and
science-fiction conventions, he recalls the
15-year-old, buzz-cut-wearing Stallman as "scary,"
especially to a fellow 15-year-old.

"It's hard to describe," Breidbart says. "It wasn't
like he was unapproachable. He was just very intense.
[He was] very knowledgeable but also very hardheaded in
some ways."

Such descriptions give rise to speculation: are
judgment-laden adjectives like "intense" and
"hardheaded" simply a way to describe traits that today
might be categorized under juvenile behavioral
disorder? A December, 2001, Wired magazine article
titled "The Geek Syndrome" paints the portrait of
several scientifically gifted children diagnosed with
high-functioning autism or Asperger Syndrome. In many
ways, the parental recollections recorded in the Wired
article are eerily similar to the ones offered by
Lippman. Even Stallman has indulged in psychiatric
revisionism from time to time. During a 2000 profile
for the Toronto Star, Stallman described himself to an
interviewer as "borderline autistic,"See Judy Steed, Toronto Star, BUSINESS,
(October 9,
2000): C03. His vision of free software and social
cooperation stands in stark contrast to the isolated
nature of his private life. A Glenn Gould-like
eccentric, the Canadian pianist was similarly
brilliant, articulate, and lonely. Stallman considers
himself afflicted, to some degree, by autism: a
condition that, he says, makes it difficult for him to
interact with people.
 a description that goes a long way toward explaining a
lifelong tendency toward social and emotional isolation
and the equally lifelong effort to overcome it.

Such speculation benefits from the fast and loose
nature of most so-called " behavioral disorders"
nowadays, of course. As Steve Silberman, author of "
The Geek Syndrome," notes, American psychiatrists have
only recently come to accept Asperger Syndrome as a
valid umbrella term covering a wide set of behavioral
traits. The traits range from poor motor skills and
poor socialization to high intelligence and an almost
obsessive affinity for numbers, computers, and ordered systems.See Steve
Silberman, "The Geek Syndrome," Wired
(December, 2001).
 Reflecting on the broad nature of this umbrella,
Stallman says its possible that, if born 40 years
later, he might have merited just such a diagnosis.
Then again, so would many of his computer-world colleagues.

"It's possible I could have had something like that,"
he says. "On the other hand, one of the aspects of that
syndrome is difficulty following rhythms. I can dance.
In fact, I love following the most complicated rhythms.
It's not clear cut enough to know."

Chess, for one, rejects such attempts at
back-diagnosis. "I never thought of him [as] having
that sort of thing," he says. "He was just very
unsocialized, but then, we all were."

Lippman, on the other hand, entertains the possibility.
She recalls a few stories from her son's infancy,
however, that provide fodder for speculation. A
prominent symptom of autism is an oversensitivity to
noises and colors, and Lippman recalls two anecdotes
that stand out in this regard. "When Richard was an
infant, we'd take him to the beach," she says. "He
would start screaming two or three blocks before we
reached the surf. It wasn't until the third time that
we figured out what was going on: the sound of the surf
was hurting his ears." She also recalls a similar
screaming reaction in relation to color: "My mother had
bright red hair, and every time she'd stoop down to
pick him up, he'd let out a wail."

In recent years, Lippman says she has taken to reading
books about autism and believes that such episodes were
more than coincidental. "I do feel that Richard had
some of the qualities of an autistic child," she says.
"I regret that so little was known about autism back then."

Over time, however, Lippman says her son learned to
adjust. By age seven, she says, her son had become fond
of standing at the front window of subway trains,
mapping out and memorizing the labyrinthian system of
railroad tracks underneath the city. It was a hobby
that relied on an ability to accommodate the loud
noises that accompanied each train ride. "Only the
initial noise seemed to bother him," says Lippman. "It
was as if he got shocked by the sound but his nerves
learned how to make the adjustment."

For the most part, Lippman recalls her son exhibiting
the excitement, energy, and social skills of any normal
boy. It wasn't until after a series of traumatic events
battered the Stallman household, she says, that her son
became introverted and emotionally distant.

The first traumatic event was the divorce of Alice and
Daniel Stallman, Richard's father. Although Lippman
says both she and her ex-husband tried to prepare their
son for the blow, she says the blow was devastating
nonetheless. "He sort of didn't pay attention when we
first told him what was happening," Lippman recalls.
"But the reality smacked him in the face when he and I
moved into a new apartment. The first thing he said
was, `Where's Dad's furniture?'"

For the next decade, Stallman would spend his weekdays
at his mother's apartment in Manhattan and his weekends
at his father's home in Queens. The shuttling back and
forth gave him a chance to study a pair of contrasting
parenting styles that, to this day, leaves Stallman
firmly opposed to the idea of raising children himself.
Speaking about his father, a World War II vet who
passed away in early 2001, Stallman balances respect
with anger. On one hand, there is the man whose moral
commitment led him to learn French just so he could be
more helpful to Allies when they'd finally come. On the
other hand, there was the parent who always knew how to
craft a put-down for cruel effect.Regrettably, I did not get a chance to
interview Daniel
Stallman for this book. During the early research for
this book, Stallman informed me that his father
suffered from Alzheimer's. When I resumed research in
late 2001, I learned, sadly, that Daniel Stallman had
died earlier in the year.

"My father had a horrible temper," Stallman says. "He
never screamed, but he always found a way to criticize
you in a cold, designed-to-crush way."

As for life in his mother's apartment, Stallman is less
equivocal. "That was war," he says. "I used to say in
my misery, `I want to go home,' meaning to the
nonexistent place that I'll never have."

For the first few years after the divorce, Stallman
found the tranquility that eluded him in the home of
his paternal grandparents. Then, around age 10 his
grandparents passed away in short succession. For
Stallman, the loss was devastating. "I used to go and
visit and feel I was in a loving, gentle environment,"
Stallman recalls. "It was the only place I ever found
one, until I went away to college."

Lippman lists the death of Richard's paternal
grandparents as the second traumatic event. "It really
upset him," she says. He was very close to both his
grandparents. Before they died, he was very outgoing,
almost a leader-of-the-pack type with the other kids.
After they died, he became much more emotionally withdrawn."

From Stallman's perspective, the emotional withdrawal
was merely an attempt to deal with the agony of
adolescence. Labeling his teenage years a "pure
horror," Stallman says he often felt like a deaf person
amid a crowd of chattering music listeners.

"I often had the feeling that I couldn't understand
what other people were saying," says Stallman,
recalling the emotional bubble that insulated him from
the rest of the adolescent and adult world. "I could
understand the words, but something was going on
underneath the conversations that I didn't understand.
I couldn't understand why people were interested in the
things other people said."

For all the agony it produced, adolescence would have a
encouraging effect on Stallman's sense of
individuality. At a time when most of his classmates
were growing their hair out, Stallman preferred to keep
his short. At a time when the whole teenage world was
listening to rock and roll, Stallman preferred
classical music. A devoted fan of science fiction, Mad
magazine, and late-night TV, Stallman cultivated a
distinctly off-the-wall personality that fed off the
incomprehension of parents and peers alike.

"Oh, the puns," says Lippman, still exasperated by the
memory of her son's teenage personality. "There wasn't
a thing you could say at the dinner table that he
couldn't throw back at you as a pun."

Outside the home, Stallman saved the jokes for the
adults who tended to indulge his gifted nature. One of
the first was a summer-camp counselor who handed
Stallman a print-out manual for the IBM 7094 computer
during his 12th year. To a preteenager fascinated with
numbers and science, the gift was a godsend.Stallman, an atheist, would
probably quibble with this
description. Suffice it to say, it was something
Stallman welcomed. See previous note 1: "As soon as I
heard about computers, I wanted to see one and play
with one."
 By the end of summer, Stallman was writing out paper
programs according to the 7094's internal
specifications, anxiously anticipating getting a chance
to try them out on a real machine.

With the first personal computer still a decade away,
Stallman would be forced to wait a few years before
getting access to his first computer. His first chance
finally came during his junior year of high school.
Hired on at the IBM New York Scientific Center, a
now-defunct research facility in downtown Manhattan,
Stallman spent the summer after high-school graduation
writing his first program, a pre-processor for the 7094
written in the programming language PL/I. "I first
wrote it in PL/I, then started over in assembler
language when the PL/I program was too big to fit in
the computer," he recalls.

After that job at the IBM Scientific Center, Stallman
had held a laboratory-assistant position in the biology
department at Rockefeller University. Although he was
already moving toward a career in math or physics,
Stallman's analytical mind impressed the lab director
enough that a few years after Stallman departed for
college, Lippman received an unexpected phone call. "It
was the professor at Rockefeller," Lippman says. "He
wanted to know how Richard was doing. He was surprised
to learn that he was working in computers. He'd always
thought Richard had a great future ahead of him as a biologist."

Stallman's analytical skills impressed faculty members
at Columbia as well, even when Stallman himself became
a target of their ire. "Typically once or twice an hour
[Stallman] would catch some mistake in the lecture,"
says Breidbart. "And he was not shy about letting the
professors know it immediately. It got him a lot of
respect but not much popularity."

Hearing Breidbart's anecdote retold elicits a wry smile
from Stallman. "I may have been a bit of a jerk
sometimes," he admits. "But I found kindred spirits
among the teachers, because they, too, liked to learn.
Kids, for the most part, didn't. At least not in the
same way."

Hanging out with the advanced kids on Saturday
nevertheless encouraged Stallman to think more about
the merits of increased socialization. With college
fast approaching, Stallman, like many in his Columbia
Science Honors Program, had narrowed his list of
desired schools down to two choices: Harvard and MIT.
Hearing of her son's desire to move on to the Ivy
League, Lippman became concerned. As a 15-year-old
high-school junior, Stallman was still having run-ins
with teachers and administrators. Only the year before,
he had pulled straight A's in American History,
Chemistry, French, and Algebra, but a glaring F in
English reflected the ongoing boycott of writing
assignments. Such miscues might draw a knowing chuckle
at MIT, but at Harvard, they were a red flag.

During her son's junior year, Lippman says she
scheduled an appointment with a therapist. The
therapist expressed instant concern over Stallman's
unwillingness to write papers and his run-ins with
teachers. Her son certainly had the intellectual
wherewithal to succeed at Harvard, but did he have the
patience to sit through college classes that required a
term paper? The therapist suggested a trial run. If
Stallman could make it through a full year in New York
City public schools, including an English class that
required term papers, he could probably make it at
Harvard. Following the completion of his junior year,
Stallman promptly enrolled in summer school at Louis D.
Brandeis High School, a public school located on 84th
Street, and began making up the mandatory art classes
he had shunned earlier in his high-school career.

By fall, Stallman was back within the mainstream
population of New York City high-school students. It
wasn't easy sitting through classes that seemed
remedial in comparison with his Saturday studies at
Columbia, but Lippman recalls proudly her son's ability
to toe the line.

"He was forced to kowtow to a certain degree, but he
did it," Lippman says. "I only got called in once,
which was a bit of a miracle. It was the calculus
teacher complaining that Richard was interrupting his
lesson. I asked how he was interrupting. He said
Richard was always accusing the teacher of using a
false proof. I said, `Well, is he right?' The teacher
said, `Yeah, but I can't tell that to the class. They
wouldn't understand.'"

By the end of his first semester at Brandeis, things
were falling into place. A 96 in English wiped away
much of the stigma of the 60 earned 2 years before. For
good measure, Stallman backed it up with top marks in
American History, Advanced Placement Calculus, and
Microbiology. The crowning touch was a perfect 100 in
Physics. Though still a social outcast, Stallman
finished his 11 months at Brandeis as the fourth-ranked
student in a class of 789.

<Graphic file:/home/craigm/books/free_0306.png>

Stallman's senior-year transcript at Louis D. Brandeis
H.S., November, 1969. Note turnaround in English class
performance. "He was forced to kowtow to a certain
degree," says his mother, "but he did it."

Outside the classroom, Stallman pursued his studies
with even more diligence, rushing off to fulfill his
laboratory-assistant duties at Rockefeller University
during the week and dodging the Vietnam protesters on
his way to Saturday school at Columbia. It was there,
while the rest of the Science Honors Program students
sat around discussing their college choices, that
Stallman finally took a moment to participate in the
preclass bull session.

Recalls Breidbart, "Most of the students were going to
Harvard and MIT, of course, but you had a few going to
other Ivy League schools. As the conversation circled
the room, it became apparent that Richard hadn't said
anything yet. I don't know who it was, but somebody got
up the courage to ask him what he planned to do."

Thirty years later, Breidbart remembers the moment
clearly. As soon as Stallman broke the news that he,
too, would be attending Harvard University in the fall,
an awkward silence filled the room. Almost as if on
cue, the corners of Stallman's mouth slowly turned
upward into a self-satisfied smile.

Says Breidbart, "It was his silent way of saying,

`That's right. You haven't got rid of me yet.'"

Impeach God

Although their relationship was fraught with tension,
Richard Stallman would inherit one noteworthy trait
from his mother: a passion for progressive politics.

It was an inherited trait that would take several
decades to emerge, however. For the first few years of
his life, Stallman lived in what he now admits was a
"political vacuum."See Michael Gross, "Richard Stallman: High School
Misfit, Symbol of Free Software, MacArthur-certified
Genius" (1999).
 Like most Americans during the Eisenhower age, the
Stallman family spent the 50s trying to recapture the
normalcy lost during the wartime years of the 1940s.

"Richard's father and I were Democrats but happy enough
to leave it at that," says Lippman, recalling the
family's years in Queens. "We didn't get involved much
in local or national politics."

That all began to change, however, in the late 1950s
when Alice divorced Daniel Stallman. The move back to
Manhattan represented more than a change of address; it
represented a new, independent identity and a jarring
loss of tranquility.

"I think my first taste of political activism came when
I went to the Queens public library and discovered
there was only a single book on divorce in the whole
library," recalls Lippman. "It was very controlled by
the Catholic church, at least in Elmhurst, where we
lived. I think that was the first inkling I had of the
forces that quietly control our lives."

Returning to her childhood neighborhood, Manhattan's
Upper West Side, Lippman was shocked by the changes
that had taken place since her departure to Hunter
College a decade and a half before. The skyrocketing
demand for postwar housing had turned the neighborhood
into a political battleground. On one side stood the
pro-development city-hall politicians and businessmen
hoping to rebuild many of the neighborhood's blocks to
accommodate the growing number of white-collar workers
moving into the city. On the other side stood the poor
Irish and Puerto Rican tenants who had found an
affordable haven in the neighborhood.

At first, Lippman didn't know which side to choose. As
a new resident, she felt the need for new housing. As a
single mother with minimal income, however, she shared
the poorer tenants' concern over the growing number of
development projects catering mainly to wealthy
residents. Indignant, Lippman began looking for ways to
combat the political machine that was attempting to
turn her neighborhood into a clone of the Upper East Side.

Lippman says her first visit to the local Democratic
party headquarters came in 1958. Looking for a day-care
center to take care of her son while she worked, she
had been appalled by the conditions encountered at one
of the city-owned centers that catered to low-income
residents. "All I remember is the stench of rotten
milk, the dark hallways, the paucity of supplies. I had
been a teacher in private nursery schools. The contrast
was so great. We took one look at that room and left.
That stirred me up."

The visit to the party headquarters proved
disappointing, however. Describing it as "the
proverbial smoke-filled room," Lippman says she became
aware for the first time that corruption within the
party might actually be the reason behind the city's
thinly disguised hostility toward poor residents.
Instead of going back to the headquarters, Lippman
decided to join up with one of the many clubs aimed at
reforming the Democratic party and ousting the last
vestiges of the Tammany Hall machine. Dubbed the
Woodrow Wilson/FDR Reform Democratic Club, Lippman and
her club began showing up at planning and city-council
meetings, demanding a greater say.

"Our primary goal was to fight Tammany Hall, Carmine
DeSapio and his henchman,"Carmine DeSapio holds the dubious distinction of
being
the first Italian-American boss of Tammany Hall, the
New York City political machine. For more information
on DeSapio and the politics of post-war New York, see
John Davenport, "Skinning the Tiger: Carmine DeSapio
and the End of the Tammany Era," New York Affairs
(1975): 3:1.
 says Lippman. "I was the representative to the city
council and was very much involved in creating a viable
urban-renewal plan that went beyond simply adding more
luxury housing to the neighborhood."

Such involvement would blossom into greater political
activity during the 1960s. By 1965, Lippman had become
an "outspoken" supporter for political candidates like
William Fitts Ryan, a Democratic elected to Congress
with the help of reform clubs and one of the first U.S.
representatives to speak out against the Vietnam War.

It wasn't long before Lippman, too, was an outspoken
opponent of U.S. involvement in Indochina. "I was
against the Vietnam war from the time Kennedy sent
troops," she says. "I had read the stories by reporters
and journalists sent to cover the early stages of the
conflict. I really believed their forecast that it
would become a quagmire."

Such opposition permeated the Stallman-Lippman
household. In 1967, Lippman remarried. Her new husband,
Maurice Lippman, a major in the Air National Guard,
resigned his commission to demonstrate his opposition
to the war. Lippman's stepson, Andrew Lippman, was at
MIT and temporarily eligible for a student deferment.
Still, the threat of induction should that deferment
disappear, as it eventually did, made the risk of U.S.
escalation all the more immediate. Finally, there was
Richard who, though younger, faced the prospect of
choosing between Vietnam or Canada when the war lasted
into the 1970s.

"Vietnam was a major issue in our household," says
Lippman. "We talked about it constantly: what would we
do if the war continued, what steps Richard or his
stepbrother would take if they got drafted. We were all
opposed to the war and the draft. We really thought it
was immoral."

For Stallman, the Vietnam War elicited a complex
mixture of emotions: confusion, horror, and,
ultimately, a profound sense of political impotence. As
a kid who could barely cope in the mild authoritarian
universe of private school, Stallman experienced a
shiver whenever the thought of Army boot camp presented itself.

"I was devastated by the fear, but I couldn't imagine
what to do and didn't have the guts to go demonstrate,"
recalls Stallman, whose March 18th birthday earned him
a dreaded low number in the draft lottery when the
federal government finally eliminated college
deferments in 1971. "I couldn't envision moving to
Canada or Sweden. The idea of getting up by myself and
moving somewhere. How could I do that? I didn't know
how to live by myself. I wasn't the kind of person who
felt confident in approaching things like that."

Stallman says he was both impressed and shamed by the
family members who did speak out. Recalling a bumper
sticker on his father's car likening the My Lai
massacre to similar Nazi atrocities in World War II, he
says he was "excited" by his father's gesture of
outrage. "I admired him for doing it," Stallman says.
"But I didn't imagine that I could do anything. I was
afraid that the juggernaut of the draft was going to
destroy me."

Although descriptions of his own unwillingness to speak
out carry a tinge of nostalgic regret, Stallman says he
was ultimately turned off by the tone and direction of
the anti-war movement. Like other members of the
Science Honors Program, he saw the weekend
demonstrations at Columbia as little more than a
distracting spectacle.Chess, another Columbia Science Honors Program alum,
describes the protests as "background noise." "We were
all political," he says, "but the SHP was imporant. We
would never have skipped it for a demonstration."
 Ultimately, Stallman says, the irrational forces
driving the anti-war movement became indistinguishable
from the irrational forces driving the rest of youth
culture. Instead of worshiping the Beatles, girls in
Stallman's age group were suddenly worshiping
firebrands like Abbie Hoffman and Jerry Rubin. To a kid
already struggling to comprehend his teenage peers,
escapist slogans like "make love not war" had a
taunting quality. Not only was it a reminder that
Stallman, the short-haired outsider who hated rock 'n'
roll, detested drugs, and didn't participate in campus
demonstrations, wasn't getting it politically; he
wasn't "getting it" sexually either.

"I didn't like the counter culture much," Stallman
admits. "I didn't like the music. I didn't like the
drugs. I was scared of the drugs. I especially didn't
like the anti-intellectualism, and I didn't like the
prejudice against technology. After all, I loved a
computer. And I didn't like the mindless
anti-Americanism that I often encountered. There were
people whose thinking was so simplistic that if they
disapproved of the conduct of the U.S. in the Vietnam
War, they had to support the North Vietnamese. They
couldn't imagine a more complicated position, I guess."

Such comments alleviate feelings of timidity. They also
underline a trait that would become the key to
Stallman's own political maturation. For Stallman,
political confidence was directly proportionate to
personal confidence. By 1970, Stallman had become
confident in few things outside the realm of math and
science. Nevertheless, confidence in math gave him
enough of a foundation to examine the anti-war movement
in purely logical terms. In the process of doing so,
Stallman had found the logic wanting. Although opposed
to the war in Vietnam, Stallman saw no reason to
disavow war as a means for defending liberty or
correcting injustice. Rather than widen the breach
between himself and his peers, however, Stallman
elected to keep the analysis to himself.

In 1970, Stallman left behind the nightly dinnertime
conversations about politics and the Vietnam War as he
departed for Harvard. Looking back, Stallman describes
the transition from his mother's Manhattan apartment to
life in a Cambridge dorm as an "escape." Peers who
watched Stallman make the transition, however, saw
little to suggest a liberating experience.

"He seemed pretty miserable for the first while at
Harvard," recalls Dan Chess, a classmate in the Science
Honors Program who also matriculated at Harvard. "You
could tell that human interaction was really difficult
for him, and there was no way of avoiding it at
Harvard. Harvard was an intensely social kind of place."

To ease the transition, Stallman fell back on his
strengths: math and science. Like most members of the
Science Honors Program, Stallman breezed through the
qualifying exam for Math 55, the legendary "boot camp"
class for freshman mathematics "concentrators" at
Harvard. Within the class, members of the Science
Honors Program formed a durable unit. "We were the math
mafia," says Chess with a laugh. "Harvard was nothing,
at least compared with the SHP."

To earn the right to boast, however, Stallman, Chess,
and the other SHP alumni had to get through Math 55.
Promising four years worth of math in two semesters,
the course favored only the truly devout. "It was an
amazing class," says David Harbater, a former "math
mafia" member and now a professor of mathematics at the
University of Pennsylvania. "It's probably safe to say
there has never been a class for beginning college
students that was that intense and that advanced. The
phrase I say to people just to get it across is that,
among other things, by the second semester we were
discussing the differential geometry of Banach
manifolds. That's usually when their eyes bug out,
because most people don't start talking about Banach
manifolds until their second year of graduate school."

Starting with 75 students, the class quickly melted
down to 20 by the end of the second semester. Of that
20, says Harbater, "only 10 really knew what they were
doing." Of that 10, 8 would go on to become future
mathematics professors, 1 would go on to teach physics.

"The other one," emphasizes Harbater, "was Richard Stallman."

Seth Breidbart, a fellow Math 55 classmate, remembers

Stallman distinguishing himself from his peers even then.

"He was a stickler in some very strange ways," says
Breidbart. There is a standard technique in math which
everybody does wrong. It's an abuse of notation where
you have to define a function for something and what
you do is you define a function and then you prove that
it's well defined. Except the first time he did and
presented it, he defined a relation and proved that
it's a function. It's the exact same proof, but he used
the correct terminology, which no one else did. That's
just the way he was."

It was in Math 55 that Richard Stallman began to
cultivate a reputation for brilliance. Breidbart
agrees, but Chess, whose competitive streak refused to
yield, says the realization that Stallman might be the
best mathematician in the class didn't set in until the
next year. "It was during a class on Real Analysis,
which I took with Richard the next year," says Chess,
now a math professor at Hunter College. "I actually
remember in a proof about complex valued measures that
Richard came up with an idea that was basically a
metaphor from the calculus of variations. It was the
first time I ever saw somebody solve a problem in a
brilliantly original way."

Chess makes no bones about it: watching Stallman's
solution unfold on the chalkboard was a devastating
blow. As a kid who'd always taken pride in being the
smartest mathematician the room, it was like catching a
glimpse of his own mortality. Years later, as Chess
slowly came to accept the professional rank of a
good-but-not-great mathematician, he had Stallman's
sophomore-year proof to look back on as a taunting
early indicator.

"That's the thing about mathematics," says Chess. "You
don't have to be a first-rank mathematician to
recognize first-rate mathematical talent. I could tell
I was up there, but I could also tell I wasn't at the
first rank. If Richard had chosen to be a
mathematician, he would have been a first-rank mathematician."

For Stallman, success in the classroom was balanced by
the same lack of success in the social arena. Even as
other members of the math mafia gathered to take on the
Math 55 problem sets, Stallman preferred to work alone.
The same went for living arrangements. On the housing
application for Harvard, Stallman clearly spelled out
his preferences. "I said I preferred an invisible,
inaudible, intangible roommate," he says. In a rare
stroke of bureaucratic foresight, Harvard's housing
office accepted the request, giving Stallman a one-room
single for his freshman year.

Breidbart, the only math-mafia member to share a dorm
with Stallman that freshman year, says Stallman slowly
but surely learned how to interact with other students.
He recalls how other dorm mates, impressed by
Stallman's logical acumen, began welcoming his input
whenever an intellectual debate broke out in the dining
club or dorm commons.

"We had the usual bull sessions about solving the
world's problems or what would be the result of
something," recalls Breidbart. "Say somebody discovers
an immortality serum. What do you do? What are the
political results? If you give it to everybody, the
world gets overcrowded and everybody dies. If you limit
it, if you say everyone who's alive now can have it but
their children can't, then you end up with an
underclass of people without it. Richard was just
better able than most to see the unforeseen
circumstances of any decision."

Stallman remembers the discussions vividly. "I was
always in favor of immortality," he says. "I was
shocked that most people regarded immortality as a bad
thing. How else would we be able to see what the world
is like 200 years from now?"

Although a first-rank mathematician and first-rate
debater, Stallman shied away from clear-cut competitive
events that might have sealed his brilliant reputation.
Near the end of freshman year at Harvard, Breidbart
recalls how Stallman conspicuously ducked the Putnam
exam, a prestigious test open to math students
throughout the U.S. and Canada. In addition to giving
students a chance to measure their knowledge in
relation to their peers, the Putnam served as a chief
recruiting tool for academic math departments.
According to campus legend, the top scorer
automatically qualified for a graduate fellowship at
any school of his choice, including Harvard.

Like Math 55, the Putnam was a brutal test of merit. A
six-hour exam in two parts, it seemed explicitly
designed to separate the wheat from the chaff.
Breidbart, a veteran of both the Science Honors Program
and Math 55, describes it as easily the most difficult
test he ever took. "Just to give you an idea of how
difficult it was," says Breidbart, "the top score was a
120, and my score the first year was in the 30s. That
score was still good enough to place me 101st in the country."

Surprised that Stallman, the best student in the class,
had passed on the test, Breidbart says he and a fellow
classmate cornered him in the dining common and
demanded an explanation. "He said he was afraid of not
doing well," Breidbart recalls.

Breidbart and the friend quickly wrote down a few
problems from memory and gave them to Stallman. "He
solved all of them," Breidbart says, "leading me to
conclude that by not doing well, he either meant coming
in second or getting something wrong."

Stallman remembers the episode a bit differently. "I
remember that they did bring me the questions and it's
possible that I solved one of them, but I'm pretty sure
I didn't solve them all," he says. Nevertheless,
Stallman agrees with Breidbart's recollection that fear
was the primary reason for not taking the test. Despite
a demonstrated willingness to point out the
intellectual weaknesses of his peers and professors in
the classroom, Stallman hated the notion of
head-to-head competition.

"It's the same reason I never liked chess," says
Stallman. "Whenever I'd play, I would become so
consumed by the fear of making a single mistake that I
would start making stupid mistakes very early in the
game. The fear became a self-fulfilling prophecy."

Whether such fears ultimately prompted Stallman to shy
away from a mathematical career is a moot issue. By the
end of his freshman year at Harvard, Stallman had other
interests pulling him away from the field. Computer
programming, a latent fascination throughout Stallman's
high-school years, was becoming a full-fledged passion.
Where other math students sought occasional refuge in
art and history classes, Stallman sought it in the
computer-science laboratory.

For Stallman, the first taste of real computer
programming at the IBM New York Scientific Center had
triggered a desire to learn more. "Toward the end of my
first year at Harvard school, I started to have enough
courage to go visit computer labs and see what they
had. I'd ask them if they had extra copies of any
manuals that I could read."

Taking the manuals home, Stallman would examine machine
specifications, compare them with other machines he
already knew, and concoct a trial program, which he
would then bring back to the lab along with the
borrowed manual. Although some labs balked at the
notion of a strange kid coming off the street and
working on the lab machinery, most recognized
competence when they saw it and let Stallman run the
programs he had created.

One day, near the end of freshman year, Stallman heard
about a special laboratory near MIT. The laboratory was
located on the ninth floor an off-campus building in
Tech Square, the newly built facility dedicated to
advanced research. According to the rumors, the lab
itself was dedicated to the cutting-edge science of
artificial intelligence and boasted the cutting-edge
machines and software programs to match.

Intrigued, Stallman decided to pay a visit.

The trip was short, about 2 miles on foot, 10 minutes
by train, but as Stallman would soon find out, MIT and
Harvard can feel like opposite poles of the same
planet. With its maze-like tangle of interconnected
office buildings, the Institute's campus offered an
aesthetic yin to Harvard's spacious colonial-village
yang. The same could be said for the student body, a
geeky collection of ex-high school misfits known more
for its predilection for pranks than its politically
powerful alumni.

The yin-yang relationship extended to the AI Lab as
well. Unlike Harvard computer labs, there was no
grad-student gatekeeper, no clipboard waiting list for
terminal access, no explicit atmosphere of "look but
don't touch." Instead, Stallman found only a collection
of open terminals and robotic arms, presumably the
artifacts of some A.I. experiment.

Although the rumors said anybody could sit down at the
terminals, Stallman decided to stick with the original
plan. When he encountered a lab employee, he asked if
the lab had any spare manuals it could loan to an
inquisitive student. "They had some, but a lot of
things weren't documented," Stallman recalls. "They
were hackers after all."

Stallman left with something even better than a manual:
a job. Although he doesn't remember what the first
project was, he does remember coming back to the AI Lab
the next week, grabbing an open terminal and writing
software code.

Looking back, Stallman sees nothing unusual in the AI
Lab's willingness to accept an unproven outsider at
first glance. "That's the way it was back then," he
says. "That's the way it still is now. I'll hire
somebody when I meet him if I see he's good. Why wait?
Stuffy people who insist on putting bureaucracy into
everything really miss the point. If a person is good,
he shouldn't have to go through a long, detailed hiring
process; he should be sitting at a computer writing code."

To get a taste of "bureaucratic and stuffy," Stallman
need only visit the computer labs at Harvard. There,
access to the terminals was doled out according to
academic rank. As an undergrad, Stallman usually had to
sign up or wait until midnight, about the time most
professors and grad students finished their daily work
assignments. The waiting wasn't difficult, but it was
frustrating. Waiting for a public terminal, knowing all
the while that a half dozen equally usable machines
were sitting idle inside professors' locked offices,
seemed the height of illogic. Although Stallman paid
the occasional visit to the Harvard computer labs, he
preferred the more egalitarian policies of the AI Lab.
"It was a breath of fresh air," he says. "At the AI
Lab, people seemed more concerned about work than status."

Stallman quickly learned that the AI Lab's first-come,
first-served policy owed much to the efforts of a
vigilant few. Many were holdovers from the days of
Project MAC, the Department of Defense-funded research
program that had given birth to the first time-share
operating systems. A few were already legends in the
computing world. There was Richard Greenblatt, the
lab's in-house Lisp expert and author of MacHack, the
computer chess program that had once humbled A.I.
critic Hubert Dreyfus. There was Gerald Sussman,
original author of the robotic block-stacking program
HACKER. And there was Bill Gosper, the in-house math
whiz already in the midst of an 18-month hacking bender
triggered by the philosophical implications of the
computer game LIFE.See Steven Levy, Hackers (Penguin USA [paperback],
1984): 144. Levy devotes about five pages to describing
Gosper's fascination with LIFE, a math-based software
game first created by British mathematician John
Conway. I heartily recommend this book as a supplement,
perhaps even a prerequisite, to this one.

Members of the tight-knit group called themselves "
hackers." Over time, they extended the "hacker"
description to Stallman as well. In the process of
doing so, they inculcated Stallman in the ethical
traditions of the "hacker ethic ." To be a hacker meant
more than just writing programs, Stallman learned. It
meant writing the best possible programs. It meant
sitting at a terminal for 36 hours straight if that's
what it took to write the best possible programs. Most
importantly, it meant having access to the best
possible machines and the most useful information at
all times. Hackers spoke openly about changing the
world through software, and Stallman learned the
instinctual hacker disdain for any obstacle that
prevented a hacker from fulfilling this noble cause.
Chief among these obstacles were poor software,
academic bureaucracy, and selfish behavior.

Stallman also learned the lore, stories of how hackers,
when presented with an obstacle, had circumvented it in
creative ways. Stallman learned about " lock hacking,"
the art of breaking into professors' offices to
"liberate" sequestered terminals. Unlike their pampered
Harvard counterparts, MIT faculty members knew better
than to treat the AI Lab's terminal as private
property. If a faculty member made the mistake of
locking away a terminal for the night, hackers were
quick to correct the error. Hackers were equally quick
to send a message if the mistake repeated itself. "I
was actually shown a cart with a heavy cylinder of
metal on it that had been used to break down the door
of one professor's office,"Gerald Sussman, an MIT faculty member and hacker
whose
work at the AI Lab predates Stallman's, disputes this
memory. According to Sussman, the hackers never broke
any doors to retrieve terminals.
 Stallman says.

Such methods, while lacking in subtlety, served a
purpose. Although professors and administrators
outnumbered hackers two-to-one inside the AI Lab, the
hacker ethic prevailed. Indeed, by the time of
Stallman's arrival at the AI Lab, hackers and the AI
Lab administration had coevolved into something of a
symbiotic relationship. In exchange for fixing the
machines and keeping the software up and running,
hackers earned the right to work on favorite pet
projects. Often, the pet projects revolved around
improving the machines and software programs even
further. Like teenage hot-rodders, most hackers viewed
tinkering with machines as its own form of entertainment.

Nowhere was this tinkering impulse better reflected
than in the operating system that powered the lab's
central PDP-6 mini-computer. Dubbed ITS, short for the
Incompatible Time Sharing system, the operating system
incorporated the hacking ethic into its very design.
Hackers had built it as a protest to Project MAC's
original operating system, the Compatible Time Sharing
System, CTSS, and named it accordingly. At the time,
hackers felt the CTSS design too restrictive, limiting
programmers' power to modify and improve the program's
own internal architecture if needed. According to one
legend passed down by hackers, the decision to build
ITS had political overtones as well. Unlike CTSS, which
had been designed for the IBM 7094, ITS was built
specifically for the PDP-6. In letting hackers write
the systems themselves, AI Lab administrators
guaranteed that only hackers would feel comfortable
using the PDP-6. In the feudal world of academic
research, the gambit worked. Although the PDP-6 was
co-owned in conjunction with other departments, A.I.
researchers soon had it to themselves.

ITS boasted features most commercial operating systems
wouldn't offer for years, features such as
multitasking, debugging, and full-screen editing
capability. Using it and the PDP-6 as a foundation, the
Lab had been able to declare independence from Project
MAC shortly before Stallman's arrival.I apologize for the whirlwind summary of
ITS' genesis,
an operating system many hackers still regard as the
epitome of the hacker ethos. For more information on
the program's political significance, see Simson
Garfinkel, Architects of the Information Society:
Thirty-Five Years of the Laboratory for Computer
Science at MIT (MIT Press, 1999).

As an apprentice hacker, Stallman quickly became
enamored with ITS. Although forbidding to most
newcomers, the program contained many built-in features
that provided a lesson in software development to
hacker apprentices such as himself.

"ITS had a very elegant internal mechanism for one
program to examine another," says Stallman, recalling
the program. "You could examine all sorts of status
about another program in a very clean, well-specified way."

Using this feature, Stallman was able to watch how
programs written by hackers processed instructions as
they ran. Another favorite feature would allow the
monitoring program to freeze the monitored program's
job between instructions. In other operating systems,
such a command would have resulted in half-computed
gibberish or an automatic systems crash. In ITS, it
provided yet another way to monitor the step-by-step performance.

"If you said, `Stop the job,' it would always be
stopped in user mode. It would be stopped between two
user-mode instructions, and everything about the job
would be consistent for that point," Stallman says. "If
you said, `Resume the job,' it would continue properly.
Not only that, but if you were to change the status of
the job and then change it back, everything would be
consistent. There was no hidden status anywhere."

By the end of 1970, hacking at the AI Lab had become a
regular part of Stallman's weekly schedule. From Monday
to Thursday, Stallman devoted his waking hours to his
Harvard classes. As soon as Friday afternoon arrived,
however, he was on the T, heading down to MIT for the
weekend. Stallman usually timed his arrival to coincide
with the ritual food run. Joining five or six other
hackers in their nightly quest for Chinese food, he
would jump inside a beat-up car and head across the
Harvard Bridge into nearby Boston. For the next two
hours, he and his hacker colleagues would discuss
everything from ITS to the internal logic of the
Chinese language and pictograph system. Following
dinner, the group would return to MIT and hack code
until dawn.

For the geeky outcast who rarely associated with his
high-school peers, it was a heady experience, suddenly
hanging out with people who shared the same
predilection for computers, science fiction, and
Chinese food. "I remember many sunrises seen from a car
coming back from Chinatown," Stallman would recall
nostalgically, 15 years after the fact in a speech at
the Swedish Royal Technical Institute. "It was actually
a very beautiful thing to see a sunrise, 'cause that's
such a calm time of day. It's a wonderful time of day
to get ready to go to bed. It's so nice to walk home
with the light just brightening and the birds starting
to chirp; you can get a real feeling of gentle
satisfaction, of tranquility about the work that you
have done that night."See Richard Stallman, "RMS lecture at KTH (Sweden),"
(October 30, 1986).

http://www.gnu.org/philosophy/stallman-kth.html

The more Stallman hung out with the hackers, the more
he adopted the hacker worldview. Already committed to
the notion of personal liberty, Stallman began to
infuse his actions with a sense of communal
responsibility. When others violated the communal code,
Stallman was quick to speak out. Within a year of his
first visit, Stallman was the one breaking into locked
offices, trying to recover the sequestered terminals
that belonged to the lab community as a whole. In true
hacker fashion, Stallman also sought to make his own
personal contribution to the art of lock hacking. One
of the most artful door-opening tricks, commonly
attributed to Greenblatt, involved bending a stiff wire
into a cane and attaching a loop of tape to the long
end. Sliding the wire under the door, a hacker could
twist and rotate the wire so that the long end touched
the door knob. Provided the adhesive on the tape held,
a hacker could open the doorknob with a few sharp twists.

When Stallman tried the trick, he found it good but
wanting in a few places. Getting the tape to stick
wasn't always easy, and twisting the wire in a way that
turned the doorknob was similarly difficult. Stallman
remembered that the hallway ceiling possessed tiles
that could be slid away. Some hackers, in fact, had
used the false ceiling as a way to get around locked
doors, an approach that generally covered the
perpetrator in fiberglass but got the job done.

Stallman considered an alternative approach. What if,
instead of slipping a wire under the door, a hacker
slid away one of the panels and stood over the door jamb?

Stallman took it upon himself to try it out. Instead of
using a wire, Stallman draped out a long U-shaped loop
of magnetic tape, fastening a loop of adhesive tape at
the base of the U. Standing over the door jamb, he
dangled the tape until it looped under the doorknob.
Lifting the tape until the adhesive fastened, he then
pulled on the left end of the tape, twisting the
doorknob counter-clockwise. Sure enough, the door
opened. Stallman had added a new twist to the art of
lock hacking.

"Sometimes you had to kick the door after you turned
the door knob," says Stallman, recalling the lingering
bugginess of the new method. "It took a little bit of
balance to pull it off."

Such activities reflected a growing willingness on
Stallman's part to speak and act out in defense of
political beliefs. The AI Lab's spirit of direct action
had proved inspirational enough for Stallman to break
out of the timid impotence of his teenage years.
Breaking into an office to free a terminal wasn't the
same as taking part in a protest march, but it was
effective in ways that most protests weren't. It solved
the problem at hand.

By the time of his last years at Harvard, Stallman was
beginning to apply the whimsical and irreverent lessons
of the AI Lab back at school.

"Did he tell you about the snake?" his mother asks at
one point during an interview. "He and his dorm mates
put a snake up for student election. Apparently it got
a considerable number of votes."

Stallman verifies the snake candidacy with a few
caveats. The snake was a candidate for election within
Currier House, Stallman's dorm, not the campus-wide
student council. Stallman does remember the snake
attracting a fairly significant number of votes, thanks
in large part to the fact that both the snake and its
owner both shared the same last name. "People may have
voted for it, because they thought they were voting for
the owner," Stallman says. "Campaign posters said that
the snake was `slithering for' the office. We also said
it was an `at large' candidate, since it had climbed
into the wall through the ventilating unit a few weeks
before and nobody knew where it was."

Running a snake for dorm council was just one of
several election-related pranks. In a later election,
Stallman and his dorm mates nominated the house
master's son. "His platform was mandatory retirement at
age seven," Stallman recalls. Such pranks paled in
comparison to the fake-candidate pranks on the MIT
campus, however. One of the most successful
fake-candidate pranks was a cat named Woodstock, which
actually managed to outdraw most of the human
candidates in a campus-wide election. "They never
announced how many votes Woodstock got, and they
treated those votes as spoiled ballots," Stallman
recalls. "But the large number of spoiled ballots in
that election suggested that Woodstock had actually
won. A couple of years later, Woodstock was
suspiciously run over by a car. Nobody knows if the
driver was working for the MIT administration."
Stallman says he had nothing to do with Woodstock's
candidacy, "but I admired it."In an email shortly after this book went into its
final
edit cycle, Stallman says he drew political inspiration
from the Harvard campus as well. "In my first year of
Harvard, in a Chinese History class, I read the story
of the first revolt against the Chin dynasty," he says.
"The story is not reliable history, but it was very
moving."

At the AI Lab, Stallman's political activities had a
sharper-edged tone. During the 1970s, hackers faced the
constant challenge of faculty members and
administrators pulling an end-run around ITS and its
hacker-friendly design. One of the first attempts came
in the mid-1970s, as more and more faculty members
began calling for a file security system to protect
research data. Most other computer labs had installed
such systems during late 1960s, but the AI Lab, through
the insistence of Stallman and other hackers, remained
a security-free zone.

For Stallman, the opposition to security was both
ethical and practical. On the ethical side, Stallman
pointed out that the entire art of hacking relied on
intellectual openness and trust. On the practical side,
he pointed to the internal structure of ITS being built
to foster this spirit of openness, and any attempt to
reverse that design required a major overhaul.

"The hackers who wrote the Incompatible Timesharing
System decided that file protection was usually used by
a self-styled system manager to get power over everyone
else," Stallman would later explain. "They didn't want
anyone to be able to get power over them that way, so
they didn't implement that kind of a feature. The
result was, that whenever something in the system was
broken, you could always fix it."See Richard Stallman (1986).

Through such vigilance, hackers managed to keep the AI
Lab's machines security-free. Over at the nearby MIT
Laboratory for Computer Sciences, however,
security-minded faculty members won the day. The LCS
installed its first password-based system in 1977. Once
again, Stallman took it upon himself to correct what he
saw as ethical laxity. Gaining access to the software
code that controlled the password system, Stallman
implanted a software command that sent out a message to
any LCS user who attempted to choose a unique password.
If a user entered "starfish," for example, the message
came back something like: I see you chose the password
"starfish." I suggest that you switch to the password
"carriage return." It's much easier to type, and also
it stands up to the principle that there should be no passwords.See Steven
Levy, Hackers (Penguin USA [paperback],
1984): 417. I have modified this quote, which Levy also
uses as an excerpt, to illustrate more directly how the
program might reveal the false security of the system.
Levy uses the placeholder "[such and such]."
 Users who did enter "carriage return"-that is, users
who simply pressed the Enter or Return button, entering
a blank string instead of a unique password-left their
accounts accessible to the world at large. As scary as
that might have been for some users, it reinforced the
hacker notion that Institute computers, and even
Institute computer files, belonged to the public, not
private individuals. Stallman, speaking in an interview
for the 1984 book Hackers, proudly noted that one-fifth
of the LCS staff accepted this argument and employed
the blank-string password.See Steven Levy, Hackers (Penguin USA [paperback],
1984): 417.

Stallman's null-string crusade would prove ultimately
futile. By the early 1980s, even the AI Lab's machines
were sporting password-based security systems. Even so,
it represents a major milestone in terms of Stallman's
personal and political maturation. To the objective
observer familiar with Stallman's later career, it
offers a convenient inflection point between the timid
teenager afraid to speak out even on issues of
life-threatening importance and the adult activist who
would soon turn needling and cajoling into a full-time
occupation.

In voicing his opposition to computer security,
Stallman drew on many of the forces that had shaped his
early life: hunger for knowledge, distaste for
authority, and frustration over hidden procedures and
rules that rendered some people clueless outcasts. He
would also draw on the ethical concepts that would
shape his adult life: communal responsibility, trust,
and the hacker spirit of direct action. Expressed in
software-computing terms, the null string represents
the 1.0 version of the Richard Stallman political
worldview-incomplete in a few places but, for the most
part, fully mature.

Looking back, Stallman hesitates to impart too much
significance to an event so early in his hacking
career. "In that early stage there were a lot of people
who shared my feelings," he says. "The large number of
people who adopted the null string as their password
was a sign that many people agreed that it was the
proper thing to do. I was simply inclined to be an
activist about it."

Stallman does credit the AI Lab for awakening that
activist spirit, however. As a teenager, Stallman had
observed political events with little idea as to how a
single individual could do or say anything of
importance. As a young adult, Stallman was speaking out
on matters in which he felt supremely confident,
matters such as software design, communal
responsibility, and individual freedom. "I joined this
community which had a way of life which involved
respecting each other's freedom," he says. "It didn't
take me long to figure out that that was a good thing.
It took me longer to come to the conclusion that this
was a moral issue."

Hacking at the AI Lab wasn't the only activity helping
to boost Stallman's esteem. During the middle of his
sophomore year at Harvard, Stallman had joined up with
a dance troupe that specialized in folk dances . What
began as a simple attempt to meet women and expand his
social horizons soon expanded into yet another passion
alongside hacking. Dancing in front of audiences
dressed in the native garb of a Balkan peasant,
Stallman no longer felt like the awkward, uncoordinated
10-year-old whose attempts to play football had ended
in frustration. He felt confident, agile, and alive.
For a brief moment, he even felt a hint of emotional
connection. He soon found being in front of an audience
fun, and it wasn't long thereafter that he began
craving the performance side of dancing almost as much
as the social side.

Although the dancing and hacking did little to improve
Stallman's social standing, they helped him overcome
the feelings of weirdness that had clouded his
pre-Harvard life. Instead of lamenting his weird
nature, Stallman found ways to celebrate it. In 1977,
while attending a science-fiction convention, he came
across a woman selling custom-made buttons. Excited,
Stallman ordered a button with the words "Impeach God"
emblazoned on it.

For Stallman, the "Impeach God" message worked on many
levels. An atheist since early childhood, Stallman
first saw it as an attempt to set a "second front" in
the ongoing debate on religion. "Back then everybody
was arguing about God being dead or alive," Stallman
recalls. "`Impeach God' approached the subject of God
from a completely different viewpoint. If God was so
powerful as to create the world and yet do nothing to
correct the problems in it, why would we ever want to
worship such a God? Wouldn't it be better to put him on trial?"

At the same time, "Impeach God" was a satirical take on
America and the American political system. The
Watergate scandal of the 1970s affected Stallman
deeply. As a child, Stallman had grown up mistrusting
authority. Now, as an adult, his mistrust had been
solidified by the culture of the AI Lab hacker
community. To the hackers, Watergate was merely a
Shakespearean rendition of the daily power struggles
that made life such a hassle for those without
privilege. It was an outsized parable for what happened
when people traded liberty and openness for security
and convenience.

Buoyed by growing confidence, Stallman wore the button
proudly. People curious enough to ask him about it
received the same well-prepared spiel. "My name is
Jehovah," Stallman would say. "I have a special plan to
save the universe, but because of heavenly security
reasons I can't tell you what that plan is. You're just
going to have to put your faith in me, because I see
the picture and you don't. You know I'm good because I
told you so. If you don't believe me, I'll throw you on
my enemies list and throw you in a pit where Infernal
Revenue Service will audit your taxes for eternity."

Those who interpreted the spiel as a word-for-word
parody of the Watergate hearings only got half the
message. For Stallman, the other half of the message
was something only his fellow hackers seemed to be
hearing. One hundred years after Lord Acton warned
about absolute power corrupting absolutely, Americans
seemed to have forgotten the first part of Acton's
truism: power, itself, corrupts. Rather than point out
the numerous examples of petty corruption, Stallman
felt content voicing his outrage toward an entire
system that trusted power in the first place.

"I figured why stop with the small fry," says Stallman,
recalling the button and its message. "If we went after
Nixon, why not going after Mr. Big. The way I see it,
any being that has power and abuses it deserves to have
that power taken away."

Small Puddle of Freedom

Ask anyone who's spent more than a minute in Richard
Stallman's presence, and you'll get the same
recollection: forget the long hair. Forget the quirky
demeanor. The first thing you notice is the gaze. One
look into Stallman's green eyes, and you know you're in
the presence of a true believer.

To call the Stallman gaze intense is an understatement.
Stallman's eyes don't just look at you; they look
through you. Even when your own eyes momentarily shift
away out of simple primate politeness, Stallman's eyes
remain locked-in, sizzling away at the side of your
head like twin photon beams.

Maybe that's why most writers, when describing

Stallman, tend to go for the religious angle. In a 1998

Salon.com article titled "The Saint of Free Software,"

Andrew Leonard describes Stallman's green eyes as

"radiating the power of an Old Testament prophet."See Andrew Leonard, "The

Saint of Free Software,"

Salon.com (August 1998).

http://www.salon.com/21st/feature/1998/08/cov_31feature.html

 A 1999 Wired magazine article describes the Stallman

beard as "Rasputin-like,"See Leander Kahney, "Linux's Forgotten Man," Wired

News

(March 5, 1999).

http://www.wired.com/news/print/0,1294,18291,00.html

 while a London Guardian profile describes the Stallman

smile as the smile of "a disciple seeing Jesus."See "Programmer on moral high

ground; Free software is

a moral issue for Richard Stallman believes in freedom

and free software." London Guardian (November 6, 1999).

These are just a small sampling of the religious

comparisons. To date, the most extreme comparison has

to go to Linus Torvalds, who, in his autobiography-see

Linus Torvalds and David Diamond, Just For Fun: The

Story of an Accidentaly Revolutionary (HarperCollins

Publishers, Inc., 2001): 58-writes "Richard Stallman is

the God of Free Software." Honorable mention goes to

Larry Lessig, who, in a footnote description of

Stallman in his book-see Larry Lessig, The Future of

Ideas (Random House, 2001): 270-likens Stallman to

Moses: . . . as with Moses, it was another leader,

Linus Torvalds, who finally carried the movement into

the promised land by facilitating the development of

the final part of the OS puzzle. Like Moses, too,

Stallman is both respected and reviled by allies within

the movement. He is [an] unforgiving, and hence for

many inspiring, leader of a critically important aspect

of modern culture. I have deep respect for the

principle and commitment of this extraordinary

individual, though I also have great respect for those

who are courageous enough to question his thinking and

then sustain his wrath. In a final interview with

Stallman, I asked him his thoughts about the religious

comparisons. "Some people do compare me with an Old

Testament prophent, and the reason is Old Testament

prophets said certain social practices were wrong. They

wouldn't compromise on moral issues. They couldn't be

bought off, and they were usually treated with contempt."

Such analogies serve a purpose, but they ultimately
fall short. That's because they fail to take into
account the vulnerable side of the Stallman persona.
Watch the Stallman gaze for an extended period of time,
and you will begin to notice a subtle change. What
appears at first to be an attempt to intimidate or
hypnotize reveals itself upon second and third viewing
as a frustrated attempt to build and maintain contact.
If, as Stallman himself has suspected from time to
time, his personality is the product of autism or
Asperger Syndrome, his eyes certainly confirm the
diagnosis. Even at their most high-beam level of
intensity, they have a tendency to grow cloudy and
distant, like the eyes of a wounded animal preparing to
give up the ghost.

My own first encounter with the legendary Stallman gaze
dates back to the March, 1999, LinuxWorld Convention
and Expo in San Jose, California. Billed as a "coming
out party" for the Linux software community, the
convention also stands out as the event that
reintroduced Stallman to the technology media.
Determined to push for his proper share of credit,
Stallman used the event to instruct spectators and
reporters alike on the history of the GNU Project and
the project's overt political objectives.

As a reporter sent to cover the event, I received my
own Stallman tutorial during a press conference
announcing the release of GNOME 1.0, a free software
graphic user interface. Unwittingly, I push an entire
bank of hot buttons when I throw out my very first
question to Stallman himself: do you think GNOME's
maturity will affect the commercial popularity of the
Linux operating system?

"I ask that you please stop calling the operating
system Linux," Stallman responds, eyes immediately
zeroing in on mine. "The Linux kernel is just a small
part of the operating system. Many of the software
programs that make up the operating system you call
Linux were not developed by Linus Torvalds at all. They
were created by GNU Project volunteers, putting in
their own personal time so that users might have a free
operating system like the one we have today. To not
acknowledge the contribution of those programmers is
both impolite and a misrepresentation of history.
That's why I ask that when you refer to the operating
system, please call it by its proper name, GNU/Linux."

Taking the words down in my reporter's notebook, I
notice an eerie silence in the crowded room. When I
finally look up, I find Stallman's unblinking eyes
waiting for me. Timidly, a second reporter throws out a
question, making sure to use the term " GNU/Linux"
instead of Linux. Miguel de Icaza, leader of the GNOME
project, fields the question. It isn't until halfway
through de Icaza's answer, however, that Stallman's
eyes finally unlock from mine. As soon as they do, a
mild shiver rolls down my back. When Stallman starts
lecturing another reporter over a perceived error in
diction, I feel a guilty tinge of relief. At least he
isn't looking at me, I tell myself.

For Stallman, such face-to-face moments would serve
their purpose. By the end of the first LinuxWorld show,
most reporters know better than to use the term "Linux"
in his presence, and wired.com is running a story
comparing Stallman to a pre-Stalinist revolutionary
erased from the history books by hackers and
entrepreneurs eager to downplay the GNU Project's
overly political objectives.2 Other articles follow,
and while few reporters call the operating system
GNU/Linux in print, most are quick to credit Stallman
for launching the drive to build a free software
operating system 15 years before.

I won't meet Stallman again for another 17 months.
During the interim, Stallman will revisit Silicon
Valley once more for the August, 1999 LinuxWorld show.
Although not invited to speak, Stallman does managed to
deliver the event's best line. Accepting the show's
Linus Torvalds Award for Community Service-an award
named after Linux creator Linus Torvalds-on behalf of
the Free Software Foundation, Stallman wisecracks,
"Giving the Linus Torvalds Award to the Free Software
Foundation is a bit like giving the Han Solo Award to
the Rebel Alliance."

This time around, however, the comments fail to make
much of a media dent. Midway through the week, Red Hat,
Inc., a prominent GNU/Linux vendor, goes public. The
news merely confirms what many reporters such as myself
already suspect: "Linux" has become a Wall Street
buzzword, much like "e-commerce" and "dot-com" before
it. With the stock market approaching the Y2K rollover
like a hyperbola approaching its vertical asymptote,
all talk of free software or open source as a political
phenomenon falls by the wayside.

Maybe that's why, when LinuxWorld follows up its first
two shows with a third LinuxWorld show in August, 2000,
Stallman is conspicuously absent.

My second encounter with Stallman and his trademark
gaze comes shortly after that third LinuxWorld show.
Hearing that Stallman is going to be in Silicon Valley,
I set up a lunch interview in Palo Alto, California.
The meeting place seems ironic, not only because of the
recent no-show but also because of the overall
backdrop. Outside of Redmond, Washington, few cities
offer a more direct testament to the economic value of
proprietary software. Curious to see how Stallman, a
man who has spent the better part of his life railing
against our culture's predilection toward greed and
selfishness, is coping in a city where even
garage-sized bungalows run in the half-million-dollar
price range, I make the drive down from Oakland.

I follow the directions Stallman has given me, until I
reach the headquarters of Art.net, a nonprofit "virtual
artists collective." Located in a hedge-shrouded house
in the northern corner of the city, the Art.net
headquarters are refreshingly run-down. Suddenly, the
idea of Stallman lurking in the heart of Silicon Valley
doesn't seem so strange after all.

I find Stallman sitting in a darkened room, tapping
away on his gray laptop computer. He looks up as soon
as I enter the room, giving me a full blast of his
200-watt gaze. When he offers a soothing "Hello," I
offer a return greeting. Before the words come out,
however, his eyes have already shifted back to the
laptop screen.

"I'm just finishing an article on the spirit of
hacking," Stallman says, fingers still tapping. "Take a look."

I take a look. The room is dimly lit, and the text
appears as greenish-white letters on a black
background, a reversal of the color scheme used by most
desktop word-processing programs, so it takes my eyes a
moment to adjust. When they do, I find myself reading
Stallman's account of a recent meal at a Korean
restaurant. Before the meal, Stallman makes an
interesting discovery: the person setting the table has
left six chopsticks instead of the usual two in front
of Stallman's place setting. Where most restaurant
goers would have ignored the redundant pairs, Stallman
takes it as challenge: find a way to use all six
chopsticks at once. Like many software hacks, the
successful solution is both clever and silly at the
same time. Hence Stallman's decision to use it as an
illustration.

As I read the story, I feel Stallman watching me
intently. I look over to notice a proud but child-like
half smile on his face. When I praise the essay, my
comment barely merits a raised eyebrow.

"I'll be ready to go in a moment," he says.

Stallman goes back to tapping away at his laptop. The
laptop is gray and boxy, not like the sleek, modern
laptops that seemed to be a programmer favorite at the
recent LinuxWorld show. Above the keyboard rides a
smaller, lighter keyboard, a testament to Stallman's
aging hands. During the late 1980s, when Stallman was
putting in 70- and 80-hour work weeks writing the first
free software tools and programs for the GNU Project,
the pain in Stallman's hands became so unbearable that
he had to hire a typist. Today, Stallman relies on a
keyboard whose keys require less pressure than a
typical computer keyboard.

Stallman has a tendency to block out all external
stimuli while working. Watching his eyes lock onto the
screen and his fingers dance, one quickly gets the
sense of two old friends locked in deep conversation.

The session ends with a few loud keystrokes and the
slow disassembly of the laptop.

"Ready for lunch?" Stallman asks.

We walk to my car. Pleading a sore ankle, Stallman
limps along slowly. Stallman blames the injury on a
tendon in his left foot. The injury is three years old
and has gotten so bad that Stallman, a huge fan of folk
dancing, has been forced to give up all dancing
activities. "I love folk dancing inherently," Stallman
laments. "Not being able to dance has been a tragedy
for me."

Stallman's body bears witness to the tragedy. Lack of
exercise has left Stallman with swollen cheeks and a
pot belly that was much less visible the year before.
You can tell the weight gain has been dramatic, because
when Stallman walks, he arches his back like a pregnant
woman trying to accommodate an unfamiliar load.

The walk is further slowed by Stallman's willingness to
stop and smell the roses, literally. Spotting a
particularly beautiful blossom, he tickles the
innermost petals with his prodigious nose, takes a deep
sniff and steps back with a contented sigh.

"Mmm, rhinophytophilia,"At the time, I thought Stallman was referring to the
flower's scientific name. Months later, I would learn
that rhinophytophilia was in fact a humorous reference
to the activity, i.e., Stallman sticking his nose into
a flower and enjoying the moment. For another humorous
Stallman flower incident, visit:
http://www.stallman.org/texas.html
 he says, rubbing his back.

The drive to the restaurant takes less than three
minutes. Upon recommendation from Tim Ney, former
executive director of the Free Software Foundation, I
have let Stallman choose the restaurant. While some
reporters zero in on Stallman's monk-like lifestyle,
the truth is, Stallman is a committed epicure when it
comes to food. One of the fringe benefits of being a
traveling missionary for the free software cause is the
ability to sample delicious food from around the world.
"Visit almost any major city in the world, and chances
are Richard knows the best restaurant in town," says
Ney. "Richard also takes great pride in knowing what's
on the menu and ordering for the entire table."

For today's meal, Stallman has chosen a Cantonese-style
dim sum restaurant two blocks off University Avenue,
Palo Alto's main drag. The choice is partially inspired
by Stallman's recent visit to China, including a
lecture stop in Guangdong province, in addition to
Stallman's personal aversion to spicier Hunanese and
Szechuan cuisine. "I'm not a big fan of spicy,"
Stallman admits.

We arrive a few minutes after 11 a.m. and find
ourselves already subject to a 20-minute wait. Given
the hacker aversion to lost time, I hold my breath
momentarily, fearing an outburst. Stallman, contrary to
expectations, takes the news in stride.

"It's too bad we couldn't have found somebody else to
join us," he tells me. "It's always more fun to eat
with a group of people."

During the wait, Stallman practices a few dance steps.
His moves are tentative but skilled. We discuss current
events. Stallman says his only regret about not
attending LinuxWorld was missing out on a press
conference announcing the launch of the GNOME
Foundation. Backed by Sun Microsystems and IBM, the
foundation is in many ways a vindication for Stallman,
who has long championed that free software and
free-market economics need not be mutually exclusive.
Nevertheless, Stallman remains dissatisfied by the
message that came out.

"The way it was presented, the companies were talking
about Linux with no mention of the GNU Project at all,"
Stallman says.

Such disappointments merely contrast the warm response
coming from overseas, especially Asia, Stallman notes.
A quick glance at the Stallman 2000 travel itinerary
bespeaks the growing popularity of the free software
message. Between recent visits to India, China, and
Brazil, Stallman has spent 12 of the last 115 days on
United States soil. His travels have given him an
opportunity to see how the free software concept
translates into different languages of cultures.

"In India many people are interested in free software,
because they see it as a way to build their computing
infrastructure without spending a lot of money,"
Stallman says. "In China, the concept has been much
slower to catch on. Comparing free software to free
speech is harder to do when you don't have any free
speech. Still, the level of interest in free software
during my last visit was profound."

The conversation shifts to Napster, the San Mateo,
California software company, which has become something
of a media cause cÈlËbre in recent months. The company
markets a controversial software tool that lets music
fans browse and copy the music files of other music
fans. Thanks to the magnifying powers of the Internet,
this so-called "peer-to-peer" program has evolved into
a de facto online juke box, giving ordinary music fans
a way to listen to MP3 music files over the computer
without paying a royalty or fee, much to record
companies' chagrin.

Although based on proprietary software, the Napster
system draws inspiration from the long-held Stallman
contention that once a work enters the digital realm-in
other words, once making a copy is less a matter of
duplicating sounds or duplicating atoms and more a
matter of duplicating information-the natural human
impulse to share a work becomes harder to restrict.
Rather than impose additional restrictions, Napster
execs have decided to take advantage of the impulse.
Giving music listeners a central place to trade music
files, the company has gambled on its ability to steer
the resulting user traffic toward other commercial opportunities.

The sudden success of the Napster model has put the
fear in traditional record companies, with good reason.
Just days before my Palo Alto meeting with Stallman,
U.S. District Court Judge Marilyn Patel granted a
request filed by the Recording Industry Association of
America for an injunction against the file-sharing
service. The injunction was subsequently suspended by
the U.S. Ninth District Court of Appeals, but by early
2001, the Court of Appeals, too, would find the San
Mateo-based company in breach of copyright law,5 a
decision RIAA spokesperson Hillary Rosen would later
proclaim proclaim a "clear victory for the creative
content community and the legitimate online marketplace."See "A Clear Victory
for Recording Industry in Napster
Case," RIAA press release (February 12, 2001).
http://www.riaa.com/PR_story.cfm?id=372

For hackers such as Stallman, the Napster business
model is scary in different ways. The company's
eagerness to appropriate time-worn hacker principles
such as file sharing and communal information
ownership, while at the same time selling a service
based on proprietary software, sends a distressing
mixed message. As a person who already has a hard
enough time getting his own carefully articulated
message into the media stream, Stallman is
understandably reticent when it comes to speaking out
about the company. Still, Stallman does admit to
learning a thing or two from the social side of the
Napster phenomenon.

"Before Napster, I thought it might be OK for people to
privately redistribute works of entertainment,"
Stallman says. "The number of people who find Napster
useful, however, tells me that the right to
redistribute copies not only on a neighbor-to-neighbor
basis, but to the public at large, is essential and
therefore may not be taken away."

No sooner does Stallman say this than the door to the
restaurant swings open and we are invited back inside
by the host. Within a few seconds, we are seated in a
side corner of the restaurant next to a large mirrored wall.

The restaurant's menu doubles as an order form, and
Stallman is quickly checking off boxes before the host
has even brought water to the table. "Deep-fried shrimp
roll wrapped in bean-curd skin," Stallman reads.
"Bean-curd skin. It offers such an interesting texture.
I think we should get it."

This comment leads to an impromptu discussion of
Chinese food and Stallman's recent visit to China. "The
food in China is utterly exquisite," Stallman says, his
voice gaining an edge of emotion for the first time
this morning. "So many different things that I've never
seen in the U.S., local things made from local
mushrooms and local vegetables. It got to the point
where I started keeping a journal just to keep track of
every wonderful meal."

The conversation segues into a discussion of Korean
cuisine. During the same June, 2000, Asian tour,
Stallman paid a visit to South Korea. His arrival
ignited a mini-firestorm in the local media thanks to a
Korean software conference attended by Microsoft
founder and chairman Bill Gates that same week. Next to
getting his photo above Gates's photo on the front page
of the top Seoul newspaper, Stallman says the best
thing about the trip was the food. "I had a bowl of
naeng myun, which is cold noodles," says Stallman.
"These were a very interesting feeling noodle. Most
places don't use quite the same kind of noodles for
your naeng myun, so I can say with complete certainty
that this was the most exquisite naeng myun I ever had."

The term "exquisite" is high praise coming from
Stallman. I know this, because a few moments after
listening to Stallman rhapsodize about naeng myun, I
feel his laser-beam eyes singeing the top of my right shoulder.

"There is the most exquisite woman sitting just behind
you," Stallman says.

I turn to look, catching a glimpse of a woman's back.
The woman is young, somewhere in her mid-20s, and is
wearing a white sequinned dress. She and her male lunch
companion are in the final stages of paying the check.
When both get up from the table to leave the
restaurant, I can tell without looking, because
Stallman's eyes suddenly dim in intensity.

"Oh, no," he says. "They're gone. And to think, I'll
probably never even get to see her again."

After a brief sigh, Stallman recovers. The moment gives
me a chance to discuss Stallman's reputation vis-ý-vis
the fairer sex. The reputation is a bit contradictory
at times. A number of hackers report Stallman's
predilection for greeting females with a kiss on the
back of the hand.See Mae Ling Mak, "Mae Ling's Story" (December 17,
1998).

http://www.crackmonkey.org/pipermail/crackmonkey/1998q4/003006.htm

So far, Mak is the only person I've found willing to

speak on the record in regard to this practice,

although I've heard this from a few other female

sources. Mak, despite expressing initial revulsion at

it, later managed to put aside her misgivings and dance

with Stallman at a 1999 LinuxWorld show.

http://www.linux.com/interact/potd.phtml?potd_id=44

 A May 26, 2000 Salon.com article, meanwhile, portrays

Stallman as a bit of a hacker lothario. Documenting the

free software-free love connection, reporter Annalee

Newitz presents Stallman as rejecting traditional

family values, telling her, "I believe in love, but not

monogamy."See Annalee Newitz, "If Code is Free Why Not Me?"

Salon.com (May 26, 2000).

Stallman lets his menu drop a little when I bring this
up. "Well, most men seem to want sex and seem to have a
rather contemptuous attitude towards women," he says.
"Even women they're involved with. I can't understand
it at all."

I mention a passage from the 1999 book Open Sources in
which Stallman confesses to wanting to name the
ill-fated GNU kernel after a girlfriend at the time.
The girlfriend's name was Alix, a name that fit
perfectly with the Unix developer convention of putting
an "x" at the end of any new kernel name-e.g., "Linux."
Because the woman was a Unix system administrator,
Stallman says it would have been an even more touching
tribute. Unfortunately, Stallman notes, the kernel
project's eventual main developer renamed the kernel HURD.See Richard Stallman,
"The GNU Operating System and the
Free Software Movement," Open Sources (O'Reilly &
Associates, Inc., 1999): 65.
 Although Stallman and the girlfriend later broke up,
the story triggers an automatic question: for all the
media imagery depicting him as a wild-eyed fanatic, is
Richard Stallman really just a hopeless romantic, a
wandering Quixote tilting at corporate windmills in an
effort to impress some as-yet-unidentified Dulcinea?

"I wasn't really trying to be romantic," Stallman says,
recalling the Alix story. "It was more of a teasing
thing. I mean, it was romantic, but it was also
teasing, you know? It would have been a delightful surprise."

For the first time all morning, Stallman smiles. I
bring up the hand kissing. "Yes, I do do that,"
Stallman says. "I've found it's a way of offering some
affection that a lot of women will enjoy. It's a chance
to give some affection and to be appreciated for it."

Affection is a thread that runs clear through Richard
Stallman's life, and he is painfully candid about it
when questions arise. "There really hasn't been much
affection in my life, except in my mind," he says.
Still, the discussion quickly grows awkward. After a
few one-word replies, Stallman finally lifts up his
menu, cutting off the inquiry.

"Would you like some shimai?" he asks.

When the food comes out, the conversation slaloms
between the arriving courses. We discuss the oft-noted
hacker affection for Chinese food, the weekly dinner
runs into Boston's Chinatown district during Stallman's
days as a staff programmer at the AI Lab, and the
underlying logic of the Chinese language and its
associated writing system. Each thrust on my part
elicits a well-informed parry on Stallman's part.

"I heard some people speaking Shanghainese the last
time I was in China," Stallman says. "It was
interesting to hear. It sounded quite different [from
Mandarin]. I had them tell me some cognate words in
Mandarin and Shanghainese. In some cases you can see
the resemblance, but one question I was wondering about
was whether tones would be similar. They're not. That's
interesting to me, because there's a theory that the
tones evolved from additional syllables that got lost
and replaced. Their effect survives in the tone. If
that's true, and I've seen claims that that happened
within historic times, the dialects must have diverged
before the loss of these final syllables."

The first dish, a plate of pan-fried turnip cakes, has
arrived. Both Stallman and I take a moment to carve up
the large rectangular cakes, which smell like boiled
cabbage but taste like potato latkes fried in bacon.

I decide to bring up the outcast issue again, wondering
if Stallman's teenage years conditioned him to take
unpopular stands, most notably his uphill battle since
1994 to get computer users and the media to replace the
popular term "Linux" with "GNU/Linux."

"I believe it did help me," Stallman says, chewing on a
dumpling. "I have never understood what peer pressure
does to other people. I think the reason is that I was
so hopelessly rejected that for me, there wasn't
anything to gain by trying to follow any of the fads.
It wouldn't have made any difference. I'd still be just
as rejected, so I didn't try."

Stallman points to his taste in music as a key example
of his contrarian tendencies. As a teenager, when most
of his high school classmates were listening to Motown
and acid rock, Stallman preferred classical music. The
memory leads to a rare humorous episode from Stallman's
middle-school years. Following the Beatles' 1964
appearance on the Ed Sullivan Show, most of Stallman's
classmates rushed out to purchase the latest Beatles
albums and singles. Right then and there, Stallman
says, he made a decision to boycott the Fab Four.

"I liked some of the pre-Beatles popular music,"
Stallman says. "But I didn't like the Beatles. I
especially disliked the wild way people reacted to
them. It was like: who was going to have a Beatles
assembly to adulate the Beatles the most?"

When his Beatles boycott failed to take hold, Stallman
looked for other ways to point out the herd-mentality
of his peers. Stallman says he briefly considered
putting together a rock band himself dedicated to
satirizing the Liverpool group.

"I wanted to call it Tokyo Rose and the Japanese Beetles."

Given his current love for international folk music, I
ask Stallman if he had a similar affinity for Bob Dylan
and the other folk musicians of the early 1960s.
Stallman shakes his head. "I did like Peter, Paul and
Mary," he says. "That reminds me of a great filk."

When I ask for a definition of "filk," Stallman
explains the concept. A filk, he says, is a popular
song whose lyrics have been replaced with parody
lyrics. The process of writing a filk is called
filking, and it is a popular activity among hackers and
science-fiction aficionados. Classic filks include "On
Top of Spaghetti," a rewrite of "On Top of Old Smokey,"
and "Yoda," filk-master "Weird" Al Yankovic's Star
Wars-oriented rendition of the Kinks tune, "Lola."

Stallman asks me if I would be interested in hearing
the folk filk. As soon as I say yes, Stallman's voice
begins singing in an unexpectedly clear tone: How much
wood could a woodchuck chuck,If a woodchuck could chuck
wood?How many poles could a polak lock,If a polak could
lock poles?How many knees could a negro grow,If a negro
could grow knees?The answer, my dear, is stick it in
your ear.The answer is to stick it in your ear. The
singing ends, and Stallman's lips curl into another
child-like half smile. I glance around at the nearby
tables. The Asian families enjoying their Sunday lunch
pay little attention to the bearded alto in their midst.For more Stallman
filks, visit
http://www.stallman.org/doggerel.html. To hear Stallman
singing "The Free Software Song," visit
http://www.gnu.org/music/free-software-song.html.
 After a few moments of hesitation, I finally smile too.

"Do you want that last cornball?" Stallman asks, eyes
twinkling. Before I can screw up the punch line,
Stallman grabs the corn-encrusted dumpling with his two
chopsticks and lifts it proudly. "Maybe I'm the one who
should get the cornball," he says.

The food gone, our conversation assumes the dynamics of
a normal interview. Stallman reclines in his chair and
cradles a cup of tea in his hands. We resume talking
about Napster and its relation to the free software
movement. Should the principles of free software be
extended to similar arenas such as music publishing? I ask.

"It's a mistake to transfer answers from one thing to
another," says Stallman, contrasting songs with
software programs. "The right approach is to look at
each type of work and see what conclusion you get."

When it comes to copyrighted works, Stallman says he
divides the world into three categories. The first
category involves "functional" works-e.g., software
programs, dictionaries, and textbooks. The second
category involves works that might best be described as
"testimonial"-e.g., scientific papers and historical
documents. Such works serve a purpose that would be
undermined if subsequent readers or authors were free
to modify the work at will. The final category involves
works of personal expression-e.g., diaries, journals,
and autobiographies. To modify such documents would be
to alter a person's recollections or point of
view-action Stallman considers ethically unjustifiable.

Of the three categories, the first should give users
the unlimited right to make modified versions, while
the second and third should regulate that right
according to the will of the original author.
Regardless of category, however, the freedom to copy
and redistribute noncommercially should remain
unabridged at all times, Stallman insists. If that
means giving Internet users the right to generate a
hundred copies of an article, image, song, or book and
then email the copies to a hundred strangers, so be it.
"It's clear that private occasional redistribution must
be permitted, because only a police state can stop
that," Stallman says. "It's antisocial to come between
people and their friends. Napster has convinced me that
we also need to permit, must permit, even noncommercial
redistribution to the public for the fun of it. Because
so many people want to do that and find it so useful."

When I ask whether the courts would accept such a
permissive outlook, Stallman cuts me off.

"That's the wrong question," he says. "I mean now
you've changed the subject entirely from one of ethics
to one of interpreting laws. And those are two totally
different questions in the same field. It's useless to
jump from one to the other. How the courts would
interpret the existing laws is mainly in a harsh way,
because that's the way these laws have been bought by
publishers."

The comment provides an insight into Stallman's
political philosophy: just because the legal system
currently backs up businesses' ability to treat
copyright as the software equivalent of land title
doesn't mean computer users have to play the game
according to those rules. Freedom is an ethical issue,
not a legal issue. "I'm looking beyond what the
existing laws are to what they should be," Stallman
says. "I'm not trying to draft legislation. I'm
thinking about what should the law do? I consider the
law prohibiting the sharing of copies with your friend
the moral equivalent of Jim Crow. It does not deserve respect."

The invocation of Jim Crow prompts another question.
How much influence or inspiration does Stallman draw
from past political leaders? Like the civil-rights
movement of the 1950s and 1960s, his attempt to drive
social change is based on an appeal to timeless values:
freedom, justice, and fair play.

Stallman divides his attention between my analogy and a
particularly tangled strand of hair. When I stretch the
analogy to the point where I'm comparing Stallman with
Dr. Martin Luther King, Jr., Stallman, after breaking
off a split end and popping it into his mouth, cuts me off.

"I'm not in his league, but I do play the same game,"
he says, chewing.

I suggest Malcolm X as another point of comparison.
Like the former Nation of Islam spokesperson, Stallman
has built up a reputation for courting controversy,
alienating potential allies, and preaching a message
favoring self-sufficiency over cultural integration.

Chewing on another split end, Stallman rejects the
comparison. "My message is closer to King's message,"
he says. "It's a universal message. It's a message of
firm condemnation of certain practices that mistreat
others. It's not a message of hatred for anyone. And
it's not aimed at a narrow group of people. I invite
anyone to value freedom and to have freedom."

Even so, a suspicious attitude toward political
alliances remains a fundamental Stallman character
trait. In the case of his well-publicized distaste for
the term "open source," the unwillingness to
participate in recent coalition-building projects seems
understandable. As a man who has spent the last two
decades stumping on the behalf of free software,
Stallman's political capital is deeply invested in the
term. Still, comments such as the "Han Solo" wisecrack
at the 1999 LinuxWorld have only reinforced the
Stallman's reputation in the software industry as a
disgrunted mossback unwilling to roll with political or
marketing trends.

"I admire and respect Richard for all the work he's
done," says Red Hat president Robert Young, summing up
Stallman's paradoxical political nature. "My only
critique is that sometimes Richard treats his friends
worse than his enemies."

Stallman's unwillingness to seek alliances seems
equally perplexing when you consider his political
interests outside of the free software movement. Visit
Stallman's offices at MIT, and you instantly find a
clearinghouse of left-leaning news articles covering
civil-rights abuses around the globe. Visit his web
site, and you'll find diatribes on the Digital
Millennium Copyright Act, the War on Drugs, and the
World Trade Organization.

Given his activist tendencies, I ask, why hasn't
Stallman sought a larger voice? Why hasn't he used his
visibility in the hacker world as a platform to boost
rather than reduce his political voice.

Stallman lets his tangled hair drop and contemplates
the question for a moment.

"I hesitate to exaggerate the importance of this little
puddle of freedom," he says. "Because the more
well-known and conventional areas of working for
freedom and a better society are tremendously
important. I wouldn't say that free software is as
important as they are. It's the responsibility I
undertook, because it dropped in my lap and I saw a way
I could do something about it. But, for example, to end
police brutality, to end the war on drugs, to end the
kinds of racism we still have, to help everyone have a
comfortable life, to protect the rights of people who
do abortions, to protect us from theocracy, these are
tremendously important issues, far more important than
what I do. I just wish I knew how to do something about them."

Once again, Stallman presents his political activity as
a function of personal confidence. Given the amount of
time it has taken him to develop and hone the free
software movement's core tenets, Stallman is hesitant
to jump aboard any issues or trends that might
transport him into uncharted territory.

"I wish I knew I how to make a major difference on
those bigger issues, because I would be tremendously
proud if I could, but they're very hard and lots of
people who are probably better than I am have been
working on them and have gotten only so far," he says.
"But as I see it, while other people were defending
against these big visible threats, I saw another threat
that was unguarded. And so I went to defend against
that threat. It may not be as big a threat, but I was
the only one there."

Chewing a final split end, Stallman suggests paying the
check. Before the waiter can take it away, however,
Stallman pulls out a white-colored dollar bill and
throws it on the pile. The bill looks so clearly
counterfeit, I can't help but pick it up and read it.
Sure enough, it is counterfeit. Instead of bearing the
image of a George Washington or Abe Lincoln, the bill's
front side bears the image of a cartoon pig. Instead of
the United States of America, the banner above the pig
reads "United Swines of Avarice." The bill is for zero
dollars, and when the waiter picks up the money,
Stallman makes sure to tug on his sleeve.

"I added an extra zero to your tip," Stallman says, yet
another half smile creeping across his lips.

The waiter, uncomprehending or fooled by the look of
the bill, smiles and scurries away.

"I think that means we're free to go," Stallman says.

The Emacs Commune

The AI Lab of the 1970s was by all accounts a special
place. Cutting-edge projects and top-flight researchers
gave it an esteemed position in the world of computer
science. The internal hacker culture and its anarchic
policies lent a rebellious mystique as well. Only
later, when many of the lab's scientists and software
superstars had departed, would hackers fully realize
the unique and ephemeral world they had once inhabited.

"It was a bit like the Garden of Eden," says Stallman,
summing up the lab and its software-sharing ethos in a
1998 Forbes article. "It hadn't occurred to us not to cooperate."See Josh
McHugh, "For the Love of Hacking," Forbes
(August 10, 1998).
http://www.forbes.com/forbes/1998/0810/6203094a.html

Such mythological descriptions, while extreme,
underline an important fact. The ninth floor of 545
Tech Square was more than a workplace for many. For
hackers such as Stallman, it was home.

The word "home" is a weighted term in the Stallman
lexicon. In a pointed swipe at his parents, Stallman,
to this day, refuses to acknowledge any home before
Currier House, the dorm he lived in during his days at
Harvard. He has also been known to describe leaving
that home in tragicomic terms. Once, while describing
his years at Harvard, Stallman said his only regret was
getting kicked out. It wasn't until I asked Stallman
what precipitated his ouster, that I realized I had
walked into a classic Stallman setup line.

"At Harvard they have this policy where if you pass too
many classes they ask you to leave," Stallman says.

With no dorm and no desire to return to New York,
Stallman followed a path blazed by Greenblatt, Gosper,
Sussman, and the many other hackers before him.
Enrolling at MIT as a grad student, Stallman rented an
apartment in nearby Cambridge but soon viewed the AI
Lab itself as his de facto home. In a 1986 speech,
Stallman recalled his memories of the AI Lab during
this period: I may have done a little bit more living
at the lab than most people, because every year or two
for some reason or other I'd have no apartment and I
would spend a few months living at the lab. And I've
always found it very comfortable, as well as nice and
cool in the summer. But it was not at all uncommon to
find people falling asleep at the lab, again because of
their enthusiasm; you stay up as long as you possibly
can hacking, because you just don't want to stop. And
then when you're completely exhausted, you climb over
to the nearest soft horizontal surface. A very informal
atmosphere.See Stallman (1986). The lab's home-like atmosphere could be a
problem at times. What some saw as a dorm, others
viewed as an electronic opium den. In the 1976 book
Computer Power and Human Reason, MIT researcher Joseph
Weizenbaum offered a withering critique of the "
computer bum," Weizenbaum's term for the hackers who
populated computer rooms such as the AI Lab. "Their
rumpled clothes, their unwashed hair and unshaved
faces, and their uncombed hair all testify that they
are oblivious to their bodies and to the world in which
they move," Weizenbaum wrote. "[Computer bums] exist,
at least when so engaged, only through and for the computers."See Joseph
Weizenbaum, Computer Power and Human Reason:
From Judgment to Calculation (W. H. Freeman, 1976): 116.

Almost a quarter century after its publication,
Stallman still bristles when hearing Weizenbaum's
"computer bum" description, discussing it in the
present tense as if Weizenbaum himself was still in the
room. "He wants people to be just professionals, doing
it for the money and wanting to get away from it and
forget about it as soon as possible," Stallman says.
"What he sees as a normal state of affairs, I see as a tragedy."

Hacker life, however, was not without tragedy. Stallman
characterizes his transition from weekend hacker to
full-time AI Lab denizen as a series of painful
misfortunes that could only be eased through the
euphoria of hacking. As Stallman himself has said, the
first misfortune was his graduation from Harvard. Eager
to continue his studies in physics, Stallman enrolled
as a graduate student at MIT. The choice of schools was
a natural one. Not only did it give Stallman the chance
to follow the footsteps of great MIT alumni: William
Shockley ('36), Richard P. Feynman ('39), and Murray
Gell-Mann ('51), it also put him two miles closer to
the AI Lab and its new PDP-10 computer. "My attention
was going toward programming, but I still thought,
well, maybe I can do both," Stallman says.

Toiling in the fields of graduate-level science by day
and programming in the monastic confines of the AI Lab
by night, Stallman tried to achieve a perfect balance.
The fulcrum of this geek teeter-totter was his weekly
outing with the folk-dance troupe, his one social
outlet that guaranteed at least a modicum of
interaction with the opposite sex. Near the end of that
first year at MIT, however, disaster struck. A knee
injury forced Stallman to drop out of the troupe. At
first, Stallman viewed the injury as a temporary
problem, devoting the spare time he would have spent
dancing to working at the AI Lab even more. By the end
of the summer, when the knee still ached and classes
reconvened, Stallman began to worry. "My knee wasn't
getting any better," Stallman recalls, "which meant I
had to stop dancing completely. I was heartbroken."

With no dorm and no dancing, Stallman's social universe
imploded. Like an astronaut experiencing the
aftereffects of zero-gravity, Stallman found that his
ability to interact with nonhackers, especially female
nonhackers, had atrophied significantly. After 16 weeks
in the AI Lab, the self confidence he'd been quietly
accumulating during his 4 years at Harvard was
virtually gone.

"I felt basically that I'd lost all my energy,"
Stallman recalls. "I'd lost my energy to do anything
but what was most immediately tempting. The energy to
do something else was gone. I was in total despair."

Stallman retreated from the world even further,

focusing entirely on his work at the AI Lab. By

October, 1975, he dropped out of MIT, never to go back.

Software hacking, once a hobby, had become his calling.

Looking back on that period, Stallman sees the
transition from full-time student to full-time hacker
as inevitable. Sooner or later, he believes, the
siren's call of computer hacking would have overpowered
his interest in other professional pursuits. "With
physics and math, I could never figure out a way to
contribute," says Stallman, recalling his struggles
prior to the knee injury. "I would have been proud to
advance either one of those fields, but I could never
see a way to do that. I didn't know where to start.
With software, I saw right away how to write things
that would run and be useful. The pleasure of that
knowledge led me to want to do it more."

Stallman wasn't the first to equate hacking with
pleasure. Many of the hackers who staffed the AI Lab
boasted similar, incomplete academic rÈsumÈs. Most had
come in pursuing degrees in math or electrical
engineering only to surrender their academic careers
and professional ambitions to the sheer exhilaration
that came with solving problems never before addressed.
Like St. Thomas Aquinas, the scholastic known for
working so long on his theological summae that he
sometimes achieved spiritual visions, hackers reached
transcendent internal states through sheer mental focus
and physical exhaustion. Although Stallman shunned
drugs, like most hackers, he enjoyed the "high" that
came near the end of a 20-hour coding bender.

Perhaps the most enjoyable emotion, however, was the
sense of personal fulfillment. When it came to hacking,
Stallman was a natural. A childhood's worth of
late-night study sessions gave him the ability to work
long hours with little sleep. As a social outcast since
age 10, he had little difficulty working alone. And as
a mathematician with built-in gift for logic and
foresight, Stallman possessed the ability to circumvent
design barriers that left most hackers spinning their wheels.

"He was special," recalls Gerald Sussman, an MIT
faculty member and former AI Lab researcher. Describing
Stallman as a "clear thinker and a clear designer,"
Sussman employed Stallman as a research-project
assistant beginning in 1975. The project was complex,
involving the creation of an AI program that could
analyze circuit diagrams. Not only did it involve an
expert's command of Lisp, a programming language built
specifically for AI applications, but it also required
an understanding of how a human might approach the same task.

When he wasn't working on official projects such as
Sussman's automated circuit-analysis program, Stallman
devoted his time to pet projects. It was in a hacker's
best interest to improve the lab's software
infrastructure, and one of Stallman's biggest pet
projects during this period was the lab's editor
program TECO.

The story of Stallman's work on TECO during the 1970s
is inextricably linked with Stallman's later leadership
of the free software movement. It is also a significant
stage in the history of computer evolution, so much so
that a brief recapitulation of that evolution is
necessary. During the 1950s and 1960s, when computers
were first appearing at universities, computer
programming was an incredibly abstract pursuit. To
communicate with the machine, programmers created a
series of punch cards, with each card representing an
individual software command. Programmers would then
hand the cards over to a central system administrator
who would then insert them, one by one, into the
machine, waiting for the machine to spit out a new set
of punch cards, which the programmer would then
decipher as output. This process, known as " batch
processing," was cumbersome and time consuming. It was
also prone to abuses of authority. One of the
motivating factors behind hackers' inbred aversion to
centralization was the power held by early system
operators in dictating which jobs held top priority.

In 1962, computer scientists and hackers involved in
MIT's Project MAC, an early forerunner of the AI Lab,
took steps to alleviate this frustration. Time-sharing,
originally known as "time stealing," made it possible
for multiple programs to take advantage of a machine's
operational capabilities. Teletype interfaces also made
it possible to communicate with a machine not through a
series of punched holes but through actual text. A
programmer typed in commands and read the line-by-line
output generated by the machine.

During the late 1960s, interface design made additional
leaps. In a famous 1968 lecture, Doug Engelbart, a
scientist then working at the Stanford Research
Institute, unveiled a prototype of the modern graphical
interface. Rigging up a television set to the computer
and adding a pointer device which Engelbart dubbed a "
mouse," the scientist created a system even more
interactive than the time-sharing system developed a
MIT. Treating the video display like a high-speed
printer, Engelbart's system gave a user the ability to
move the cursor around the screen and see the cursor
position updated by the computer in real time. The user
suddenly had the ability to position text anywhere on
the screen.

Such innovations would take another two decades to make
their way into the commercial marketplace. Still, by
the 1970s, video screens had started to replace
teletypes as display terminals, creating the potential
for full-screen-as opposed to line-by-line-editing capabilities.

One of the first programs to take advantage of this
full-screen capability was the MIT AI Lab's TECO. Short
for Text Editor and COrrector, the program had been
upgraded by hackers from an old teletype line editor
for the lab's PDP-6 machine.ccording to the Jargon File, TECO's name originally
stood for Tape Editor and Corrector.

TECO was a substantial improvement over old editors,
but it still had its drawbacks. To create and edit a
document, a programmer had to enter a series of
software commands specifying each edit. It was an
abstract process. Unlike modern word processors, which
update text with each keystroke, TECO demanded that the
user enter an extended series of editing instructions
followed by an "end of command" sequence just to change
the text.Over time, a hacker grew proficient enough to
write entire documents in edit mode, but as Stallman
himself would later point out, the process required "a
mental skill like that of blindfold chess."See Richard Stallman, "EMACS: The
Extensible,
Customizable, Display Editor," AI Lab Memo (1979). An
updated HTML version of this memo, from which I am
quoting, is available at
http://www.gnu.org/software/emacs/emacs-paper.html.

To facilitate the process, AI Lab hackers had built a
system that displayed both the "source" and "display"
modes on a split screen. Despite this innovative hack,
switching from mode to mode was still a nuisance.

TECO wasn't the only full-screen editor floating around
the computer world at this time. During a visit to the
Stanford Artificial Intelligence Lab in 1976, Stallman
encountered an edit program named E. The program
contained an internal feature, which allowed a user to
update display text after each command keystroke. In
the language of 1970s programming, E was one of the
first rudimentary WYSIWYG editors. Short for "what you
see is what you get," WYSIWYG meant that a user could
manipulate the file by moving through the displayed
text, as opposed to working through a back-end editor program."See Richard
Stallman, "Emacs the Full Screen Editor"
(1987).
http://www.lysator.liu.se/history/garb/txt/87-1-emacs.txt

Impressed by the hack, Stallman looked for ways to
expand TECO's functionality in similar fashion upon his
return to MIT. He found a TECO feature called
Control-R, written by Carl Mikkelson and named after
the two-key combination that triggered it. Mikkelson's
hack switched TECO from its usual abstract
command-execution mode to a more intuitive
keystroke-by-keystroke mode. Stallman revised the
feature in a subtle but significant way. He made it
possible to trigger other TECO command strings, or "
macros," using other, two-key combinations. Where users
had once entered command strings and discarded them
after entering then, Stallman's hack made it possible
to save macro tricks on file and call them up at will.
Mikkelson's hack had raised TECO to the level of a
WYSIWYG editor. Stallman's hack had raised it to the
level of a user-programmable WYSIWYG editor. "That was
the real breakthrough," says Guy Steele, a fellow AI
Lab hacker at the time.

By Stallman's own recollection, the macro hack touched
off an explosion of further innovation. "Everybody and
his brother was writing his own collection of redefined
screen-editor commands, a command for everything he
typically liked to do," Stallman would later recall.
"People would pass them around and improve them, making
them more powerful and more general. The collections of
redefinitions gradually became system programs in their
own right."

So many people found the macro innovations useful and
had incorporated it into their own TECO programs that
the TECO editor had become secondary to the macro mania
it inspired. "We started to categorize it mentally as a
programming language rather than as an editor,"
Stallman says. Users were experiencing their own
pleasure tweaking the software and trading new ideas.

Two years after the explosion, the rate of innovation
began to exhibit dangerous side effects. The explosive
growth had provided an exciting validation of the
collaborative hacker approach, but it had also led to
over-complexity. "We had a Tower of Babel effect," says
Guy Steele.

The effect threatened to kill the spirit that had
created it, Steele says. Hackers had designed ITS to
facilitate programmers' ability to share knowledge and
improve each other's work. That meant being able to sit
down at another programmer's desk, open up a
programmer's work and make comments and modifications
directly within the software. "Sometimes the easiest
way to show somebody how to program or debug something
was simply to sit down at the terminal and do it for
them," explains Steele.

The macro feature, after its second year, began to foil
this capability. In their eagerness to embrace the new
full-screen capabilities, hackers had customized their
versions of TECO to the point where a hacker sitting
down at another hacker's terminal usually had to spend
the first hour just figuring out what macro commands
did what.

Frustrated, Steele took it upon himself to the solve
the problem. He gathered together the four different
macro packages and began assembling a chart documenting
the most useful macro commands. In the course of
implementing the design specified by the chart, Steele
says he attracted Stallman's attention.

"He started looking over my shoulder, asking me what I
was doing," recalls Steele.

For Steele, a soft-spoken hacker who interacted with
Stallman infrequently, the memory still sticks out.
Looking over another hacker's shoulder while he worked
was a common activity at the AI Lab. Stallman, the TECO
maintainer at the lab, deemed Steele's work
"interesting" and quickly set off to complete it.

"As I like to say, I did the first 0.001 percent of the
implementation, and Stallman did the rest," says Steele
with a laugh.

The project's new name, Emacs, came courtesy of
Stallman. Short for "editing macros," it signified the
evolutionary transcendence that had taken place during
the macros explosion two years before. It also took
advantage of a gap in the software programming lexicon.
Noting a lack of programs on ITS starting with the
letter "E," Stallman chose Emacs, making it possible to
reference the program with a single letter. Once again,
the hacker lust for efficiency had left its mark.

In the course of developing a standard system of macro
commands, Stallman and Steele had to traverse a
political tightrope. In creating a standard program,
Stallman was in clear violation of the fundamental
hacker tenet-"promote decentralization." He was also
threatening to hobble the very flexibility that had
fueled TECO's explosive innovation in the first place.

"On the one hand, we were trying to make a uniform
command set again; on the other hand, we wanted to keep
it open ended, because the programmability was
important," recalls Steele.

To solve the problem, Stallman, Steele, and fellow
hackers David Moon and Dan Weinreib limited their
standardization effort to the WYSIWYG commands that
controlled how text appeared on-screen. The rest of the
Emacs effort would be devoted to retaining the
program's Tinker Toy-style extensibility.

Stallman now faced another conundrum: if users made
changes but didn't communicate those changes back to
the rest of the community, the Tower of Babel effect
would simply emerge in other places. Falling back on
the hacker doctrine of sharing innovation, Stallman
embedded a statement within the source code that set
the terms of use. Users were free to modify and
redistribute the code on the condition that they gave
back all the extensions they made. Stallman dubbed it
the " Emacs Commune." Just as TECO had become more than
a simple editor, Emacs had become more than a simple
software program. To Stallman, it was a social
contract. In an early memo documenting the project,
Stallman spelled out the contract terms. "EMACS," he
wrote, "was distributed on a basis of communal sharing,
which means that all improvements must be given back to
me to be incorporated and distributed."See Stallman (1979): #SEC34.

Not everybody accepted the contract. The explosive
innovation continued throughout the decade, resulting
in a host of Emacs-like programs with varying degrees
of cross-compatibility. A few cited their relation to
Stallman's original Emacs with humorously recursive
names: Sine (Sine is not Emacs), Eine (Eine is not
Emacs), and Zwei (Zwei was Eine initially). As a
devoted exponent of the hacker ethic, Stallman saw no
reason to halt this innovation through legal
harassment. Still, the fact that some people would so
eagerly take software from the community chest, alter
it, and slap a new name on the resulting software
displayed a stunning lack of courtesy.

Such rude behavior was reflected against other,
unsettling developments in the hacker community. Brian
Reid's 1979 decision to embed "time bombs" in Scribe,
making it possible for Unilogic to limit unpaid user
access to the software, was a dark omen to Stallman.
"He considered it the most Nazi thing he ever saw in
his life," recalls Reid. Despite going on to later
Internet fame as the cocreator of the Usenet alt
heirarchy, Reid says he still has yet to live down that
1979 decision, at least in Stallman's eyes. "He said
that all software should be free and the prospect of
charging money for software was a crime against humanity."In a 1996 interview
with online magazine MEME ,
Stallman cited Scribe's sale as irksome, but hesitated
to mention Reid by name. "The problem was nobody
censured or punished this student for what he did,"
Stallman said. "The result was other people got tempted
to follow his example." See MEME 2.04.
http://memex.org/meme2-04.html

Although Stallman had been powerless to head off Reid's
sale, he did possess the ability to curtail other forms
of behavior deemed contrary to the hacker ethos. As
central source-code maintainer for the Emacs "commune,"
Stallman began to wield his power for political effect.
During his final stages of conflict with the
administrators at the Laboratory for Computer Science
over password systems, Stallman initiated a software " strike,"See Steven Levy,
Hackers (Penguin USA [paperback],
1984): 419.
 refusing to send lab members the latest version of
Emacs until they rejected the security system on the
lab's computers. The move did little to improve
Stallman's growing reputation as an extremist, but it
got the point across: commune members were expected to
speak up for basic hacker values.

"A lot of people were angry with me, saying I was
trying to hold them hostage or blackmail them, which in
a sense I was," Stallman would later tell author Steven
Levy. "I was engaging in violence against them because
I thought they were engaging in violence to everyone at large."

Over time, Emacs became a sales tool for the hacker
ethic. The flexibility Stallman and built into the
software not only encouraged collaboration, it demanded
it. Users who didn't keep abreast of the latest
developments in Emacs evolution or didn't contribute
their contributions back to Stallman ran the risk of
missing out on the latest breakthroughs. And the
breakthroughs were many. Twenty years later, users had
modified Emacs for so many different uses-using it as a
spreadsheet, calculator, database, and web browser-that
later Emacs developers adopted an overflowing sink to
represent its versatile functionality. "That's the idea
that we wanted to convey," says Stallman. "The amount
of stuff it has contained within it is both wonderful
and awful at the same time."

Stallman's AI Lab contemporaries are more charitable.
Hal Abelson, an MIT grad student who worked with
Stallman during the 1970s and would later assist
Stallman as a charter boardmember of the Free Software
Foundation, describes Emacs as "an absolutely brilliant
creation." In giving programmers a way to add new
software libraries and features without messing up the
system, Abelson says, Stallman paved the way for future
large-scale collaborative software projects. "Its
structure was robust enough that you'd have people all
over the world who were loosely collaborating [and]
contributing to it," Abelson says. "I don't know if
that had been done before."In writing this chapter, I've elected to focus more
on
the social significance of Emacs than the software
significance. To read more about the software side, I
recommend Stallman's 1979 memo. I particularly
recommend the section titled "Research Through
Development of Installed Tools" (#SEC27). Not only is
it accessible to the nontechnical reader, it also sheds
light on how closely intertwined Stallman's political
philosophies are with his software-design philosophies.
A sample excerpt follows: EMACS could not have been
reached by a process of careful design, because such
processes arrive only at goals which are visible at the
outset, and whose desirability is established on the
bottom line at the outset. Neither I nor anyone else
visualized an extensible editor until I had made one,
nor appreciated its value until he had experienced it.
EMACS exists because I felt free to make individually
useful small improvements on a path whose end was not
in sight.

Guy Steele expresses similar admiration. Currently a
research scientist for Sun Microsystems, he remembers
Stallman primarily as a "brilliant programmer with the
ability to generate large quantities of relatively
bug-free code." Although their personalities didn't
exactly mesh, Steele and Stallman collaborated long
enough for Steele to get a glimpse of Stallman's
intense coding style. He recalls a notable episode in
the late 1970s when the two programmers banded together
to write the editor's "pretty print" feature.
Originally conceived by Steele, pretty print was
another keystroke-triggerd feature that reformatted
Emacs' source code so that it was both more readable
and took up less space, further bolstering the
program's WYSIWIG qualities. The feature was strategic
enough to attract Stallman's active interest, and it
wasn't long before Steele wrote that he and Stallman
were planning an improved version.

"We sat down one morning," recalls Steele. "I was at
the keyboard, and he was at my elbow," says Steele. "He
was perfectly willing to let me type, but he was also
telling me what to type.

The programming session lasted 10 hours. Throughout
that entire time, Steele says, neither he nor Stallman
took a break or made any small talk. By the end of the
session, they had managed to hack the pretty print
source code to just under 100 lines. "My fingers were
on the keyboard the whole time," Steele recalls, "but
it felt like both of our ideas were flowing onto the
screen. He told me what to type, and I typed it."

The length of the session revealed itself when Steele
finally left the AI Lab. Standing outside the building
at 545 Tech Square, he was surprised to find himself
surrounded by nighttime darkness. As a programmer,
Steele was used to marathon coding sessions. Still,
something about this session was different. Working
with Stallman had forced Steele to block out all
external stimuli and focus his entire mental energies
on the task at hand. Looking back, Steele says he found
the Stallman mind-meld both exhilarating and scary at
the same time. "My first thought afterward was: it was
a great experience, very intense, and that I never
wanted to do it again in my life."

A Stark Moral Choice

On September 27, 1983, computer programmers logging on
to the Usenet newsgroup net.unix-wizards encountered an
unusual message. Posted in the small hours of the
morning, 12:30 a.m. to be exact, and signed by
rms@mit-oz , the message's subject line was terse but
attention-grabbing. "New UNIX implementation," it read.
Instead of introducing a newly released version of
Unix, however, the message's opening paragraph issued a
call to arms: Starting this Thanksgiving I am going to
write a complete Unix-compatible software system called
GNU (for Gnu's Not Unix), and give it away free to
everyone who can use it. Contributions of time, money,
programs and equipment are greatly needed.1 To an
experienced Unix developer, the message was a mixture
of idealism and hubris. Not only did the author pledge
to rebuild the already mature Unix operating system
from the ground up, he also proposed to improve it in
places. The new GNU system, the author predicted, would
carry all the usual components-a text editor, a shell
program to run Unix-compatible applications, a
compiler, "and a few other things."See Richard Stallman, "Initial GNU
Announcement"
(September 1983).
http://www.gnu.ai.mit.edu/gnu/initial-announcement.html
 It would also contain many enticing features that
other Unix systems didn't yet offer: a graphic user
interface based on the Lisp programming language, a
crash-proof file system, and networking protocols built
according to MIT's internal networking system.

"GNU will be able to run Unix programs, but will not be
identical to Unix," the author wrote. "We will make all
improvements that are convenient, based on our
experience with other operating systems."

Anticipating a skeptical response on some readers'
part, the author made sure to follow up his
operating-system outline with a brief biographical
sketch titled, "Who am I?": I am Richard Stallman,
inventor of the original much-imitated EMACS editor,
now at the Artificial Intelligence Lab at MIT. I have
worked extensively on compilers, editors, debuggers,
command interpreters, the Incompatible Timesharing
System and the Lisp Machine operating system. I
pioneered terminal-independent display support in ITS.
In addition I have implemented one crashproof file
system and two window systems for Lisp machines. As
fate would have it, Stallman's fanciful GNU Project
missed its Thanksgiving launch date. By January, 1984,
however, Stallman made good on his promise and fully
immersed himself in the world of Unix software
development. For a software architect raised on ITS, it
was like designing suburban shopping malls instead of
Moorish palaces. Even so, building a Unix-like
operating system had its hidden advantages. ITS had
been powerful, but it also possessed an Achilles' heel:
MIT hackers had designed it to take specific advantage
of the DEC-built PDP line. When AI Lab administrators
elected to phase out the lab's powerful PDP-10 machine
in the early 1980s, the operating system that hackers
once likened to a vibrant city became an instant ghost
town. Unix, on the other hand, was designed for
mobility and long-term survival. Originally developed
by junior scientists at AT&T, the program had slipped
out under corporate-management radar, finding a happy
home in the cash-strapped world of academic computer
systems. With fewer resources than their MIT brethren,
Unix developers had customized the software to ride
atop a motley assortment of hardware systems:
everything from the 16-bit PDP-11-a machine considered
fit for only small tasks by most AI Lab hackers-to
32-bit mainframes such as the VAX 11/780. By 1983, a
few companies, most notably Sun Microsystems, were even
going so far as to develop a new generation of
microcomputers, dubbed "workstations," to take
advantage of the increasingly ubiquitous operating system.

To facilitate this process, the developers in charge of
designing the dominant Unix strains made sure to keep
an extra layer of abstraction between the software and
the machine. Instead of tailoring the operating system
to take advantage of a specific machine's resources-as
the AI Lab hackers had done with ITS and the
PDP-10-Unix developers favored a more generic,
off-the-rack approach. Focusing more on the
interlocking standards and specifications that held the
operating system's many subcomponents together, rather
than the actual components themselves, they created a
system that could be quickly modified to suit the
tastes of any machine. If a user quibbled with a
certain portion, the standards made it possible to pull
out an individual subcomponent and either fix it or
replace it with something better. Simply put, what the
Unix approach lacked in terms of style or aesthetics,
it more than made up for in terms of flexibility and
economy, hence its rapid adoption.See Marshall Kirk McKusick, "Twenty Years of
Berkeley
Unix," Open Sources (O'Reilly & Associates, Inc.,
1999): 38.

Stallman's decision to start developing the GNU system
was triggered by the end of the ITS system that the AI
Lab hackers had nurtured for so long. The demise of ITS
had been a traumatic blow to Stallman. Coming on the
heels of the Xerox laser printer episode, it offered
further evidence that the AI Lab hacker culture was
losing its immunity to business practices in the
outside world.

Like the software code that composed it, the roots of
ITS' demise stretched way back. Defense spending, long
a major font for computer-science research, had dried
up during the post-Vietnam years. In a desperate quest
for new funds, laboratories and universities turned to
the private sector. In the case of the AI Lab, winning
over private investors was an easy sell. Home to some
of the most ambitious computer-science projects of the
post-war era, the lab became a quick incubator of
technology. Indeed, by 1980, most of the lab's staff,
including many hackers, were dividing its time between
Institute and commercial projects.

What at first seemed like a win-win deal-hackers got to
work on the best projects, giving the lab first look at
many of the newest computer technologies coming down
the pike-soon revealed itself as a Faustian bargain.
The more time hackers devoted to cutting-edge
commercial projects, the less time they had to devote
to general maintenance on the lab's baroque software
infrastructure. Soon, companies began hiring away
hackers outright in an attempt to monopolize their time
and attention. With fewer hackers to mind the shop,
programs and machines took longer to fix. Even worse,
Stallman says, the lab began to undergo a "demographic
change." The hackers who had once formed a vocal
minority within the AI Lab were losing membership while
"the professors and the students who didn't really love
the [PDP-10] were just as numerous as before."See Richard Stallman (1986).

The breaking point came in 1982. That was the year the
lab's administration decided to upgrade its main
computer, the PDP-10. Digital, the corporation that
manufactured the PDP-10, had discontinued the line.
Although the company still offered a high-powered
mainframe, dubbed the KL-10, the new machine required a
drastic rewrite or "port" of ITS if hackers wanted to
continue running the same operating system. Fearful
that the lab had lost its critical mass of in-house
programming talent, AI Lab faculty members pressed for
Twenex, a commercial operating system developed by
Digital. Outnumbered, the hackers had no choice but to comply.

"Without hackers to maintain the system, [faculty
members] said, `We're going to have a disaster; we must
have commercial software,'" Stallman would recall a few
years later. "They said, `We can expect the company to
maintain it.' It proved that they were utterly wrong,
but that's what they did."

At first, hackers viewed the Twenex system as yet
another authoritarian symbol begging to be subverted.
The system's name itself was a protest. Officially
dubbed TOPS-20 by DEC, it was a successor to TOPS-10, a
commercial operating system DEC marketed for the
PDP-10. Bolt Beranek Newman had deveoped an improved
version, dubbed Tenex, which TOPS-20 drew upon.Multiple sources: see Richard
Stallman interview,
Gerald Sussman email, and Jargon File 3.0.0.
http://www.clueless.com/jargon3.0.0/TWENEX.html
 Stallman, the hacker who coined the Twenex term, says
he came up with the name as a way to avoid using the
TOPS-20 name. "The system was far from tops, so there
was no way I was going to call it that," Stallman
recalls. "So I decided to insert a `w' in the Tenex
name and call it Twenex."

The machine that ran the Twenex/TOPS-20 system had its
own derisive nickname: Oz. According to one hacker
legend, the machine got its nickname because it
required a smaller PDP-11 machine to power its
terminal. One hacker, upon viewing the KL-10-PDP-11
setup for the first time, likened it to the wizard's
bombastic onscreen introduction in the Wizard of Oz. "I
am the great and powerful Oz," the hacker intoned. "Pay
no attention to the PDP-11 behind that console."See
http://www.as.cmu.edu/~geek/humor/See_Figure_1.txt

If hackers laughed when they first encountered the
KL-10, their laughter quickly died when they
encountered Twenex. Not only did Twenex boast built-in
security, but the system's software engineers had
designed the tools and applications with the security
system in mind. What once had been a cat-and-mouse game
over passwords in the case of the Laboratory for
Computer Science's security system, now became an
out-and-out battle over system management. System
administrators argued that without security, the Oz
system was more prone to accidental crashes. Hackers
argued that crashes could be better prevented by
overhauling the source code. Unfortunately, the number
of hackers with the time and inclination to perform
this sort of overhaul had dwindled to the point that
the system-administrator argument prevailed.

Cadging passwords and deliberately crashing the system
in order to glean evidence from the resulting wreckage,
Stallman successfully foiled the system administrators'
attempt to assert control. After one foiled "coup
d'etat," Stallman issued an alert to the entire AI staff.

"There has been another attempt to seize power,"
Stallman wrote. "So far, the aristocratic forces have
been defeated." To protect his identity, Stallman
signed the message "Radio Free OZ."

The disguise was a thin one at best. By 1982,
Stallman's aversion to passwords and secrecy had become
so well known that users outside the AI Laboratory were
using his account as a stepping stone to the ARPAnet,
the research-funded computer network that would serve
as a foundation for today's Internet. One such
"tourist" during the early 1980s was Don Hopkins, a
California programmer who learned through the hacking
grapevine that all an outsider needed to do to gain
access to MIT's vaunted ITS system was to log in under
the initials RMS and enter the same three-letter
monogram when the system requested a password.

"I'm eternally grateful that MIT let me and many other
people use their computers for free," says Hopkins. "It
meant a lot to many people."

This so-called "tourist" policy, which had been openly
tolerated by MIT management during the ITS years,See "MIT AI Lab Tourist
Policy."
http://catalog.com/hopkins/text/tourist-policy.html
 fell by the wayside when Oz became the lab's primary
link to the ARPAnet. At first, Stallman continued his
policy of repeating his login ID as a password so
outside users could follow in his footsteps. Over time,
however, the Oz's fragility prompted administrators to
bar outsiders who, through sheer accident or malicious
intent, might bring down the system. When those same
administrators eventually demanded that Stallman stop
publishing his password, Stallman, citing personal
ethics, refused to do so and ceased using the Oz system
altogether.3

"[When] passwords first appeared at the MIT AI Lab I
[decided] to follow my belief that there should be no
passwords," Stallman would later say. "Because I don't
believe that it's really desirable to have security on
a computer, I shouldn't be willing to help uphold the
security regime."

Stallman's refusal to bow before the great and powerful
Oz symbolized the growing tension between hackers and
AI Lab management during the early 1980s. This tension
paled in comparison to the conflict that raged within
the hacker community itself. By the time the KL-10
arrived, the hacker community had already divided into
two camps. The first centered around a software company
called Symbolics, Inc. The second centered around
Symbolics chief rival, Lisp Machines, Inc. (LMI). Both
companies were in a race to market the Lisp Machine, a
device built to take full advantage of the Lisp
programming language.

Created by artificial-intelligence research pioneer
John McCarthy, a MIT artificial-intelligence researcher
during the late 1950s, Lisp is an elegant language
well-suited for programs charged with heavy-duty
sorting and processing. The language's name is a
shortened version of LISt Processing. Following
McCarthy's departure to the Stanford Artificial
Intelligence Laboratory, MIT hackers refined the
language into a local dialect dubbed MACLISP. The "MAC"
stood for Project MAC, the DARPA-funded research
project that gave birth to the AI Lab and the
Laboratory for Computer Science. Led by AI Lab
arch-hacker Richard Greenblatt, AI Lab programmers
during the 1970s built up an entire Lisp-based
operating system, dubbed the Lisp Machine operating
system. By 1980, the Lisp Machine project had generated
two commercial spin-offs. Symbolics was headed by
Russell Noftsker, a former AI Lab administrator, and
Lisp Machines, Inc., was headed by Greenblatt.

The Lisp Machine software was hacker-built, meaning it
was owned by MIT but available for anyone to copy as
per hacker custom. Such a system limited the marketing
advantage of any company hoping to license the software
from MIT and market it as unique. To secure an
advantage, and to bolster the aspects of the operating
system that customers might consider attractive, the
companies recruited various AI Lab hackers and set them
working on various components of the Lisp Machine
operating system outside the auspices of the AI Lab.

The most aggressive in this strategy was Symbolics. By
the end of 1980, the company had hired 14 AI Lab
staffers as part-time consultants to develop its
version of the Lisp Machine. Apart from Stallman, the
rest signed on to help LMI.See H. P. Newquist, The Brain Makers: Genius, Ego,
and
Greed in the Quest for Machines that Think (Sams
Publishing, 1994): 172.

At first, Stallman accepted both companies' attempt to
commercialize the Lisp machine, even though it meant
more work for him. Both licensed the Lisp Machine OS
source code from MIT, and it was Stallman's job to
update the lab's own Lisp Machine to keep pace with the
latest innovations. Although Symbolics' license with
MIT gave Stallman the right to review, but not copy,
Symbolics' source code, Stallman says a "gentleman's
agreement" between Symbolics management and the AI Lab
made it possible to borrow attractive snippets in
traditional hacker fashion.

On March 16, 1982, a date Stallman remembers well
because it was his birthday, Symbolics executives
decided to end this gentlemen's agreement. The move was
largely strategic. LMI, the primary competition in the
Lisp Machine marketplace, was essentially using a copy
of the AI Lab Lisp Machine. Rather than subsidize the
development of a market rival, Symbolics executives
elected to enforce the letter of the license. If the AI
Lab wanted its operating system to stay current with
the Symbolics operating system, the lab would have to
switch over to a Symbolics machine and sever its
connection to LMI.

As the person responsible for keeping up the lab's Lisp
Machine, Stallman was incensed. Viewing this
announcement as an "ultimatum," he retaliated by
disconnecting Symbolics' microwave communications link
to the laboratory. He then vowed never to work on a
Symbolics machine and pledged his immediate allegiance
to LMI. "The way I saw it, the AI Lab was a neutral
country, like Belgium in World War I," Stallman says.
"If Germany invades Belgium, Belgium declares war on
Germany and sides with Britain and France."

The circumstances of the so-called "Symbolics War" of
1982-1983 depend heavily on the source doing the
telling. When Symbolics executives noticed that their
latest features were still appearing in the AI Lab Lisp
Machine and, by extension, the LMI Lisp machine, they
installed a "spy" program on Stallman's computer
terminal. Stallman says he was rewriting the features
from scratch, taking advantage of the license's review
clause but also taking pains to make the source code as
different as possible. Symbolics executives argued
otherwise and took their case to MIT administration.
According to 1994 book, The Brain Makers: Genius, Ego,
and Greed, and the Quest for Machines That Think,
written by Harvey Newquist, the administration
responded with a warning to Stallman to "stay away"
from the Lisp Machine project.Ibid.: 196. According to Stallman,
MIT administrators backed Stallman up. "I was never
threatened," he says. "I did make changes in my
practices, though. Just to be ultra safe, I no longer
read their source code. I used only the documentation
and wrote the code from that."

Whatever the outcome, the bickering solidified
Stallman's resolve. With no source code to review,
Stallman filled in the software gaps according to his
own tastes and enlisted members of the AI Lab to
provide a continuous stream of bug reports. He also
made sure LMI programmers had direct access to the
changes. "I was going to punish Symbolics if it was the
last thing I did," Stallman says.

Such statements are revealing. Not only do they shed
light on Stallman's nonpacifist nature, they also
reflect the intense level of emotion triggered by the
conflict. According to another Newquist-related story,
Stallman became so irate at one point that he issued an
email threatening to "wrap myself in dynamite and walk
into Symbolics' offices."Ibid. Newquist, who says this anecdote was confirmed
by
several Symbolics executives, writes, "The message
caused a brief flurry of excitement and speculation on
the part of Symbolics' employees, but ultimately, no
one took Stallman's outburst that seriously."
 Although Stallman would deny any memory of the email
and still describes its existence as a "vicious rumor,"
he acknowledges that such thoughts did enter his head.
"I definitely did have fantasies of killing myself and
destroying their building in the process," Stallman
says. "I thought my life was over."

The level of despair owed much to what Stallman viewed
as the "destruction" of his "home"-i.e., the demise of
the AI Lab's close-knit hacker subculture. In a later
email interview with Levy, Stallman would liken himself
to the historical figure Ishi, the last surviving
member of the Yahi, a Pacific Northwest tribe wiped out
during the Indian wars of the 1860s and 1870s. The
analogy casts Stallman's survival in epic, almost
mythical, terms. In reality, however, it glosses over
the tension between Stallman and his fellow AI Lab
hackers prior to the Symbolics-LMI schism. Instead of
seeing Symbolics as an exterminating force, many of
Stallman's colleagues saw it as a belated bid for
relevance. In commercializing the Lisp Machine, the
company pushed hacker principles of engineer-driven
software design out of the ivory-tower confines of the
AI Lab and into the corporate marketplace where
manager-driven design principles held sway. Rather than
viewing Stallman as a holdout, many hackers saw him as
a troubling anachronism.

Stallman does not dispute this alternate view of
historical events. In fact, he says it was yet another
reason for the hostility triggered by the Symbolics
"ultimatum." Even before Symbolics hired away most of
the AI Lab's hacker staff, Stallman says many of the
hackers who later joined Symbolics were shunning him.
"I was no longer getting invited to go to Chinatown,"
Stallman recalls. "The custom started by Greenblatt was
that if you went out to dinner, you went around or sent
a message asking anybody at the lab if they also wanted
to go. Sometime around 1980-1981, I stopped getting
asked. They were not only not inviting me, but one
person later confessed that he had been pressured to
lie to me to keep their going away to dinner without me
a secret."

Although Stallman felt anger toward the hackers who
orchestrated this petty form of ostracism, the
Symbolics controversy dredged up a new kind of anger,
the anger of a person about to lose his home. When
Symbolics stopped sending over its source-code changes,
Stallman responded by holing up in his MIT offices and
rewriting each new software feature and tool from
scratch. Frustrating as it may have been, it guaranteed
that future Lisp Machine users had unfettered access to
the same features as Symbolics users.

It also guaranteed Stallman's legendary status within
the hacker community. Already renowned for his work
with Emacs, Stallman's ability to match the output of
an entire team of Symbolics programmers-a team that
included more than a few legendary hackers itself-still
stands has one of the major human accomplishments of
the Information Age, or of any age for that matter.
Dubbing it a "master hack" and Stallman himself a
"virtual John Henry of computer code," author Steven
Levy notes that many of his Symbolics-employed rivals
had no choice but to pay their idealistic former
comrade grudging respect. Levy quotes Bill Gosper, a
hacker who eventually went to work for Symbolics in the
company's Palo Alto office, expressing amazement over
Stallman's output during this period: I can see
something Stallman wrote, and I might decide it was bad
(probably not, but somebody could convince me it was
bad), and I would still say, "But wait a
minute-Stallman doesn't have anybody to argue with all
night over there. He's working alone! It's incredible
anyone could do this alone!"See Steven Levy, Hackers (Penguin USA [paperback],
1984): 426.
 For Stallman, the months spent playing catch up with
Symbolics evoke a mixture of pride and profound
sadness. As a dyed-in-the-wool liberal whose father had
served in World War II, Stallman is no pacifist. In
many ways, the Symbolics war offered the rite of
passage toward which Stallman had been careening ever
since joining the AI Lab staff a decade before. At the
same time, however, it coincided with the traumatic
destruction of the AI Lab hacker culture that had
nurtured Stallman since his teenage years. One day,
while taking a break from writing code, Stallman
experienced a traumatic moment passing through the
lab's equipment room. There, Stallman encountered the
hulking, unused frame of the PDP-10 machine. Startled
by the dormant lights, lights that once actively
blinked out a silent code indicating the status of the
internal program, Stallman says the emotional impact
was not unlike coming across a beloved family member's
well-preserved corpse.

"I started crying right there in the equipment room,"
he says. "Seeing the machine there, dead, with nobody
left to fix it, it all drove home how completely my
community had been destroyed."

Stallman would have little opportunity to mourn. The
Lisp Machine, despite all the furor it invoked and all
the labor that had gone into making it, was merely a
sideshow to the large battles in the technology
marketplace. The relentless pace of computer
miniaturization was bringing in newer, more powerful
microprocessors that would soon incorporate the
machine's hardware and software capabilities like a
modern metropolis swallowing up an ancient desert village.

Riding atop this microprocessor wave were
hundreds-thousands-of commercial software programs,
each protected by a patchwork of user licenses and
nondisclosure agreements that made it impossible for
hackers to review or share source code. The licenses
were crude and ill-fitting, but by 1983 they had become
strong enough to satisfy the courts and scare away
would-be interlopers. Software, once a form of garnish
most hardware companies gave away to make their
expensive computer systems more flavorful, was quickly
becoming the main dish. In their increasing hunger for
new games and features, users were putting aside the
traditional demand to review the recipe after every meal.

Nowhere was this state of affairs more evident than in
the realm of personal computer systems. Companies such
as Apple Computer and Commodore were minting fresh
millionaires selling machines with built-in operating
systems. Unaware of the hacker culture and its distaste
for binary-only software, many of these users saw
little need to protest when these companies failed to
attach the accompanying source-code files. A few
anarchic adherents of the hacker ethic helped propel
that ethic into this new marketplace, but for the most
part, the marketplace rewarded the programmers speedy
enough to write new programs and savvy enough to
copyright them as legally protected works.

One of the most notorious of these programmers was Bill
Gates, a Harvard dropout two years Stallman's junior.
Although Stallman didn't know it at the time, seven
years before sending out his message to the n
et.unix-wizards newsgroup, Gates, a budding
entrepreneur and general partner with the
Albuquerque-based software firm Micro-Soft, later
spelled as Microsoft, had sent out his own open letter
to the software-developer community. Written in
response to the PC users copying Micro-Soft's software
programs, Gates' " Open Letter to Hobbyists" had
excoriated the notion of communal software development.

"Who can afford to do professional work for nothing?"
asked Gates. "What hobbyist can put three man-years
into programming, finding all bugs, documenting his
product, and distributing it for free?"See Bill Gates, "An Open Letter to
Hobbyists" (February
3, 1976). To view an online copy of this letter, go to

http://www.blinkenlights.com/classiccmp/gateswhine.html.

Although few hackers at the AI Lab saw the missive,
Gates' 1976 letter nevertheless represented the
changing attitude toward software both among commercial
software companies and commercial software developers.
Why treat software as a zero-cost commodity when the
market said otherwise? As the 1970s gave way to the
1980s, selling software became more than a way to
recoup costs; it became a political statement. At a
time when the Reagan Administration was rushing to
dismantle many of the federal regulations and spending
programs that had been built up during the half century
following the Great Depression, more than a few
software programmers saw the hacker ethic as
anticompetitive and, by extension, un-American. At
best, it was a throwback to the anticorporate attitudes
of the late 1960s and early 1970s. Like a Wall Street
banker discovering an old tie-dyed shirt hiding between
French-cuffed shirts and double-breasted suits, many
computer programmers treated the hacker ethic as an
embarrassing reminder of an idealistic age.

For a man who had spent the entire 1960s as an
embarrassing throwback to the 1950s, Stallman didn't
mind living out of step with his peers. As a programmer
used to working with the best machines and the best
software, however, Stallman faced what he could only
describe as a "stark moral choice": either get over his
ethical objection for " proprietary" software-the term
Stallman and his fellow hackers used to describe any
program that carried private copyright or end-user
license that restricted copying and modification-or
dedicate his life to building an alternate,
nonproprietary system of software programs. Given his
recent months-long ordeal with Symbolics, Stallman felt
more comfortable with the latter option. "I suppose I
could have stopped working on computers altogether,"
Stallman says. "I had no special skills, but I'm sure I
could have become a waiter. Not at a fancy restaurant,
probably, but I could've been a waiter somewhere."

Being a waiter-i.e., dropping out of programming
altogether-would have meant completely giving up an
activity, computer programming, that had given him so
much pleasure. Looking back on his life since moving to
Cambridge, Stallman finds it easy to identify lengthy
periods when software programming provided the only
pleasure. Rather than drop out, Stallman decided to
stick it out.

An atheist, Stallman rejects notions such as fate,
dharma, or a divine calling in life. Nevertheless, he
does feel that the decision to shun proprietary
software and build an operating system to help others
do the same was a natural one. After all, it was
Stallman's own personal combination of stubbornness,
foresight, and coding virtuosity that led him to
consider a fork in the road most others didn't know
existed. In describing the decision in a chapter for
the 1999 book, Open Sources, Stallman cites the spirit
encapsulated in the words of the Jewish sage Hillel: If
I am not for myself, who will be for me?If I am only
for myself, what am I?If not now, when?See Richard Stallman, Open Sources
(O'Reilly &
Associates, Inc., 1999): 56. Stallman adds his own
footnote to this statement, writing, "As an atheist, I
don't follow any religious leaders, but I sometimes
find I admire something one of them has said."
 Speaking to audiences, Stallman avoids the religious
route and expresses the decision in pragmatic terms. "I
asked myself: what could I, an operating-system
developer, do to improve the situation? It wasn't until
I examined the question for a while that I realized an
operating-system developer was exactly what was needed
to solve the problem."

Once he reached that decision, Stallman says,
everything else "fell into place." He would abstain
from using software programs that forced him to
compromise his ethical beliefs, while at the same time
devoting his life to the creation of software that
would make it easier for others to follow the same
path. Pledging to build a free software operating
system "or die trying-of old age, of course," Stallman
quips, he resigned from the MIT staff in January, 1984,
to build GNU.

The resignation distanced Stallman's work from the
legal auspices of MIT. Still, Stallman had enough
friends and allies within the AI Lab to retain
rent-free access to his MIT office. He also had the
ability to secure outside consulting gigs to underwrite
the early stages of the GNU Project. In resigning from
MIT, however, Stallman negated any debate about
conflict of interest or Institute ownership of the
software. The man whose early adulthood fear of social
isolation had driven him deeper and deeper into the AI
Lab's embrace was now building a legal firewall between
himself and that environment.

For the first few months, Stallman operated in
isolation from the Unix community as well. Although his
announcement to the net.unix-wizards group had
attracted sympathetic responses, few volunteers signed
on to join the crusade in its early stages.

"The community reaction was pretty much uniform,"
recalls Rich Morin, leader of a Unix user group at the
time. "People said, `Oh, that's a great idea. Show us
your code. Show us it can be done.'"

In true hacker fashion, Stallman began looking for
existing programs and tools that could be converted
into GNU programs and tools. One of the first was a
compiler named VUCK, which converted programs written
in the popular C programming language into
machine-readable code. Translated from the Dutch, the
program's acronym stood for the Free University
Compiler Kit. Optimistic, Stallman asked the program's
author if the program was free. When the author
informed him that the words "Free University" were a
reference to the Vrije Universiteit in Amsterdam,
Stallman was chagrined.

"He responded derisively, stating that the university

was free but the compiler was not," recalls Stallman.

"I therefore decided that my first program for the GNU

Project would be a multi-language, multi-platform compiler."

Eventually Stallman found a Pastel language compiler
written by programmers at Lawrence Livermore National
Lab. According to Stallman's knowledge at the time, the
compiler was free to copy and modify. Unfortunately,
the program possessed a sizable design flaw: it saved
each program into core memory, tying up precious space
for other software activities. On mainframe systems
this design flaw had been forgivable. On Unix systems
it was a crippling barrier, since the machines that ran
Unix were too small to handle the large files
generated. Stallman made substantial progress at first,
building a C-compatible frontend to the compiler. By
summer, however, he had come to the conclusion that he
would have to build a totally new compiler from scratch.

In September of 1984, Stallman shelved compiler
development for the near term and began searching for
lower-lying fruit. He began development of a GNU
version of Emacs, the program he himself had been
supervising for a decade. The decision was strategic.
Within the Unix community, the two native editor
programs were vi, written by Sun Microsystems cofounder
Bill Joy, and ed, written by Bell Labs scientist (and
Unix cocreator) Ken Thompson. Both were useful and
popular, but neither offered the endlessly expandable
nature of Emacs. In rewriting Emacs for the Unix
audience, Stallman stood a better chance of showing off
his skills. It also stood to reason that Emacs users
might be more attuned to the Stallman mentality.

Looking back, Stallman says he didn't view the decision
in strategic terms. "I wanted an Emacs, and I had a
good opportunity to develop one."

Once again, the notion of reinventing the wheel grated
on Stallman's efficient hacker sensibilities. In
writing a Unix version of Emacs, Stallman was soon
following the footsteps of Carnegie Mellon graduate
student James Gosling, author of a C-based version
dubbed Gosling Emacs or GOSMACS. Gosling's version of
Emacs included an interpreter that exploited a
simplified offshoot of the Lisp language called
MOCKLISP. Determined to build GNU Emacs on a similar
Lisp foundation, Stallman borrowed copiously from
Gosling's innovations. Although Gosling had put GOSMACS
under copyright and had sold the rights to UniPress, a
privately held software company, Stallman cited the
assurances of a fellow developer who had participated
in the early MOCKLISP interpreter. According to the
developer, Gosling, while a Ph.D. student at Carnegie
Mellon, had assured early collaborators that their work
would remain accessible. When UniPress caught wind of
Stallman's project, however, the company threatened to
enforce the copyright. Once again, Stallman faced the
prospect of building from the ground up.

In the course of reverse-engineering Gosling's
interpreter, Stallman would create a fully functional
Lisp interpreter, rendering the need for Gosling's
original interpreter moot. Nevertheless, the notion of
developers selling off software rights-indeed, the very
notion of developers having software rights to sell in
the first place-rankled Stallman. In a 1986 speech at
the Swedish Royal Technical Institute, Stallman cited
the UniPress incident as yet another example of the
dangers associated with proprietary software.

"Sometimes I think that perhaps one of the best things
I could do with my life is find a gigantic pile of
proprietary software that was a trade secret, and start
handing out copies on a street corner so it wouldn't be
a trade secret any more," said Stallman. "Perhaps that
would be a much more efficient way for me to give
people new free software than actually writing it
myself; but everyone is too cowardly to even take it."

Despite the stress it generated, the dispute over
Gosling's innovations would assist both Stallman and
the free software movement in the long term. It would
force Stallman to address the weaknesses of the Emacs
Commune and the informal trust system that had allowed
problematic offshoots to emerge. It would also force
Stallman to sharpen the free software movement's
political objectives. Following the release of GNU
Emacs in 1985, Stallman issued " The GNU Manifesto," an
expansion of the original announcement posted in
September, 1983. Stallman included within the document
a lengthy section devoted to the many arguments used by
commercial and academic programmers to justify the
proliferation of proprietary software programs. One
argument, "Don't programmers deserve a reward for their
creativity," earned a response encapsulating Stallman's
anger over the recent Gosling Emacs episode:

"If anything deserves a reward, it is social
contribution," Stallman wrote. "Creativity can be a
social contribution, but only in so far [sic] as
society is free to use the results. If programmers
deserve to be rewarded for creating innovative
programs, by the same token they deserve to be punished
if they restrict the use of these programs."See Richard Stallman, "The GNU
Manifesto" (1985).
http://www.gnu.org/manifesto.html

With the release of GNU Emacs, the GNU Project finally
had code to show. It also had the burdens of any
software-based enterprise. As more and more Unix
developers began playing with the software, money,
gifts, and requests for tapes began to pour in. To
address the business side of the GNU Project, Stallman
drafted a few of his colleagues and formed the Free
Software Foundation (FSF), a nonprofit organization
dedicated to speeding the GNU Project towards its goal.
With Stallman as president and various hacker allies as
board members, the FSF helped provide a corporate face
for the GNU Project.

Robert Chassell, a programmer then working at Lisp
Machines, Inc., became one of five charter board
members at the Free Software Foundation following a
dinner conversation with Stallman. Chassell also served
as the organization's treasurer, a role that started
small but quickly grew.

"I think in '85 our total expenses and revenue were
something in the order of $23,000, give or take,"
Chassell recalls. "Richard had his office, and we
borrowed space. I put all the stuff, especially the
tapes, under my desk. It wasn't until sometime later
LMI loaned us some space where we could store tapes and
things of that sort."

In addition to providing a face, the Free Software
Foundation provided a center of gravity for other
disenchanted programmers. The Unix market that had
seemed so collegial even at the time of Stallman's
initial GNU announcement was becoming increasingly
competitive. In an attempt to tighten their hold on
customers, companies were starting to close off access
to Unix source code, a trend that only speeded the
number of inquiries into ongoing GNU software projects.
The Unix wizards who once regarded Stallman as a noisy
kook were now beginning to see him as a software Cassandra.

"A lot of people don't realize, until they've had it
happen to them, how frustrating it can be to spend a
few years working on a software program only to have it
taken away," says Chassell, summarizing the feelings
and opinions of the correspondents writing in to the
FSF during the early years. "After that happens a
couple of times, you start to say to yourself, `Hey,
wait a minute.'"

For Chassell, the decision to participate in the Free
Software Foundation came down to his own personal
feelings of loss. Prior to LMI, Chassell had been
working for hire, writing an introductory book on Unix
for Cadmus, Inc., a Cambridge-area software company.
When Cadmus folded, taking the rights to the book down
with it, Chassell says he attempted to buy the rights
back with no success.

"As far as I know, that book is still sitting on shelf
somewhere, unusable, uncopyable, just taken out of the
system," Chassell says. "It was quite a good
introduction if I may say so myself. It would have
taken maybe three or four months to convert [the book]
into a perfectly usable introduction to GNU/Linux
today. The whole experience, aside from what I have in
my memory, was lost."

Forced to watch his work sink into the mire while his
erstwhile employer struggled through bankruptcy,
Chassell says he felt a hint of the anger that drove
Stallman to fits of apoplexy. "The main clarity, for
me, was the sense that if you want to have a decent
life, you don't want to have bits of it closed off,"
Chassell says. "This whole idea of having the freedom
to go in and to fix something and modify it, whatever
it may be, it really makes a difference. It makes one
think happily that after you've lived a few years that
what you've done is worthwhile. Because otherwise it
just gets taken away and thrown out or abandoned or, at
the very least, you no longer have any relation to it.
It's like losing a bit of your life."

St. Ignucius

The Maui High Performance Computing Center is located
in a single-story building in the dusty red hills just
above the town of Kihei. Framed by million-dollar views
and the multimillion dollar real estate of the
Silversword Golf Course, the center seems like the
ultimate scientific boondoggle. Far from the boxy,
sterile confines of Tech Square or even the sprawling
research metropolises of Argonne, Illinois and Los
Alamos, New Mexico, the MHPCC seems like the kind of
place where scientists spend more time on their tans
than their post-doctoral research projects.

The image is only half true. Although researchers at
the MHPCC do take advantage of the local recreational
opportunities, they also take their work seriously.
According to Top500.org, a web site that tracks the
most powerful supercomputers in the world, the IBM SP
Power3 supercomputer housed within the MHPCC clocks in
at 837 billion floating-point operations per second,
making it one of 25 most powerful computers in the
world. Co-owned and operated by the University of
Hawaii and the U.S. Air Force, the machine divides its
computer cycles between the number crunching tasks
associated with military logistics and high-temperature
physics research.

Simply put, the MHPCC is a unique place, a place where
the brainy culture of science and engineering and the
laid-back culture of the Hawaiian islands coexist in
peaceful equilibrium. A slogan on the lab's 2000 web
site sums it up: "Computing in paradise."

It's not exactly the kind of place you'd expect to find
Richard Stallman, a man who, when taking in the
beautiful view of the nearby Maui Channel through the
picture windows of a staffer's office, mutters a terse
critique: "Too much sun." Still, as an emissary from
one computing paradise to another, Stallman has a
message to deliver, even if it means subjecting his
pale hacker skin to the hazards of tropical exposure.

The conference room is already full by the time I
arrive to catch Stallman's speech. The gender breakdown
is a little better than at the New York speech, 85%
male, 15% female, but not by much. About half of the
audience members wear khaki pants and logo-encrusted
golf shirts. The other half seems to have gone native.
Dressed in the gaudy flower-print shirts so popular in
this corner of the world, their faces are a deep shade
of ochre. The only residual indication of geek status
are the gadgets: Nokia cell phones, Palm Pilots, and
Sony VAIO laptops.

Needless to say, Stallman, who stands in front of the
room dressed in plain blue T-shirt, brown polyester
slacks, and white socks, sticks out like a sore thumb.
The fluorescent lights of the conference room help
bring out the unhealthy color of his sun-starved skin.
His beard and hair are enough to trigger beads of sweat
on even the coolest Hawaiian neck. Short of having the
words "mainlander" tattooed on his forehead, Stallman
couldn't look more alien if he tried.

As Stallman putters around the front of the room, a few
audience members wearing T-shirts with the logo of the
Maui FreeBSD Users Group (MFUG) race to set up camera
and audio equipment. FreeBSD, a free software offshoot
of the Berkeley Software Distribution, the venerable
1970s academic version of Unix, is technically a
competitor to the GNU/Linux operating system. Still, in
the hacking world, Stallman speeches are documented
with a fervor reminiscent of the Grateful Dead and its
legendary army of amateur archivists. As the local free
software heads, it's up to the MFUG members to make
sure fellow programmers in Hamburg, Mumbai, and
Novosibirsk don't miss out on the latest pearls of RMS wisdom.

The analogy to the Grateful Dead is apt. Often, when
describing the business opportunities inherent within
the free software model, Stallman has held up the
Grateful Dead as an example. In refusing to restrict
fans' ability to record live concerts, the Grateful
Dead became more than a rock group. They became the
center of a tribal community dedicated to Grateful Dead
music. Over time, that tribal community became so large
and so devoted that the band shunned record contracts
and supported itself solely through musical tours and
live appearances. In 1994, the band's last year as a
touring act, the Grateful Dead drew $52 million in gate
receipts alone.See "Grateful Dead Time Capsule: 1985-1995 North
American Tour Grosses." http://www.accessplace.com/gdtc/1197.htm

While few software companies have been able to match
that success, the tribal aspect of the free software
community is one reason many in the latter half of the
1990s started to accept the notion that publishing
software source code might be a good thing. Hoping to
build their own loyal followings, companies such as
IBM, Sun Microsystems, and Hewlett Packard have come to
accept the letter, if not the spirit, of the Stallman
free software message. Describing the GPL as the
information-technology industry's "Magna Carta," ZDNet
software columnist Evan Leibovitch sees the growing
affection for all things GNU as more than just a trend.
"This societal shift is letting users take back control
of their futures," Leibovitch writes. "Just as the
Magna Carta gave rights to British subjects, the GPL
enforces consumer rights and freedoms on behalf of the
users of computer software."See Evan Leibovitch, "Who's Afraid of Big Bad
Wolves,"
ZDNet Tech Update (December 15, 2000).
http://techupdate.zdnet.com/techupdate/stories/main/0Y/A

The tribal aspect of the free software community also
helps explain why 40-odd programmers, who might
otherwise be working on physics projects or surfing the
Web for windsurfing buoy reports, have packed into a
conference room to hear Stallman speak.

Unlike the New York speech, Stallman gets no
introduction. He also offers no self-introduction. When
the FreeBSD people finally get their equipment up and
running, Stallman simply steps forward, starts
speaking, and steamrolls over every other voice in the room.

"Most of the time when people consider the question of
what rules society should have for using software, the
people considering it are from software companies, and
they consider the question from a self-serving
perspective," says Stallman, opening his speech. "What
rules can we impose on everybody else so they have to
pay us lots of money? I had the good fortune in the
1970s to be part of a community of programmers who
shared software. And because of this I always like to
look at the same issue from a different direction to
ask: what kind of rules make possible a good society
that is good for the people who are in it? And
therefore I reach completely different answers."

Once again, Stallman quickly segues into the parable of
the Xerox laser printer, taking a moment to deliver the
same dramatic finger-pointing gestures to the crowd. He
also devotes a minute or two to the GNU/Linux name.

"Some people say to me, `Why make such a fuss about
getting credit for this system? After all, the
important thing is the job is done, not whether you get
recognition for it.' Well, this would be wise advice if
it were true. But the job wasn't to build an operating
system; the job is to spread freedom to the users of
computers. And to do that we have to make it possible
to do everything with computers in freedom."For narrative purposes, I have
hesitated to go in-depth
when describing Stallman's full definition of software
"freedom." The GNU Project web site lists four
fundamental components: The freedom to run a program,
for any purpose (freedom 0). The freedom to study how a
program works, and adapt it to your needs (freedom 1).
The freedom to redistribute copies of a program so you
can help your neighbor (freedom 2). The freedom to
improve the program, and release your improvements to
the public, so that the whole community benefits
(freedom 3). For more information, please visit "The
Free Software Definition" at
http://www.gnu.org/philosophy/free-sw.html.

Adds Stallman, "There's a lot more work to do."

For some in the audience, this is old material. For
others, it's a little arcane. When a member of the
golf-shirt contingent starts dozing off, Stallman stops
the speech and asks somebody to wake the person up.

"Somebody once said my voice was so soothing, he asked
if I was some kind of healer," says Stallman, drawing a
quick laugh from the crowd. "I guess that probably
means I can help you drift gently into a blissful,
relaxing sleep. And some of you might need that. I
guess I shouldn't object if you do. If you need to
sleep, by all means do."

The speech ends with a brief discussion of software
patents, a growing issue of concern both within the
software industry and within the free software
community. Like Napster, software patents reflect the
awkward nature of applying laws and concepts written
for the physical world to the frictionless universe of
information technology. The difference between
protecting a program under copyright and protecting a
program under software patents is subtle but
significant. In the case of copyright, a software
creator can restrict duplication of the source code but
not duplication of the idea or functionality that the
source code addresses. In other words, if a developer
chooses not to use a software program under the
original developer's terms, that second developer is
still free to reverse-engineer the program-i.e.,
duplicate the software program's functionality by
rewriting the source code from scratch. Such
duplication of ideas is common within the commercial
software industry, where companies often isolate
reverse-engineering teams to head off accusations of
corporate espionage or developer hanky-panky. In the
jargon of modern software development, companies refer
to this technique as "clean room" engineering.

Software patents work differently. According to the
U.S. Patent Office, companies and individuals may
secure patents for innovative algorithms provided they
submit their claims to a public review. In theory, this
allows the patent-holder to trade off disclosure of
their invention for a limited monopoly of a minimum of
20 years after the patent filing. In practice, the
disclosure is of limited value, since the operation of
the program is often self-evident. Unlike copyright, a
patent gives its holder the ability to head off the
independent development of software programs with the
same or similar functionality.

In the software industry, where 20 years can cover the
entire life cycle of a marketplace, patents take on a
strategic weight. Where companies such as Microsoft and
Apple once battled over copyright and the "look and
feel" of various technologies, today's Internet
companies use patents as a way to stake out individual
applications and business models, the most notorious
example being Amazon.com's 2000 attempt to patent the
company's "one-click" online shopping process. For most
companies, however, software patents have become a
defensive tool, with cross-licensing deals balancing
one set of corporate patents against another in a tense
form of corporate detente. Still, in a few notable
cases of computer encryption and graphic imaging
algorithms, software vendors have successfully stifled
rival technologies.

For Stallman, the software-patent issue dramatizes the
need for eternal hacker vigilance. It also underlines
the importance of stressing the political benefits of
free software programs over the competitive benefits.
Pointing to software patents' ability to create
sheltered regions in the marketplace, Stallman says
competitive performance and price, two areas where free
software operating systems such as GNU/Linux and
FreeBSD already hold a distinct advantage over their
proprietary counterparts, are red herrings compared to
the large issues of user and developer freedom.

"It's not because we don't have the talent to make
better software," says Stallman. "It's because we don't
have the right. Somebody has prohibited us from serving
the public. So what's going to happen when users
encounter these gaps in free software? Well, if they
have been persuaded by the open source movement that
these freedoms are good because they lead to
more-powerful reliable software, they're likely to say,
`You didn't deliver what you promised. This software's
not more powerful. It's missing this feature. You lied
to me.' But if they have come to agree with the free
software movement, that the freedom is important in
itself, then they will say, `How dare those people stop
me from having this feature and my freedom too.' And
with that kind of response, we may survive the hits
that we're going to take as these patents explode."

Such comments involve a hefty dose of spin, of course.
Most open source advocates are equally, if not more,
vociferous as Stallman when it comes to opposing
software patents. Still, the underlying logic of
Stallman's argument-that open source advocates
emphasize the utilitarian advantages of free software
over the political advantages-remains uncontested.
Rather than stress the political significance of free
software programs, open source advocates have chosen to
stress the engineering integrity of the hacker
development model. Citing the power of peer review, the
open source argument paints programs such as GNU/Linux
or FreeBSD as better built, better inspected and, by
extension, more trushworthy to the average user.

That's not to say the term "open source" doesn't have
its political implications. For open source advocates,
the term open source serves two purposes. First, it
eliminates the confusion associated with the word
"free," a word many businesses interpret as meaning
"zero cost." Second, it allows companies to examine the
free software phenomenon on a technological, rather
than ethical, basis. Eric Raymond, cofounder of the
Open Source Initiative and one of the leading hackers
to endorse the term, effectively summed up the
frustration of following Stallman down the political
path in a 1999 essay, titled " Shut Up and Show Them
the Code": RMS's rhetoric is very seductive to the kind
of people we are. We hackers are thinkers and idealists
who readily resonate with appeals to "principle" and
"freedom" and "rights." Even when we disagree with bits
of his program, we want RMS's rhetorical style to work;
we think it ought to work; we tend to be puzzled and
disbelieving when it fails on the 95% of people who
aren't wired like we are.4 Included among that 95%,
Raymond writes, are the bulk of business managers,
investors, and nonhacker computer users who, through
sheer weight of numbers, tend to decide the overall
direction of the commercial software marketplace.
Without a way to win these people over, Raymond argues,
programmers are doomed to pursue their ideology on the
periphery of society: When RMS insists that we talk
about "computer users' rights," he's issuing a
dangerously attractive invitation to us to repeat old
failures. It's one we should reject-not because his
principles are wrong, but because that kind of
language, applied to software, simply does not persuade
anybody but us. In fact, it confuses and repels most
people outside our culture.4 Watching Stallman deliver
his political message in person, it is hard to see
anything confusing or repellent. Stallman's appearance
may seem off-putting, but his message is logical. When
an audience member asks if, in shunning proprietary
software, free software proponents lose the ability to
keep up with the latest technological advancements,
Stallman answers the question in terms of his own
personal beliefs. "I think that freedom is more
important than mere technical advance," he says. "I
would always choose a less advanced free program rather
than a more advanced nonfree program, because I won't
give up my freedom for something like that. My rule is,
if I can't share it with you, I won't take it."

Such answers, however, reinforce the quasi-religious
nature of the Stallman message. Like a Jew keeping
kosher or a Mormon refusing to drink alcohol, Stallman
paints his decision to use free software in the place
of proprietary in the color of tradition and personal
belief. As software evangelists go, Stallman avoids
forcing those beliefs down listeners' throats. Then
again, a listener rarely leaves a Stallman speech not
knowing where the true path to software righteousness lies.

As if to drive home this message, Stallman punctuates
his speech with an unusual ritual. Pulling a black robe
out of a plastic grocery bag, Stallman puts it on. Out
of a second bag, he pulls a reflective yellow computer
disk and places it on his head. The crowd lets out a
startled laugh.

"I am St. Ignucius of the Church of Emacs," says
Stallman, raising his right hand in mock-blessing. "I
bless your computer, my child."

<Graphic file:books/free_0801.png>

Stallman dressed as St. Ignucius. Photo by Wouter van

Oortmerssen.

The laughter turns into full-blown applause after a few
seconds. As audience members clap, the computer disk on
Stallman's head catches the glare of an overhead light,
eliciting a perfect halo effect. In the blink of an
eye, Stallman goes from awkward haole to Russian
religious icon.

" Emacs was initially a text editor," says Stallman,
explaining the getup. "Eventually it became a way of
life for many and a religion for some. We call this
religion the Church of Emacs."

The skit is a lighthearted moment of self-pardoy, a
humorous return-jab at the many people who might see
Stallman's form of software asceticism as religious
fanaticism in disguise. It is also the sound of the
other shoe dropping-loudly. It's as if, in donning his
robe and halo, Stallman is finally letting listeners of
the hook, saying, "It's OK to laugh. I know I'm weird."

Discussing the St. Ignucius persona afterward, Stallman
says he first came up with it in 1996, long after the
creation of Emacs but well before the emergence of the
"open source" term and the struggle for
hacker-community leadership that precipitated it. At
the time, Stallman says, he wanted a way to "poke fun
at himself," to remind listeners that, though stubborn,
Stallman was not the fanatic some made him out to be.
It was only later, Stallman adds, that others seized
the persona as a convenient way to play up his
reputation as software ideologue, as Eric Raymond did
in an 1999 interview with the linux.com web site: When
I say RMS calibrates what he does, I'm not belittling
or accusing him of insincerity. I'm saying that like
all good communicators he's got a theatrical streak.
Sometimes it's conscious-have you ever seen him in his
St. Ignucius drag, blessing software with a disk
platter on his head? Mostly it's unconscious; he's just
learned the degree of irritating stimulus that works,
that holds attention without (usually) freaking people out.See "Guest
Interview: Eric S. Raymond," Linux.com (May
18, 1999). http://www.linux.com/interviews/19990518/8/
 Stallman takes issue with the Raymond analysis. "It's
simply my way of making fun of myself," he says. "The
fact that others see it as anything more than that is a
reflection of their agenda, not mine."

That said, Stallman does admit to being a ham. "Are you
kidding?" he says at one point. "I love being the
center of attention." To facilitate that process,
Stallman says he once enrolled in Toastmasters, an
organization that helps members bolster their
public-speaking skills and one Stallman recommends
highly to others. He possesses a stage presence that
would be the envy of most theatrical performers and
feels a link to vaudevillians of years past. A few days
after the Maui High Performance Computing Center
speech, I allude to the 1999 LinuxWorld performace and
ask Stallman if he has a Groucho Marx complex-i.e., the
unwillingness to belong to any club that would have him
as a member. Stallman's response is immediate: "No, but
I admire Groucho Marx in a lot of ways and certainly
have been in some things I say inspired by him. But
then I've also been inspired in some ways by Harpo."

The Groucho Marx influence is certainly evident in
Stallman's lifelong fondness for punning. Then again,
punning and wordplay are common hacker traits. Perhaps
the most Groucho-like aspect of Stallman's personality,
however, is the deadpan manner in which the puns are
delivered. Most come so stealthily-without even the
hint of a raised eyebrow or upturned smile-you almost
have to wonder if Stallman's laughing at his audience
more than the audience is laughing at him.

Watching members of the Maui High Performance Computer
Center laugh at the St. Ignucius parody, such concerns
evaporate. While not exactly a standup act, Stallman
certainly possesses the chops to keep a roomful of
engineers in stitches. "To be a saint in the Church of
Emacs does not require celibacy, but it does require
making a commitment to living a life of moral purity,"
he tells the Maui audience. "You must exorcise the evil
proprietary operating system from all your computer and
then install a wholly [holy] free operating system. And
then you must install only free software on top of
that. If you make this commitment and live by it, then
you too will be a saint in the Church of Emacs, and you
too may have a halo."

The St. Ignucius skit ends with a brief inside joke. On
most Unix systems and Unix-related offshoots, the
primary competitor program to Emacs is vi, a
text-editing program developed by former UC Berkeley
student and current Sun Microsystems chief scientist,
Bill Joy. Before doffing his "halo," Stallman pokes fun
at the rival program. "People sometimes ask me if it is
a sin in the Church of Emacs to use vi," he says.
"Using a free version of vi is not a sin; it is a
penance. So happy hacking."

After a brief question-and-answer session, audience
members gather around Stallman. A few ask for
autographs. "I'll sign this," says Stallman, holding up
one woman's print out of the GNU General Public
License, "but only if you promise me to use the term
GNU/Linux instead of Linux and tell all your friends to
do likewise."

The comment merely confirms a private observation.
Unlike other stage performers and political figures,
Stallman has no "off" mode. Aside from the St. Ignucius
character, the ideologue you see onstage is the
ideologue you meet backstage. Later that evening,
during a dinner conversation in which a programmer
mentions his affinity for "open source" programs,
Stallman, between bites, upbraids his tablemate: "You
mean free software. That's the proper way to refer to it."

During the question-and-answer session, Stallman admits
to playing the pedagogue at times. "There are many
people who say, `Well, first let's invite people to
join the community, and then let's teach them about
freedom.' And that could be a reasonable strategy, but
what we have is almost everybody's inviting people to
join the community, and hardly anybody's teaching them
about freedom once they come in."

The result, Stallman says, is something akin to a
third-world city. People move in, hoping to strike it
rich or at the very least to take part in a vibrant,
open culture, and yet those who hold the true power
keep evolving new tricks and strategies-i.e., software
patents-to keep the masses out. "You have millions of
people moving in and building shantytowns, but nobody's
working on step two: getting them out of those
shantytowns. If you think talking about software
freedom is a good strategy, please join in doing step
two. There are plenty working on step one. We need more
people working on step two."

Working on "step two" means driving home the issue that
freedom, not acceptance, is the root issue of the free
software movement. Those who hope to reform the
proprietary software industry from the inside are on a
fool's errand. "Change from the inside is risky,"
Stallman stays. "Unless you're working at the level of
a Gorbachev, you're going to be neutralized."

Hands pop up. Stallman points to a member of the golf
shirt-wearing contingent. "Without patents, how would
you suggest dealing with commercial espionage?"

"Well, those two questions have nothing to do with each
other, really," says Stallman.

"But I mean if someone wants to steal another company's
piece of software."

Stallman's recoils as if hit by a poisonous spray.
"Wait a second," Stallman says. "Steal? I'm sorry,
there's so much prejudice in that statement that the
only thing I can say is that I reject that prejudice.
Companies that develop nonfree software and other
things keep lots and lots of trade secrets, and so
that's not really likely to change. In the old
days-even in the 1980s-for the most part programmers
were not aware that there were even software patents
and were paying no attention to them. What happened was
that people published the interesting ideas, and if
they were not in the free software movement, they kept
secret the little details. And now they patent those
broad ideas and keep secret the little details. So as
far as what you're describing, patents really make no
difference to it one way or another."

"But if it doesn't affect their publication," a new
audience member jumps in, his voice trailing off almost
as soon as he starts speaking.

"But it does," Stallman says. "Their publication is
telling you that this is an idea that's off limits to
the rest of the community for 20 years. And what the
hell good is that? Besides, they've written it in such
a hard way to read, both to obfuscate the idea and to
make the patent as broad as possible, that it's
basically useless looking at the published information
to learn anything anyway. The only reason to look at
patents is to see the bad news of what you can't do."

The audience falls silent. The speech, which began at
3:15, is now nearing the 5:00 whistle, and most
listeners are already squirming in their seats, antsy
to get a jump start on the weekend. Sensing the
fatigue, Stallman glances around the room and hastily
shuts things down. "So it looks like we're done," he
says, following the observation with an auctioneer's
"going, going, gone" to flush out any last-minute
questioners. When nobody throws their hand up, Stallman
signs off with a traditional exit line.

"Happy hacking," he says. Endnotes

1. See "Grateful Dead Time Capsule: 1985-1995 North
American Tour Grosses."
http://www.accessplace.com/gdtc/1197.htm 2. See Evan
Leibovitch, "Who's Afraid of Big Bad Wolves," ZDNet
Tech Update (December 15, 2000).

http://techupdate.zdnet.com/techupdate/stories/main/0Y/A>

3. For narrative purposes, I have hesitated to go

in-depth when describing Stallman's full definition of

software "freedom." The GNU Project web site lists four

fundamental components: The freedom to run a program,

for any purpose (freedom 0). The freedom to study how a

program works, and adapt it to your needs (freedom 1).

The freedom to redistribute copies of a program so you

can help your neighbor (freedom 2). The freedom to

improve the program, and release your improvements to

the public, so that the whole community benefits

(freedom 3). For more information, please visit "The

Free Software Definition" at

http://www.gnu.org/philosophy/free-sw.html. 4. See Eric

Raymond, "Shut Up and Show Them the Code," online

essay, (June 28, 1999). 5. See "Guest Interview: Eric

S. Raymond," Linux.com (May 18, 1999).

http://www.linux.com/interviews/19990518/8/

The GNU General Public License

By the spring of 1985, Richard Stallman had settled on
the GNU Project's first milestone-a Lisp-based free
software version of Emacs. To meet this goal, however,
he faced two challenges. First, he had to rebuild Emacs
in a way that made it platform independent. Second, he
had to rebuild the Emacs Commune in a similar fashion.

The dispute with UniPress had highlighted a flaw in the
Emacs Commune social contract. Where users relied on
Stallman's expert insight, the Commune's rules held. In
areas where Stallman no longer held the position of
alpha hacker-pre-1984 Unix systems, for
example-individuals and companies were free to make
their own rules.

The tension between the freedom to modify and the
freedom to exert authorial privilege had been building
before GOSMACS. The Copyright Act of 1976 had
overhauled U.S. copyright law, extending the legal
protection of copyright to software programs. According
to Section 102(b) of the Act, individuals and companies
now possessed the ability to copyright the "expression"
of a software program but not the "actual processes or
methods embodied in the program."See Hal Abelson, Mike Fischer, and Joanne
Costello,
"Software and Copyright Law," updated version (1998).
 Translated, programmers and companies had the ability
to treat software programs like a story or song. Other
programmers could take inspiration from the work, but
to make a direct copy or nonsatirical derivative, they
first had to secure permission from the original
creator. Although the new law guaranteed that even
programs without copyright notices carried copyright
protection, programmers quickly asserted their rights,
attaching coypright notices to their software programs.

At first, Stallman viewed these notices with alarm.
Rare was the software program that didn't borrow source
code from past programs, and yet, with a single stroke
of the president's pen, Congress had given programmers
and companies the power to assert individual authorship
over communally built programs. It also injected a dose
of formality into what had otherwise been an informal
system. Even if hackers could demonstrate how a given
program's source-code bloodlines stretched back years,
if not decades, the resources and money that went into
battling each copyright notice were beyond most
hackers' means. Simply put, disputes that had once been
settled hacker-to-hacker were now settled
lawyer-to-lawyer. In such a system, companies, not
hackers, held the automatic advantage.

Proponents of software copyright had their
counter-arguments: without copyright, works might
otherwise slip into the public domain. Putting a
copyright notice on a work also served as a statement
of quality. Programmers or companies who attached their
name to the copyright attached their reputations as
well. Finally, it was a contract, as well as a
statement of ownership. Using copyright as a flexible
form of license, an author could give away certain
rights in exchange for certain forms of behavior on the
part of the user. For example, an author could give
away the right to suppress unauthorized copies just so
long as the end user agreed not to create a commercial offshoot.

It was this last argument that eventually softened
Stallman's resistance to software copyright notices.
Looking back on the years leading up to the GNU
Project, Stallman says he began to sense the beneficial
nature of copyright sometime around the release of
Emacs 15.0, the last significant pre-GNU Project
upgrade of Emacs. "I had seen email messages with
copyright notices plus simple `verbatim copying
permitted' licenses," Stallman recalls. "Those
definitely were [an] inspiration."

For Emacs 15, Stallman drafted a copyright that gave
users the right to make and distribute copies. It also
gave users the right to make modified versions, but not
the right to claim sole ownership of those modified
versions, as in the case of GOSMACS.

Although helpful in codifying the social contract of
the Emacs Commune, the Emacs 15 license remained too
"informal" for the purposes of the GNU Project,
Stallman says. Soon after starting work on a GNU
version of Emacs, Stallman began consulting with the
other members of the Free Software Foundation on how to
shore up the license's language. He also consulted with
the attorneys who had helped him set up the Free
Software Foundation.

Mark Fischer, a Boston attorney specializing in
intellectual-property law, recalls discussing the
license with Stallman during this period. "Richard had
very strong views about how it should work," Fischer
says, "He had two principles. The first was to make the
software absolutely as open as possible. The second was
to encourage others to adopt the same licensing practices."

Encouraging others to adopt the same licensing
practices meant closing off the escape hatch that had
allowed privately owned versions of Emacs to emerge. To
close that escape hatch, Stallman and his free software
colleagues came up with a solution: users would be free
to modify GNU Emacs just so long as they published
their modifications. In addition, the resulting
"derivative" works would also have carry the same GNU
Emacs License.

The revolutionary nature of this final condition would
take a while to sink in. At the time, Fischer says, he
simply viewed the GNU Emacs License as a simple
contract. It put a price tag on GNU Emacs' use. Instead
of money, Stallman was charging users access to their
own later modifications. That said, Fischer does
remember the contract terms as unique.

"I think asking other people to accept the price was,
if not unique, highly unusual at that time," he says.

The GNU Emacs License made its debut when Stallman
finally released GNU Emacs in 1985. Following the
release, Stallman welcomed input from the general
hacker community on how to improve the license's
language. One hacker to take up the offer was future
software activist John Gilmore, then working as a
consultant to Sun Microsystems. As part of his
consulting work, Gilmore had ported Emacs over to
SunOS, the company's in-house version of Unix. In the
process of doing so, Gilmore had published the changes
as per the demands of the GNU Emacs License. Instead of
viewing the license as a liability, Gilmore saw it as
clear and concise expression of the hacker ethos. "Up
until then, most licenses were very informal," Gilmore recalls.

As an example of this informality, Gilmore cites a
copyright notice for trn, a Unix utility. Written by
Larry Wall, future creator of the Perl programming
language, patch made it simple for Unix programmers to
insert source-code fixes-" patches" in hacker
jargon-into any large program. Recognizing the utility
of this feature, Wall put the following copyright
notice in the program's accompanying README file:

Copyright (c) 1985, Larry Wall You may copy the trn kit
in whole or in part as long as you don't try to make
money off it, or pretend that you wrote it.See Trn Kit README.
http://www.za.debian.org/doc/trn/trn-readme

Such statements, while reflective of the hacker ethic,
also reflected the difficulty of translating the loose,
informal nature of that ethic into the rigid, legal
language of copyright. In writing the GNU Emacs
License, Stallman had done more than close up the
escape hatch that permitted proprietary offshoots. He
had expressed the hacker ethic in a manner
understandable to both lawyer and hacker alike.

It wasn't long, Gilmore says, before other hackers
began discussing ways to "port" the GNU Emacs License
over to their own programs. Prompted by a conversation
on Usenet, Gilmore sent an email to Stallman in
November, 1986, suggesting modification: You should
probably remove "EMACS" from the license and replace it
with "SOFTWARE" or something. Soon, we hope, Emacs will
not be the biggest part of the GNU system, and the
license applies to all of it.See John Gilmore, quoted from email to author.
Gilmore wasn't the only
person suggesting a more general approach. By the end
of 1986, Stallman himself was at work with GNU
Project's next major milestone, a source-code debugger,
and was looking for ways to revamp the Emacs license so
that it might apply to both programs. Stallman's
solution: remove all specific references to Emacs and
convert the license into a generic copyright umbrella
for GNU Project software. The GNU General Public
License, GPL for short, was born.

In fashioning the GPL, Stallman followed the software
convention of using decimal numbers to indicate
prototype versions and whole numbers to indicate mature
versions. Stallman published Version 1.0 of the GPL in
1989 (a project Stallman was developing in 1985),
almost a full year after the release of the GNU
Debugger, Stallman's second major foray into the realm
of Unix programming. The license contained a preamble
spelling out its political intentions:

The General Public License is designed to make sure
that you have the freedom to give away or sell copies
of free software, that you receive source code or can
get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you
know you can do these things.

To protect your rights, we need to make restrictions
that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions
translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.See Richard Stallman, et
al., "GNU General Public
License: Version 1," (February, 1989).
http://www.gnu.org/copyleft/copying-1.0.html

In fashioning the GPL, Stallman had been forced to make
an additional adjustment to the informal tenets of the
old Emacs Commune. Where he had once demanded that
Commune members publish any and all changes, Stallman
now demanded publication only in instances when
programmers circulated their derivative versions in the
same public manner as Stallman. In other words,
programmers who simply modified Emacs for private use
no longer needed to send the source-code changes back
to Stallman. In what would become a rare compromise of
free software doctrine, Stallman slashed the price tag
for free software. Users could innovate without
Stallman looking over their shoulders just so long as
they didn't bar Stallman and the rest of the hacker
community from future exchanges of the same program.

Looking back, Stallman says the GPL compromise was
fueled by his own dissatisfaction with the Big Brother
aspect of the original Emacs Commune social contract.
As much as he liked peering into other hackers'
systems, the knowledge that some future source-code
maintainer might use that power to ill effect forced
him to temper the GPL.

"It was wrong to require people to publish all
changes," says Stallman. "It was wrong to require them
to be sent to one privileged developer. That kind of
centralization and privilege for one was not consistent
with a society in which all had equal rights."

As hacks go, the GPL stands as one of Stallman's best.
It created a system of communal ownership within the
normally proprietary confines of copyright law. More
importantly, it demonstrated the intellectual
similarity between legal code and software code.
Implicit within the GPL's preamble was a profound
message: instead of viewing copyright law with
suspicion, hackers should view it as yet another system
begging to be hacked.

"The GPL developed much like any piece of free software
with a large community discussing its structure, its
respect or the opposite in their observation, needs for
tweaking and even to compromise it mildly for greater
acceptance," says Jerry Cohen, another attorney who
helped Stallman with the creation of the license. "The
process worked very well and GPL in its several
versions has gone from widespread skeptical and at
times hostile response to widespread acceptance."

In a 1986 interview with Byte magazine, Stallman summed
up the GPL in colorful terms. In addition to
proclaiming hacker values, Stallman said, readers
should also "see it as a form of intellectual jujitsu,
using the legal system that software hoarders have set
up against them."See David Betz and Jon Edwards, "Richard Stallman
discusses his public-domain [sic] Unix-compatible
software system with BYTE editors," BYTE (July, 1996).
(Reprinted on the GNU Project web site:
http://www.gnu.org/gnu/byte-interview.html.) This
interview offers an interesting, not to mention candid,
glimpse at Stallman's political attitudes during the
earliest days of the GNU Project. It is also helpful in
tracing the evolution of Stallman's rhetoric.
Describing the purpose of the GPL, Stallman says, "I'm
trying to change the way people approach knowledge and
information in general. I think that to try to own
knowledge, to try to control whether people are allowed
to use it, or to try to stop other people from sharing
it, is sabotage." Contrast this with a statement to the
author in August 2000: "I urge you not to use the term
`intellectual property' in your thinking. It will lead
you to misunderstand things, because that term
generalizes about copyrights, patents, and trademarks.
And those things are so different in their effects that
it is entirely foolish to try to talk about them at
once. If you hear somebody saying something about
intellectual property, without quotes, then he's not
thinking very clearly and you shouldn't join."
Years later, Stallman would describe the GPL's creation
in less hostile terms. "I was thinking about issues
that were in a sense ethical and in a sense political
and in a sense legal," he says. "I had to try to do
what could be sustained by the legal system that we're
in. In spirit the job was that of legislating the basis
for a new society, but since I wasn't a government, I
couldn't actually change any laws. I had to try to do
this by building on top of the existing legal system,
which had not been designed for anything like this."

About the time Stallman was pondering the ethical,
political, and legal issues associated with free
software, a California hacker named Don Hopkins mailed
him a manual for the 68000 microprocessor. Hopkins, a
Unix hacker and fellow science-fiction buff, had
borrowed the manual from Stallman a while earlier. As a
display of gratitude, Hopkins decorated the return
envelope with a number of stickers obtained at a local
science-fiction convention. One sticker in particular
caught Stallman's eye. It read, "Copyleft (L), All
Rights Reversed." Following the release of the first
version of GPL, Stallman paid tribute to the sticker,
nicknaming the free software license "Copyleft." Over
time, the nickname and its shorthand symbol, a
backwards "C," would become an official Free Software
Foundation synonym for the GPL.

The German sociologist Max Weber once proposed that all
great religions are built upon the "routinization" or
"institutionalization" of charisma. Every successful
religion, Weber argued, converts the charisma or
message of the original religious leader into a social,
political, and ethical apparatus more easily
translatable across cultures and time.

While not religious per se, the GNU GPL certainly
qualifies as an interesting example of this
"routinization" process at work in the modern,
decentralized world of software development. Since its
unveiling, programmers and companies who have otherwise
expressed little loyalty or allegiance to Stallman have
willingly accepted the GPL bargain at face value. A few
have even accepted the GPL as a preemptive protective
mechanism for their own software programs. Even those
who reject the GPL contract as too compulsory, still
credit it as influential.

One hacker falling into this latter group was Keith
Bostic, a University of California employee at the time
of the GPL 1.0 release. Bostic's department, the
Computer Systems Research Group (SRG), had been
involved in Unix development since the late 1970s and
was responsible for many key parts of Unix, including
the TCP/IP networking protocol, the cornerstone of
modern Internet communications. By the late 1980s,
AT&T, the original owner of the Unix brand name, began
to focus on commercializing Unix and began looking to
the Berkeley Software Distribution, or BSD, the
academic version of Unix developed by Bostic and his
Berkeley peers, as a key source of commercial technology.

Although the Berkeley BSD source code was shared among
researchers and commercial programmers with a
source-code license, this commercialization presented a
problem. The Berkeley code was intermixed with
proprietary AT&T code. As a result, Berkeley
distributions were available only to institutions that
already had a Unix source license from AT&T. As AT&T
raised its license fees, this arrangement, which had at
first seemed innocuous, became increasingly burdensome.

Hired in 1986, Bostic had taken on the personal project
of porting BSD over to the Digital Equipment
Corporation's PDP-11 computer. It was during this
period, Bostic says, that he came into close
interaction with Stallman during Stallman's occasional
forays out to the west coast. "I remember vividly
arguing copyright with Stallman while he sat at
borrowed workstations at CSRG," says Bostic. "We'd go
to dinner afterward and continue arguing about
copyright over dinner."

The arguments eventually took hold, although not in the
way Stallman would have liked. In June, 1989, Berkeley
separated its networking code from the rest of the
AT&T-owned operating system and distributed it under a
University of California license. The contract terms
were liberal. All a licensee had to do was give credit
to the university in advertisements touting derivative programs.The University
of California's "obnoxious advertising
clause" would later prove to be a problem. Looking for
a less restrictive alternative to the GPL, some hackers
used the University of California, replacing
"University of California" with the name of their own
instution. The result: free software programs that
borrowed from dozens of other programs would have to
cite dozens of institutions in advertisements. In 1999,
after a decade of lobbying on Stallman's part, the
University of California agreed to drop this clause.
 In contrast to the GPL, proprietary offshoots were
permissible. Only one problem hampered the license's
rapid adoption: the BSD Networking release wasn't a
complete operating system. People could study the code,
but it could only be run in conjunction with other
proprietary-licensed code.

Over the next few years, Bostic and other University of
California employees worked to replace the missing
components and turn BSD into a complete, freely
redistributable operating system. Although delayed by a
legal challenge from Unix Systems Laboratories-the AT&T
spin-off that retained ownership of the Unix brand
name-the effort would finally bear fruit in the early
1990s. Even before then, however, many of the Berkeley
utilities would make their way into Stallman's GNU Project.

"I think it's highly unlikely that we ever would have
gone as strongly as we did without the GNU influence,"
says Bostic, looking back. "It was clearly something
where they were pushing hard and we liked the idea."

By the end of the 1980s, the GPL was beginning to exert
a gravitational effect on the free software community.
A program didn't have to carry the GPL to qualify as
free software-witness the case of the BSD utilities-but
putting a program under the GPL sent a definite
message. "I think the very existence of the GPL
inspired people to think through whether they were
making free software, and how they would license it,"
says Bruce Perens, creator of Electric Fence, a popular
Unix utility, and future leader of the Debian GNU/Linux
development team. A few years after the release of the
GPL, Perens says he decided to discard Electric Fence's
homegrown license in favor of Stallman's lawyer-vetted
copyright. "It was actually pretty easy to do," Perens recalls.

Rich Morin, the programmer who had viewed Stallman's
initial GNU announcement with a degree of skepticism,
recalls being impressed by the software that began to
gather under the GPL umbrella. As the leader of a SunOS
user group, one of Morin's primary duties during the
1980s had been to send out distribution tapes
containing the best freeware or free software
utilities. The job often mandated calling up original
program authors to verify whether their programs were
copyright protected or whether they had been consigned
to the public domain. Around 1989, Morin says, he began
to notice that the best software programs typically
fell under the GPL license. "As a software distributor,
as soon as I saw the word GPL, I knew I was home free,"
recalls Morin.

To compensate for the prior hassles that went into
compiling distribution tapes to the Sun User Group,
Morin had charged recipients a convenience fee. Now,
with programs moving over to the GPL, Morin was
suddenly getting his tapes put together in half the
time, turning a tidy profit in the process. Sensing a
commercial opportunity, Morin rechristened his hobby as
a business: Prime Time Freeware.

Such commercial exploitation was completely within the
confines of the free software agenda. "When we speak of
free software, we are referring to freedom, not price,"
advised Stallman in the GPL's preamble. By the late
1980s, Stallman had refined it to a more simple
mnemonic: "Don't think free as in free beer; think free
as in free speech."

For the most part, businesses ignored Stallman's
entreaties. Still, for a few entrepreneurs, the freedom
associated with free software was the same freedom
associated with free markets. Take software ownership
out of the commercial equation, and you had a situation
where even the smallest software company was free to
compete against the IBMs and DECs of the world.

One of the first entrepreneurs to grasp this concept
was Michael Tiemann, a software programmer and graduate
student at Stanford University. During the 1980s,
Tiemann had followed the GNU Project like an aspiring
jazz musician following a favorite artist. It wasn't
until the release of the GNU C Compiler in 1987,
however, that he began to grasp the full potential of
free software. Dubbing GCC a "bombshell," Tiemann says
the program's own existence underlined Stallman's
determination as a programmer.

"Just as every writer dreams of writing the great
American novel, every programmer back in the 1980s
talked about writing the great American compiler,"
Tiemman recalls. "Suddenly Stallman had done it. It was
very humbling."

"You talk about single points of failure, GCC was it,"
echoes Bostic. "Nobody had a compiler back then, until
GCC came along."

Rather than compete with Stallman, Tiemann decided to
build on top of his work. The original version of GCC
weighed in at 110,000 lines of code, but Tiemann
recalls the program as surprisingly easy to understand.
So easy in fact that Tiemann says it took less than
five days to master and another week to port the
software to a new hardware platform, National
Semiconductor's 32032 microchip. Over the next year,
Tiemann began playing around with the source code,
creating a native compiler for the C+ programming
language. One day, while delivering a lecture on the
program at Bell Labs, Tiemann ran into some AT&T
developers struggling to pull off the same thing.

"There were about 40 or 50 people in the room, and I
asked how many people were working on the native code
compiler," Tiemann recalls. "My host said the
information was confidential but added that if I took a
look around the room I might get a good general idea."

It wasn't long after, Tiemann says, that the light bulb
went off in his head. "I had been working on that
project for six months," Tiemann says. I just thought
to myself, whether it's me or the code this is a level
of efficiency that the free market should be ready to reward."

Tiemann found added inspiration in the GNU Manifesto,
which, while excoriating the greed of some software
vendors, encourages other vendors to consider the
advantages of free software from a consumer point of
view. By removing the power of monopoly from the
commerical software question, the GPL makes it possible
for the smartest vendors to compete on the basis of
service and consulting, the two most profit-rich
corners of the software marketplace.

In a 1999 essay, Tiemann recalls the impact of
Stallman's Manifesto. "It read like a socialist
polemic, but I saw something different. I saw a
business plan in disguise."7. See Michael Tiemann, "Future of Cygnus Solutions:
An
Entrepreneur's Account," Open Sources (O'Reilly &
Associates, Inc., 1999): 139.

Teaming up with John Gilmore, another GNU Project fan,
Tiemann launched a software consulting service
dedicated to customizing GNU programs. Dubbed Cygnus
Support, the company signed its first development
contract in February, 1990. By the end of the year, the
company had $725,000 worth of support and development contracts.

GNU Emacs, GDB, and GCC were the "big three" of
developer-oriented tools, but they weren't the only
ones developed by Stallman during the GNU Project's
first half decade. By 1990, Stallman had also generated
GNU versions of the Bourne Shell (rechristened the
Bourne Again Shell, or BASH), YACC (rechristened
Bison), and awk (rechristened gawk). Like GCC , every
GNU program had to be designed to run on multiple
systems, not just a single vendor's platform. In the
process of making programs more flexible, Stallman and
his collaborators often made them more useful as well.

Recalling the GNU universalist approach, Prime Time
Freeware's Morin points to a critical, albeit mundane,
software package called hello. "It's the hello world
program which is five lines of C, packaged up as if it
were a GNU distribution," Morin says. "And so it's got
the Texinfo stuff and the configure stuff. It's got all
the other software engineering goo that the GNU Project
has come up with to allow packages to port to all these
different environments smoothly. That's tremendously
important work, and it affects not only all of
[Stallman's] software, but also all of the other GNU
Project software."

According to Stallman, improving software programs was
secondary to building them in the first place. "With
each piece I may or may not find a way to improve it,"
said Stallman to Byte. "To some extent I am getting the
benefit of reimplementation, which makes many systems
much better. To some extent it's because I have been in
the field a long time and worked on many other systems.
I therefore have many ideas to bring to bear."See Richard Stallman, BYTE
(1986).

Nevertheless, as GNU tools made their mark in the late
1980s, Stallman's AI Lab-honed reputation for design
fastidiousness soon became legendary throughout the
entire software-development community.

Jeremy Allison, a Sun user during the late 1980s and
programmer destined to run his own free software
project, Samba, in the 1990s, recalls that reputation
with a laugh. During the late 1980s, Allison began
using Emacs. Inspired by the program's
community-development model, Allison says he sent in a
snippet of source code only to have it rejected by Stallman.

"It was like the Onion headline," Allison says.

"`Child's prayers to God answered: No.'"

Stallman's growing stature as a software programmer,
however, was balanced by his struggles as a project
manager. Although the GNU Project moved from success to
success in creation of developer-oriented tools, its
inability to generate a working kernel-the central
"traffic cop" program in all Unix systems that
determines which devices and applications get access to
the microprocessor and when-was starting to elicit
grumbles as the 1980s came to a close. As with most GNU
Project efforts, Stallman had started kernel
development by looking for an existing program to
modify. According to a January 1987 "Gnusletter,"
Stallman was already working to overhaul TRIX, a Unix
kernel developed at MIT.

A review of GNU Project "GNUsletters" of the late 1980s
reflects the management tension. In January, 1987,
Stallman announced to the world that the GNU Project
was working to overhaul TRIX, a Unix kernel developed
at MIT. A year later, in February of 1988, the GNU
Project announced that it had shifted its attentions to
Mach, a lightweight "micro-kernel" developed at
Carnegie Mellon. All told, however, official GNU
Project kernel development wouldn't commence until 1990.See "HURD History."
http://www.gnu.org/software/hurd/history.html

The delays in kernel development were just one of many
concerns weighing on Stallman during this period. In
1989, Lotus Development Corporation filed suit against
rival software company, Paperback Software
International, for copying menu commands in Lotus'
popular 1-2-3 Spreadsheet program. Lotus' suit, coupled
with the Apple -Microsoft "look and feel" battle,
provided a troublesome backdrop for the GNU Project.
Although both suits fell outside the scope of the GNU
Project, both revolved around operating systems and
software applications developed for the personal
computer, not Unix-compatible hardware systems-they
threatened to impose a chilling effect on the entire
culture of software development. Determined to do
something, Stallman recruited a few programmer friends
and composed a magazine ad blasting the lawsuits. He
then followed up the ad by helping to organize a group
to protest the corporations filing the suit. Calling
itself the League of Programming Freedom, the group
held protests outside the offices of Lotus, Inc. and
the Boston courtroom hosting the Lotus trial.

The protests were notable.According to a League of Programming Freedom Press,
the
protests were notable for featuring the first
hexadecimal protest chant: 1-2-3-4, toss the lawyers
out the door; 5-6-7-8, innovate don't litigate;
9-A-B-C, 1-2-3 is not for me; D-E-F-O, look and feel
have got to go

http://lpf.ai.mit.edu/Links/prep.ai.mit.edu/demo.final.release

 They document the evolving nature of software

industry. Applications had quietly replaced operating

systems as the primary corporate battleground. In its

unfulfilled quest to build a free software operating

system, the GNU Project seemed hopelessly behind the

times. Indeed, the very fact that Stallman had felt it

necessary to put together an entirely new group

dedicated to battling the "look and feel" lawsuits

reinforced that obsolescence in the eyes of some observers.

In 1990, the John D. and Catherine T. MacArthur
Foundation cerified Stallman's genius status when it
granted Stallman a MacArthur fellowship, therefore
making him a recipient for the organization's so-called
"genius grant." The grant, a $240,000 reward for
launching the GNU Project and giving voice to the free
software philosophy, relieved a number of short-term
concerns. First and foremost, it gave Stallman, a
nonsalaried employee of the FSF who had been supporting
himself through consulting contracts, the ability to
devote more time to writing GNU code.I use the term "writing" here loosely.
About the time
of the MacArthur award, Stallman began suffering
chronic pain in his hands and was dictating his work to
FSF-employed typists. Although some have speculated
that the hand pain was the result of repetitive stress
injury, or RSI, an injury common among software
programmers, Stallman is not 100% sure. "It was NOT
carpal tunnel syndrome," he writes. "My hand problem
was in the hands themselves, not in the wrists."
Stallman has since learned to work without typists
after switching to a keyboard with a lighter touch.

Ironically, the award also made it possible for
Stallman to vote. Months before the award, a fire in
Stallman's apartment house had consumed his few earthly
possessions. By the time of the award, Stallman was
listing himself as a "squatter"See Reuven Lerner, "Stallman wins $240,000
MacArthur
award," MIT, The Tech (July 18, 1990).
http://the-tech.mit.edu/V110/N30/rms.30n.html
 at 545 Technology Square. "[The registrar of voters]
didn't want to accept that as my address," Stallman
would later recall. "A newspaper article about the
MacArthur grant said that and then they let me register."See Michael Gross,
"Richard Stallman: High School
Misfit, Symbol of Free Software, MacArthur-certified
Genius" (1999).

Most importantly, the MacArthur money gave Stallman
more freedom. Already dedicated to the issue of
software freedom, Stallman chose to use the additional
freedom to increase his travels in support of the GNU
Project mission.

Interestingly, the ultimate success of the GNU Project
and the free software movement in general would stem
from one of these trips. In 1990, Stallman paid a visit
to the Polytechnic University in Helsinki, Finland.
Among the audience members was 21-year-old Linus
Torvalds, future developer of the Linux kernel-the free
software kernel destined to fill the GNU Project's most
sizable gap.

A student at the nearby University of Helsinki at the
time, Torvalds regarded Stallman with bemusement. "I
saw, for the first time in my life, the stereotypical
long-haired, bearded hacker type," recalls Torvalds in
his 2001 autobiography Just for Fun. "We don't have
much of them in Helsinki."See Linus Torvalds and David Diamond, Just For Fun:
The
Story of an Accidentaly Revolutionary (HarperCollins
Publishers, Inc., 2001): 58-59.

While not exactly attuned to the "sociopolitical" side
of the Stallman agenda, Torvalds nevertheless
appreciated the agenda's underlying logic: no
programmer writes error-free code. By sharing software,
hackers put a program's improvement ahead of individual
motivations such as greed or ego protection.

Like many programmers of his generation, Torvalds had
cut his teeth not on mainframe computers like the IBM
7094, but on a motley assortment of home-built computer
systems. As university student, Torvalds had made the
step up from C programming to Unix, using the
university's MicroVAX. This ladder-like progression had
given Torvalds a different perspective on the barriers
to machine access. For Stallman, the chief barriers
were bureaucracy and privilege. For Torvalds, the chief
barriers were geography and the harsh Helsinki winter.
Forced to trek across the University of Helsinki just
to log in to his Unix account, Torvalds quickly began
looking for a way to log in from the warm confines of
his off-campus apartment.

The search led Torvalds to the operating system Minix,
a lightweight version of Unix developed for
instructional purposes by Dutch university professor
Andrew Tanenbaum. The program fit within the memory
confines of a 386 PC, the most powerful machine
Torvalds could afford, but still lacked a few necessary
features. It most notably lacked terminal emulation,
the feature that allowed Torvalds' machine to mimic a
university terminal, making it possible to log in to
the MicroVAX from home.

During the summer of 1991, Torvalds rewrote Minix from
the ground up, adding other features as he did so. By
the end of the summer, Torvalds was referring to his
evolving work as the "GNU/Emacs of terminal emulation programs."See Linus
Torvalds and David Diamond, Just For Fun: The
Story of an Accidentaly Revolutionary (HarperCollins
Publishers, Inc., 2001): 78.
 Feeling confident, he solicited a Minix newsgroup for
copies of the POSIX standards, the software blue prints
that determined whether a program was Unix compatible.
A few weeks later, Torvalds was posting a message
eerily reminiscent of Stallman's original 1983 GNU posting:

Hello everybody out there using minix-

I'm doing a (free) operating system (just a hobby,
won't be big and professional like gnu for 386 (486) AT
clones). This has been brewing since April, and is
starting to get ready. I'd like any feedback on things
people like/dislike in minix, as my OS resembles it
somewhat (same physical layout of the file-system (due
to practical reasons) among other things).See "Linux 10th Anniversary."
http://www.linux10.org/history/

The posting drew a smattering of responses and within a
month, Torvalds had posted a 0.01 version of the
operating system-i.e., the earliest possible version
fit for outside review-on an Internet FTP site. In the
course of doing so, Torvalds had to come up with a name
for the new system. On his own PC hard drive, Torvalds
had saved the program as Linux, a name that paid its
respects to the software convention of giving each Unix
variant a name that ended with the letter X. Deeming
the name too "egotistical," Torvalds changed it to
Freax, only to have the FTP site manager change it back.

Although Torvalds had set out build a full operating
system, both he and other developers knew at the time
that most of the functional tools needed to do so were
already available, thanks to the work of GNU, BSD, and
other free software developers. One of the first tools
the Linux development team took advantage of was the
GNU C Compiler, a tool that made it possible to process
programs written in the C programming language.

Integrating GCC improved the performance of Linux. It
also raised issues. Although the GPL's "viral" powers
didn't apply to the Linux kernel, Torvald's willingness
to borrow GCC for the purposes of his own free software
operating system indicated a certain obligation to let
other users borrow back. As Torvalds would later put
it: "I had hoisted myself up on the shoulders of giants."See Linus Torvalds and
David Diamond, Just For Fun: The
Story of an Accidentaly Revolutionary (HarperCollins
Publishers, Inc., 2001): 96-97.
 Not surprisingly, he began to think about what would
happen when other people looked to him for similar
support. A decade after the decision, Torvalds echoes
the Free Software Foundation's Robert Chassel when he
sums up his thoughts at the time: You put six months of
your life into this thing and you want to make it
available and you want to get something out of it, but
you don't want people to take advantage of it. I wanted
people to be able to see [Linux], and to make changes
and improvements to their hearts' content. But I also
wanted to make sure that what I got out of it was to
see what they were doing. I wanted to always have
access to the sources so that if they made
improvements, I could make those improvements myself.See Linus Torvalds and
David Diamond, Just For Fun: The
Story of an Accidentaly Revolutionary (HarperCollins
Publishers, Inc., 2001): 94-95.
 When it was time to release the 0.12 version of Linux,
the first to include a fully integrated version of GCC,
Torvalds decided to voice his allegiance with the free
software movement. He discarded the old kernel license
and replaced it with the GPL. The decision triggered a
porting spree, as Torvalds and his collaborators looked
to other GNU programs to fold into the growing Linux
stew. Within three years, Linux developers were
offering their first production release, Linux 1.0,
including fully modified versions of GCC, GDB, and a
host of BSD tools.

By 1994, the amalgamated operating system had earned
enough respect in the hacker world to make some
observers wonder if Torvalds hadn't given away the farm
by switching to the GPL in the project's initial
months. In the first issue of Linux Journal, publisher
Robert Young sat down with Torvalds for an interview.
When Young asked the Finnish programmer if he felt
regret at giving up private ownership of the Linux
source code, Torvalds said no. "Even with 20/20
hindsight," Torvalds said, he considered the GPL "one
of the very best design decisions" made during the
early stages of the Linux project.See Robert Young, "Interview with Linus, the
Author of
Linux," Linux Journal (March 1, 1994).
http://www.linuxjournal.com/article.php?sid=2736

That the decision had been made with zero appeal or
deference to Stallman and the Free Software Foundation
speaks to the GPL's growing portability. Although it
would take a few years to be recognized by Stallman,
the explosiveness of Linux development conjured
flashbacks of Emacs. This time around, however, the
innovation triggering the explosion wasn't a software
hack like Control-R but the novelty of running a
Unix-like system on the PC architecture. The motives
may have been different, but the end result certainly
fit the ethical specifications: a fully functional
operating system composed entirely of free software.

As his initial email message to the comp.os.minix
newsgroup indicates, it would take a few months before
Torvalds saw Linux as anything less than a holdover
until the GNU developers delivered on the HURD kernel.
This initial unwillingness to see Linux in political
terms would represent a major blow to the Free Software
Foundation.

As far as Torvalds was concerned, he was simply the
latest in a long line of kids taking apart and
reassembling things just for fun. Nevertheless, when
summing up the runaway success of a project that could
have just as easily spent the rest of its days on an
abandoned computer hard drive, Torvalds credits his
younger self for having the wisdom to give up control
and accept the GPL bargain.

"I may not have seen the light," writes Torvalds,
reflecting on Stallman's 1991 Polytechnic University
speech and his subsequent decision to switch to the
GPL. "But I guess something from his speech sunk in ."See Linus Torvalds and
David Diamond, Just For Fun: The
Story of an Accidentaly Revolutionary (HarperCollins
Publishers, Inc., 2001): 59.
 interview offers an interesting, not to mention
candid, glimpse at Stallman's political attitudes
during the earliest days of the GNU Project. It is also
helpful in tracing the evolution of Stallman's
rhetoric. Describing the purpose of the GPL, Stallman
says, "I'm trying to change the way people approach
knowledge and information in general. I think that to
try to own knowledge, to try to control whether people
are allowed to use it, or to try to stop other people
from sharing it, is sabotage." Contrast this with a
statement to the author in August 2000: "I urge you not
to use the term `intellectual property' in your
thinking. It will lead you to misunderstand things,
because that term generalizes about copyrights,
patents, and trademarks. And those things are so
different in their effects that it is entirely foolish
to try to talk about them at once. If you hear somebody
saying something about intellectual property, without
quotes, then he's not thinking very clearly and you
shouldn't join."

GNU/Linux

By 1993, the free software movement was at a
crossroads. To the optimistically inclined, all signs
pointed toward success for the hacker cultur. Wired
magazine, a funky, new publication offering stories on
data encryption, Usenet, and software freedom, was
flying off magazine racks. The Internet, once a slang
term used only by hackers and research scientists, had
found its way into mainstream lexicon. Even President
Clinton was using it. The personal computer, once a
hobbyist's toy, had grown to full-scale respectability,
giving a whole new generation of computer users access
to hacker-built software. And while the GNU Project had
not yet reached its goal of a fully intact, free
software operating system, curious users could still
try Linux in the interim.

Any way you sliced it, the news was good, or so it
seemed. After a decade of struggle, hackers and hacker
values were finally gaining acceptance in mainstream
society. People were getting it.

Or were they? To the pessimistically inclined, each
sign of acceptance carried its own troubling
countersign. Sure, being a hacker was suddenly cool,
but was cool good for a community that thrived on
alienation? Sure, the White House was saying all the
right things about the Internet, even going so far as
to register its own domain name, whitehouse.gov, but it
was also meeting with the companies, censorship
advocates, and law-enforcement officials looking to
tame the Internet's Wild West culture. Sure, PCs were
more powerful, but in commoditizing the PC marketplace
with its chips, Intel had created a situation in which
proprietary software vendors now held the power. For
every new user won over to the free software cause via
Linux, hundreds, perhaps thousands, were booting up
Microsoft Windows for the first time.

Finally, there was the curious nature of Linux itself.
Unrestricted by design bugs (like GNU) and legal
disputes (like BSD), Linux' high-speed evolution had
been so unplanned, its success so accidental, that
programmers closest to the software code itself didn't
know what to make of it. More compilation album than
operating system, it was comprised of a hacker medley
of greatest hits: everything from GCC, GDB, and glibc
(the GNU Project's newly developed C Library) to X (a
Unix-based graphic user interface developed by MIT's
Laboratory for Computer Science) to BSD-developed tools
such as BIND (the Berkeley Internet Naming Daemon,
which lets users substitute easy-to-remember Internet
domain names for numeric IP addresses) and TCP/IP. The
arch's capstone, of course, was the Linux kernel-itself
a bored-out, super-charged version of Minix. Rather
than building their operating system from scratch,
Torvalds and his rapidly expanding Linux development
team had followed the old Picasso adage, "good artists
borrow; great artists steal." Or as Torvalds himself
would later translate it when describing the secret of
his success: "I'm basically a very lazy person who
likes to take credit for things other people actually do."Torvalds has offered
this quote in many different
settings. To date, however, the quote's most notable
appearance is in the Eric Raymond essay, "The Cathedral
and the Bazaar" (May, 1997).

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html

Such laziness, while admirable from an efficiency
perspective, was troubling from a political
perspective. For one thing, it underlined the lack of
an ideological agenda on Torvalds' part. Unlike the GNU
developers, Torvalds hadn't built an operating system
out of a desire to give his fellow hackers something to
work with; he'd built it to have something he himself
could play with. Like Tom Sawyer whitewashing a fence,
Torvalds' genius lay less in the overall vision and
more in his ability to recruit other hackers to speed
the process.

That Torvalds and his recruits had succeeded where
others had not raised its own troubling question: what,
exactly, was Linux? Was it a manifestation of the free
software philosophy first articulated by Stallman in
the GNU Manifesto? Or was it simply an amalgamation of
nifty software tools that any user, similarly
motivated, could assemble on his own home system?

By late 1993, a growing number of Linux users had begun
to lean toward the latter definition and began brewing
private variations on the Linux theme. They even became
bold enough to bottle and sell their variations-or
"distributions"-to fellow Unix aficionados. The results
were spotty at best.

"This was back before Red Hat and the other commercial
distributions," remembers Ian Murdock, then a computer
science student at Purdue University. "You'd flip
through Unix magazines and find all these business
card-sized ads proclaiming `Linux.' Most of the
companies were fly-by-night operations that saw nothing
wrong with slipping a little of their own source code
into the mix."

Murdock, a Unix programmer, remembers being "swept
away" by Linux when he first downloaded and installed
it on his home PC system. "It was just a lot of fun,"
he says. "It made me want to get involved." The
explosion of poorly built distributions began to dampen
his early enthusiasm, however. Deciding that the best
way to get involved was to build a version of Linux
free of additives, Murdock set about putting a list of
the best free software tools available with the
intention of folding them into his own distribution. "I
wanted something that would live up to the Linux name,"
Murdock says.

In a bid to "stir up some interest," Murdock posted his
intentions on the Internet, including Usenet's
comp.os.linux newsgroup. One of the first responding
email messages was from rms@ai.mit.edu . As a hacker,
Murdock instantly recognized the address. It was
Richard M. Stallman, founder of the GNU Project and a
man Murdock knew even back then as "the hacker of
hackers." Seeing the address in his mail queue, Murdock
was puzzled. Why on Earth would Stallman, a person
leading his own operating-system project, care about
Murdock's gripes over Linux?

Murdock opened the message.

"He said the Free Software Foundation was starting to
look closely at Linux and that the FSF was interested
in possibly doing a Linux system, too. Basically, it
looked to Stallman like our goals were in line with
their philosophy."

The message represented a dramatic about-face on
Stallman's part. Until 1993, Stallman had been content
to keep his nose out of the Linux community's affairs.
In fact, he had all but shunned the renegade operating
system when it first appeared on the Unix programming
landscape in 1991. After receiving the first
notification of a Unix-like operating system that ran
on PCs, Stallman says he delegated the task of
examining the new operating system to a friend. Recalls
Stallman, "He reported back that the software was
modeled after System V, which was the inferior version
of Unix. He also told me it wasn't portable."

The friend's report was correct. Built to run on
386-based machines, Linux was firmly rooted to its
low-cost hardware platform. What the friend failed to
report, however, was the sizable advantage Linux
enjoyed as the only freely modifiable operating system
in the marketplace. In other words, while Stallman
spent the next three years listening to bug reports
from his HURD team, Torvalds was winning over the
programmers who would later uproot and replant the
operating system onto new platforms.

By 1993, the GNU Project's inability to deliver a
working kernel was leading to problems both within the
GNU Project and within the free software movement at
large. A March, 1993, a Wired magazine article by
Simson Garfinkel described the GNU Project as "bogged
down" despite the success of the project's many tools.See Simson Garfinkel, "Is
Stallman Stalled?" Wired
(March, 1993).
 Those within the project and its nonprofit adjunct,
the Free Software Foundation, remember the mood as
being even worse than Garfinkel's article let on. "It
was very clear, at least to me at the time, that there
was a window of opportunity to introduce a new
operating system," says Chassell. "And once that window
was closed, people would become less interested. Which
is in fact exactly what happened."Chassel's concern about there being a
36-month "window"
for a new operating system is not unique to the GNU
Project. During the early 1990s, free software versions
of the Berkeley Software Distribution were held up by
Unix System Laboratories' lawsuit restricting the
release of BSD-derived software. While many users
consider BSD offshoots such as FreeBSD and OpenBSD to
be demonstrably superior to GNU/Linux both in terms of
performance and security, the number of FreeBSD and
OpenBSD users remains a fraction of the total GNU/Linux
user population. To view a sample analysis of the
relative success of GNU/Linux in relation to other free
software operating systems, see the essay by New
Zealand hacker, Liam Greenwood, "Why is Linux
Successful" (1999).

Much has been made about the GNU Project's struggles
during the 1990-1993 period. While some place the blame
on Stallman for those struggles, Eric Raymond, an early
member of the GNU Emacs team and later Stallman critic,
says the problem was largely institutional. "The FSF
got arrogant," Raymond says. "They moved away from the
goal of doing a production-ready operating system to
doing operating-system research." Even worse, "They
thought nothing outside the FSF could affect them."

Murdock, a person less privy to the inner dealings of
the GNU Project, adopts a more charitable view. "I
think part of the problem is they were a little too
ambitious and they threw good money after bad," he
says. "Micro-kernels in the late 80s and early 90s were
a hot topic. Unfortunately, that was about the time
that the GNU Project started to design their kernel.
They ended up with alot of baggage and it would have
taken a lot of backpedaling to lose it."

Stallman cites a number of issues when explaining the
delay. The Lotus and Apple lawsuits had provided
political distractions, which, coupled with Stallman's
inability to type, made it difficult for Stallman to
lend a helping hand to the HURD team. Stallman also
cites poor communication between various portions of
the GNU Project. "We had to do a lot of work to get the
debugging environment to work," he recalls. "And the
people maintaining GDB at the time were not that
cooperative." Mostly, however, Stallman says he and the
other members of the GNU Project team underestimated
the difficulty of expanding the Mach microkernal into a
full-fledged Unix kernel.

"I figured, OK, the [Mach] part that has to talk to the
machine has already been debugged," Stallman says,
recalling the HURD team's troubles in a 2000 speech.
"With that head start, we should be able to get it done
faster. But instead, it turned out that debugging these
asynchronous multithreaded programs was really hard.
There were timing books that would clobber the files,
and that's no fun. The end result was that it took
many, many years to produce a test version."See Maui High Performance Computing
Center Speech.

Whatever the excuse, or excuses, the concurrent success
of the Linux-kernel team created a tense situation.
Sure, the Linux kernel had been licensed under the GPL,
but as Murdock himself had noted, the desire to treat
Linux as a purely free software operating system was
far from uniform. By late 1993, the total Linux user
population had grown from a dozen or so Minix
enthusiasts to somewhere between 20,000 and 100,000.GNU/Linux user-population
numbers are sketchy at best,
which is why I've provided such a broad range. The
100,000 total comes from the Red Hat "Milestones" site,
http://www.redhat.com/about/corporate/milestones.html.
 What had once been a hobby was now a marketplace ripe
for exploitation. Like Winston Churchill watching
Soviet troops sweep into Berlin, Stallman felt an
understandable set of mixed emotions when it came time
to celebrate the Linux "victory."I wrote this Winston Churchill analogy before
Stallman
himself sent me his own unsolicited comment on
Churchill: World War II and the determination needed to
win it was a very strong memory as I was growing up.
Statements such as Churchill's, "We will fight them in
the landing zones, we will fight them on the beaches .
. . we will never surrender," have always resonated for
me.

Although late to the party, Stallman still had clout.
As soon as the FSF announced that it would lend its
money and moral support to Murdock's software project,
other offers of support began rolling in. Murdock
dubbed the new project Debian-a compression of his and
his wife, Deborah's, names-and within a few weeks was
rolling out the first distribution. "[Richard's
support] catapulted Debian almost overnight from this
interesting little project to something people within
the community had to pay attention to," Murdock says.

In January of 1994, Murdock issued the " Debian
Manifesto." Written in the spirit of Stallman's "GNU
Manifesto" from a decade before, it explained the
importance of working closely with the Free Software
Foundation. Murdock wrote: The Free Software Foundation
plays an extremely important role in the future of
Debian. By the simple fact that they will be
distributing it, a message is sent to the world that
Linux is not a commercial product and that it never
should be, but that this does not mean that Linux will
never be able to compete commercially. For those of you
who disagree, I challenge you to rationalize the
success of GNU Emacs and GCC, which are not commercial
software but which have had quite an impact on the
commercial market regardless of that fact.

The time has come to concentrate on the future of Linux
rather than on the destructive goal of enriching
oneself at the expense of the entire Linux community
and its future. The development and distribution of
Debian may not be the answer to the problems that I
have outlined in the Manifesto, but I hope that it will
at least attract enough attention to these problems to
allow them to be solved. Shortly after the Manifesto's
release, the Free Software Foundation made its first
major request. Stallman wanted Murdock to call its
distribution "GNU/Linux." At first, Murdock says,
Stallman had wanted to use the term " Lignux"-"as in
Linux with GNU at the heart of it"-but a sample testing
of the term on Usenet and in various impromptu hacker
focus groups had merited enough catcalls to convince
Stallman to go with the less awkward GNU/Linux.

Although some would dismiss Stallman's attempt to add
the "GNU" prefix as a belated quest for credit, Murdock
saw it differently. Looking back, Murdock saw it as an
attempt to counteract the growing tension between GNU
Project and Linux-kernel developers. "There was a split
emerging," Murdock recalls. "Richard was concerned."

The deepest split, Murdock says, was over glibc. Short
for GNU C Library, glibc is the package that lets
programmers make "system calls" directed at the kernel.
Over the course of 1993-1994, glibc emerged as a
troublesome bottleneck in Linux development. Because so
many new users were adding new functions to the Linux
kernel, the GNU Project's glibc maintainers were soon
overwhelmed with suggested changes. Frustrated by
delays and the GNU Project's growing reputation for
foot-dragging, some Linux developers suggested creating
a " fork"-i.e., a Linux-specific C Library parallel to glibc.

In the hacker world, forks are an interesting
phenomenon. Although the hacker ethic permits a
programmer to do anything he wants with a given
program's source code, most hackers prefer to pour
their innovations into a central source-code file or "
tree" to ensure compatibility with other people's
programs. To fork glibc this early in the development
of Linux would have meant losing the potential input of
hundreds, even thousands, of Linux developers. It would
also mean growing incompatibility between Linux and the
GNU system that Stallman and the GNU team still hoped
to develop.

As leader of the GNU Project, Stallman had already
experienced the negative effects of a software fork in
1991. A group of Emacs developers working for a
software company named Lucid had a falling out over
Stallman's unwillingness to fold changes back into the
GNU Emacs code base. The fork had given birth to a
parallel version, Lucid Emacs, and hard feelings all around.Jamie Zawinski, a
former Lucid programmer who would go
on to head the Mozilla development team, has a web site
that documents the Lucid/GNU Emacs fork, titled, "The
Lemacs/FSFmacs Schism." http://www.jwz.org/doc/lemacs.html

Murdock says Debian was mounting work on a similar fork
in glibc source code that motivated Stallman to insist
on adding the GNU prefix when Debian rolled out its
software distribution. "The fork has since converged.
Still, at the time, there was a concern that if the
Linux community saw itself as a different thing as the
GNU community, it might be a force for disunity."

Stallman seconds Murdock's recollection. In fact, he
says there were nascent forks appearing in relation to
every major GNU component. At first, Stallman says he
considered the forks to be a product of sour grapes. In
contrast to the fast and informal dynamics of the
Linux-kernel team, GNU source-code maintainers tended
to be slower and more circumspect in making changes
that might affect a program's long-term viability. They
also were unafraid of harshly critiquing other people's
code. Over time, however, Stallman began to sense that
there was an underlying lack of awareness of the GNU
Project and its objectives when reading Linux
developers' emails.

"We discovered that the people who considered
themselves Linux users didn't care about the GNU
Project," Stallman says. "They said, `Why should I
bother doing these things? I don't care about the GNU
Project. It's working for me. It's working for us Linux
users, and nothing else matters to us.' And that was
quite surprising given that people were essentially
using a variant of the GNU system, and they cared so
little. They cared less than anybody else about GNU."

While some viewed descriptions of Linux as a "variant"
of the GNU Project as politically grasping, Murdock,
already sympathetic to the free software cause, saw
Stallman's request to call Debian's version GNU/Linux
as reasonable. "It was more for unity than for credit,"
he says.

Requests of a more technical nature quickly followed.
Although Murdock had been accommodating on political
issues, he struck a firmer pose when it came to the
design and development model of the actual software.
What had begun as a show of solidarity soon became of
model of other GNU projects.

"I can tell you that I've had my share of disagreements
with him," says Murdock with a laugh. "In all honesty
Richard can be a fairly difficult person to work with."

In 1996, Murdock, following his graduation from Purdue,
decided to hand over the reins of the growing Debian
project. He had already been ceding management duties
to Bruce Perens, the hacker best known for his work on
Electric Fence, a Unix utility released under the GPL.
Perens, like Murdock, was a Unix programmer who had
become enamored of GNU/Linux as soon as the program's
Unix-like abilities became manifest. Like Murdock,
Perens sympathized with the political agenda of
Stallman and the Free Software Foundation, albeit from afar.

"I remember after Stallman had already come out with
the GNU Manifesto, GNU Emacs, and GCC, I read an
article that said he was working as a consultant for
Intel," says Perens, recalling his first brush with
Stallman in the late 1980s. "I wrote him asking how he
could be advocating free software on the one hand and
working for Intel on the other. He wrote back saying,
`I work as a consultant to produce free software.' He
was perfectly polite about it, and I thought his answer
made perfect sense."

As a prominent Debian developer, however, Perens
regarded Murdock's design battles with Stallman with
dismay. Upon assuming leadership of the development
team, Perens says he made the command decision to
distance Debian from the Free Software Foundation. "I
decided we did not want Richard's style of
micro-management," he says.

According to Perens, Stallman was taken aback by the
decision but had the wisdom to roll with it. "He gave
it some time to cool off and sent a message that we
really needed a relationship. He requested that we call
it GNU/Linux and left it at that. I decided that was
fine. I made the decision unilaterally. Everybody
breathed a sigh of relief."

Over time, Debian would develop a reputation as the
hacker's version of Linux, alongside Slackware, another
popular distribution founded during the same 1993-1994
period. Outside the realm of hacker-oriented systems,
however, Linux was picking up steam in the commercial
Unix marketplace. In North Carolina, a Unix company
billing itself as Red Hat was revamping its business to
focus on Linux. The chief executive officer was Robert
Young, the former Linux Journal editor who in 1994 had
put the question to Linus Torvalds, asking whether he
had any regrets about putting the kernel under the GPL.
To Young, Torvalds' response had a "profound" impact on
his own view toward Linux. Instead of looking for a way
to corner the GNU/Linux market via traditional software
tactics, Young began to consider what might happen if a
company adopted the same approach as Debian-i.e.,
building an operating system completely out of free
software parts. Cygnus Solutions, the company founded
by Michael Tiemann and John Gilmore in 1990, was
already demonstrating the ability to sell free software
based on quality and customizability. What if Red Hat
took the same approach with GNU/Linux?

"In the western scientific tradition we stand on the
shoulders of giants," says Young, echoing both Torvalds
and Sir Isaac Newton before him. "In business, this
translates to not having to reinvent wheels as we go
along. The beauty of [the GPL] model is you put your
code into the public domain.Young uses the term "public domain" incorrectly
here.
Public domain means not protected by copyright.
GPL-protected programs are by definition protected by
copyright.
 If you're an independent software vendor and you're
trying to build some application and you need a
modem-dialer, well, why reinvent modem dialers? You can
just steal PPP off of Red Hat Linux and use that as the
core of your modem-dialing tool. If you need a graphic
tool set, you don't have to write your own graphic
library. Just download GTK. Suddenly you have the
ability to reuse the best of what went before. And
suddenly your focus as an application vendor is less on
software management and more on writing the
applications specific to your customer's needs."

Young wasn't the only software executive intrigued by
the business efficiencies of free software. By late
1996, most Unix companies were starting to wake up and
smell the brewing source code. The Linux sector was
still a good year or two away from full commercial
breakout mode, but those close enough to the hacker
community could feel it: something big was happening.
The Intel 386 chip, the Internet, and the World Wide
Web had hit the marketplace like a set of monster
waves, and Linux-and the host of software programs that
echoed it in terms of source-code accessibility and
permissive licensing-seemed like the largest wave yet.

For Ian Murdock, the programmer courted by Stallman and
then later turned off by Stallman's micromanagement
style, the wave seemed both a fitting tribute and a
fitting punishment for the man who had spent so much
time giving the free software movement an identity.
Like many Linux aficionados, Murdock had seen the
original postings. He'd seen Torvalds's original
admonition that Linux was "just a hobby." He'd also
seen Torvalds's admission to Minix creator Andrew
Tanenbaum: "If the GNU kernel had been ready last
spring, I'd not have bothered to even start my project."This quote is taken
from the much-publicized
Torvalds-Tanenbaum "flame war" following the initial
release of Linux. In the process of defending his
choice of a nonportable monolithic kernel design,
Torvalds says he started working on Linux as a way to
learn more about his new 386 PC. "If the GNU kernel had
been ready last spring, I'd not have bothered to even
start my project." See Chris DiBona et al., Open
Sources (O'Reilly & Associates, Inc., 1999): 224.
 Like many, Murdock knew the opportunities that had
been squandered. He also knew the excitement of
watching new opportunities come seeping out of the very
fabric of the Internet.

"Being involved with Linux in those early days was
fun," recalls Murdock. "At the same time, it was
something to do, something to pass the time. If you go
back and read those old [comp.os.minix] exchanges,
you'll see the sentiment: this is something we can play
with until the HURD is ready. People were anxious. It's
funny, but in a lot of ways, I suspect that Linux would
never have happened if the HURD had come along more quickly."

By the end of 1996, however, such "what if" questions
were already moot. Call it Linux, call it GNU/Linux;
the users had spoken. The 36-month window had closed,
meaning that even if the GNU Project had rolled out its
HURD kernel, chances were slim anybody outside the
hard-core hacker community would have noticed. The
first Unix-like free software operating system was
here, and it had momentum. All hackers had left to do
was sit back and wait for the next major wave to come
crashing down on their heads. Even the shaggy-haired
head of one Richard M. Stallman.

Ready or not.

Open Source

In November , 1995, Peter Salus, a member of the Free
Software Foundation and author of the 1994 book, A
Quarter Century of Unix , issued a call for papers to
members of the GNU Project's "system-discuss" mailing
list. Salus, the conference's scheduled chairman,
wanted to tip off fellow hackers about the upcoming
Conference on Freely Redistributable Software in
Cambridge, Massachusetts. Slated for February, 1996 and
sponsored by the Free Software Foundation, the event
promised to be the first engineering conference solely
dedicated to free software and, in a show of unity with
other free software programmers, welcomed papers on
"any aspect of GNU, Linux, NetBSD, 386BSD, FreeBSD,
Perl, Tcl/tk, and other tools for which the code is
accessible and redistributable." Salus wrote: Over the
past 15 years, free and low-cost software has become
ubiquitous. This conference will bring together
implementers of several different types of freely
redistributable software and publishers of such
software (on various media). There will be tutorials
and refereed papers, as well as keynotes by Linus
Torvalds and Richard Stallman.See Peter Salus, "FYI-Conference on Freely
Redistributable Software, 2/2, Cambridge" (1995)
(archived by Terry Winograd).

http://hci.stanford.edu/pcd-archives/pcd-fyi/1995/0078.html

 One of the first people to receive Salus' email was

conference committee member Eric S. Raymond. Although

not the leader of a project or company like the various

other members of the list, Raymond had built a tidy

reputation within the hacker community as a major

contributor to GNU Emacs and as editor of The New

Hacker Dictionary, a book version of the hacking

community's decade-old Jargon File.

For Raymond, the 1996 conference was a welcome event.
Active in the GNU Project during the 1980s, Raymond had
distanced himself from the project in 1992, citing,
like many others before him, Stallman's
"micro-management" style. "Richard kicked up a fuss
about my making unauthorized modifications when I was
cleaning up the Emacs LISP libraries," Raymond recalls.
"It frustrated me so much that I decided I didn't want
to work with him anymore."

Despite the falling out, Raymond remained active in the
free software community. So much so that when Salus
suggested a conference pairing Stallman and Torvalds as
keynote speakers, Raymond eagerly seconded the idea.
With Stallman representing the older, wiser contingent
of ITS/Unix hackers and Torvalds representing the
younger, more energetic crop of Linux hackers, the
pairing indicated a symbolic show of unity that could
only be beneficial, especially to ambitious younger
(i.e., below 40) hackers such as Raymond. "I sort of
had a foot in both camps," Raymond says.

By the time of the conference, the tension between
those two camps had become palpable. Both groups had
one thing in common, though: the conference was their
first chance to meet the Finnish wunderkind in the
flesh. Surprisingly, Torvalds proved himself to be a
charming, affable speaker. Possessing only a slight
Swedish accent, Torvalds surprised audience members
with his quick, self-effacing wit.Although Linus Torvalds is Finnish, his
mother tongue
is Swedish. "The Rampantly Unofficial Linus FAQ" offers
a brief explanation: Finland has a significant (about
6%) Swedish-speaking minority population. They call
themselves "finlandssvensk" or "finlandssvenskar" and
consider themselves Finns; many of their families have
lived in Finland for centuries. Swedish is one of
Finland's two official languages.
http://tuxedo.org/~esr/faqs/linus/
 Even more surprising, says Raymond, was Torvalds'
equal willingness to take potshots at other prominent
hackers, including the most prominent hacker of all,
Richard Stallman. By the end of the conference,
Torvalds' half-hacker, half-slacker manner was winning
over older and younger conference-goers alike.

"It was a pivotal moment," recalls Raymond. "Before
1996, Richard was the only credible claimant to being
the ideological leader of the entire culture. People
who dissented didn't do so in public. The person who
broke that taboo was Torvalds."

The ultimate breach of taboo would come near the end of
the show. During a discussion on the growing market
dominance of Microsoft Windows or some similar topic,
Torvalds admitted to being a fan of Microsoft's
PowerPoint slideshow software program. From the
perspective of old-line software purists, it was like a
Mormon bragging in church about his fondness of
whiskey. From the perspective of Torvalds and his
growing band of followers, it was simply common sense.
Why shun worthy proprietary software programs just to
make a point? Being a hacker wasn't about suffering, it
was about getting the job done.

"That was a pretty shocking thing to say," Raymond
remembers. "Then again, he was able to do that, because
by 1995 and 1996, he was rapidly acquiring clout."

Stallman, for his part, doesn't remember any tension at
the 1996 conference, but he does remember later feeling
the sting of Torvalds' celebrated cheekiness. "There
was a thing in the Linux documentation which says print
out the GNU coding standards and then tear them up,"
says Stallman, recalling one example. "OK, so he
disagrees with some of our conventions. That's fine,
but he picked a singularly nasty way of saying so. He
could have just said `Here's the way I think you should
indent your code.' Fine. There should be no hostility there."

For Raymond, the warm reception other hackers gave to
Torvalds' comments merely confirmed his suspicions. The
dividing line separating Linux developers from
GNU/Linux developers was largely generational. Many
Linux hackers, like Torvalds, had grown up in a world
of proprietary software. Unless a program was clearly
inferior, most saw little reason to rail against a
program on licensing issues alone. Somewhere in the
universe of free software systems lurked a program that
hackers might someday turn into a free software
alternative to PowerPoint. Until then, why begrudge
Microsoft the initiative of developing the program and
reserving the rights to it?

As a former GNU Project member, Raymond sensed an added
dynamic to the tension between Stallman and Torvalds.
In the decade since launching the GNU Project, Stallman
had built up a fearsome reputation as a programmer. He
had also built up a reputation for intransigence both
in terms of software design and people management.
Shortly before the 1996 conference, the Free Software
Foundation would experience a full-scale staff
defection, blamed in large part on Stallman. Brian
Youmans, a current FSF staffer hired by Salus in the
wake of the resignations, recalls the scene: "At one
point, Peter [Salus] was the only staff member working
in the office."

For Raymond, the defection merely confirmed a growing
suspicion: recent delays such as the HURD and recent
troubles such as the Lucid-Emacs schism reflected
problems normally associated with software project
management, not software code development. Shortly
after the Freely Redistributable Software Conference,
Raymond began working on his own pet software project,
a popmail utility called " fetchmail." Taking a cue
from Torvalds, Raymond issued his program with a
tacked-on promise to update the source code as early
and as often as possible. When users began sending in
bug reports and feature suggestions, Raymond, at first
anticipating a tangled mess, found the resulting
software surprisingly sturdy. Analyzing the success of
the Torvalds approach, Raymond issued a quick analysis:
using the Internet as his "petri dish" and the harsh
scrutiny of the hacker community as a form of natural
selection, Torvalds had created an evolutionary model
free of central planning.

What's more, Raymond decided, Torvalds had found a way
around Brooks' Law. First articulated by Fred P.
Brooks, manager of IBM's OS/360 project and author of
the 1975 book, The Mythical Man-Month , Brooks' Law
held that adding developers to a project only resulted
in further project delays. Believing as most hackers
that software, like soup, benefits from a limited
number of cooks, Raymond sensed something revolutionary
at work. In inviting more and more cooks into the
kitchen, Torvalds had actually found away to make the
resulting software better.Brooks' Law is the shorthand summary of the following
quote taken from Brooks' book: Since software
construction is inherently a systems effort-an exercise
in complex interrelationships-communication effort is
great, and it quickly dominates the decrease in
individual task time brought about by partitioning.
Adding more men then lengthens, not shortens, the
schedule. See Fred P. Brooks, The Mythical Man-Month
(Addison Wesley Publishing, 1995)

Raymond put his observations on paper. He crafted them
into a speech, which he promptly delivered before a
group of friends and neighbors in Chester County,
Pennsylvania. Dubbed " The Cathedral and the Bazaar,"
the speech contrasted the management styles of the GNU
Project with the management style of Torvalds and the
kernel hackers. Raymond says the response was
enthusiastic, but not nearly as enthusiastic as the one
he received during the 1997 Linux Kongress, a gathering
of Linux users in Germany the next spring.

"At the Kongress, they gave me a standing ovation at
the end of the speech," Raymond recalls. "I took that
as significant for two reasons. For one thing, it meant
they were excited by what they were hearing. For
another thing, it meant they were excited even after
hearing the speech delivered through a language barrier."

Eventually, Raymond would convert the speech into a
paper, also titled "The Cathedral and the Bazaar." The
paper drew its name from Raymond's central analogy. GNU
programs were "cathedrals," impressive, centrally
planned monuments to the hacker ethic, built to stand
the test of time. Linux, on the other hand, was more
like "a great babbling bazaar," a software program
developed through the loose decentralizing dynamics of
the Internet.

Implicit within each analogy was a comparison of
Stallman and Torvalds. Where Stallman served as the
classic model of the cathedral architect-i.e., a
programming "wizard" who could disappear for 18 months
and return with something like the GNU C
Compiler-Torvalds was more like a genial dinner-party
host. In letting others lead the Linux design
discussion and stepping in only when the entire table
needed a referee, Torvalds had created a development
model very much reflective of his own laid-back
personality. From the Torvalds' perspective, the most
important managerial task was not imposing control but
keeping the ideas flowing.

Summarized Raymond, "I think Linus's cleverest and most
consequential hack was not the construction of the
Linux kernel itself, but rather his invention of the
Linux development model."See Eric Raymond, "The Cathredral and the Bazaar"
(1997).

In summarizing the secrets of Torvalds' managerial
success, Raymond himself had pulled off a coup. One of
the audience members at the Linux Kongress was Tim
O'Reilly, publisher of O'Reilly & Associates, a company
specializing in software manuals and software-related
books (and the publisher of this book). After hearing
Raymond's Kongress speech, O'Reilly promptly invited
Raymond to deliver it again at the company's inaugural
Perl Conference later that year in Monterey, California.

Although the conference was supposed to focus on Perl,
a scripting language created by Unix hacker Larry Wall,
O'Reilly assured Raymond that the conference would
address other free software technologies. Given the
growing commercial interest in Linux and Apache, a
popular free software web server, O'Reilly hoped to use
the event to publicize the role of free software in
creating the entire infrastructure of the Internet.
From web-friendly languages such as Perl and Python to
back-room programs such as BIND (the Berkeley Internet
Naming Daemon), a software tool that lets users replace
arcane IP numbers with the easy-to-remember domain-name
addresses (e.g., amazon.com), and sendmail, the most
popular mail program on the Internet, free software had
become an emergent phenomenon. Like a colony of ants
creating a beautiful nest one grain of sand at a time,
the only thing missing was the communal self-awareness.
O'Reilly saw Raymond's speech as a good way to inspire
that self-awareness, to drive home the point that free
software development didn't start and end with the GNU
Project. Programming languages, such as Perl and
Python, and Internet software, such as BIND, sendmail,
and Apache, demonstrated that free software was already
ubiquitous and influential. He also assured Raymond an
even warmer reception than the one at Linux Kongress.

O'Reilly was right. "This time, I got the standing
ovation before the speech," says Raymond, laughing.

As predicted, the audience was stocked not only with
hackers, but with other people interested in the
growing power of the free software movement. One
contingent included a group from Netscape, the Mountain
View, California startup then nearing the end game of
its three-year battle with Microsoft for control of the
web-browser market.

Intrigued by Raymond's speech and anxious to win back
lost market share, Netscape executives took the message
back to corporate headquarters. A few months later, in
January, 1998, the company announced its plan to
publish the source code of its flagship Navigator web
browser in the hopes of enlisting hacker support in
future development.

When Netscape CEO Jim Barksdale cited Raymond's
"Cathedral and the Bazaar" essay as a major influence
upon the company's decision, the company instantly
elevated Raymond to the level of hacker celebrity.
Determined not to squander the opportunity, Raymond
traveled west to deliver interviews, advise Netscape
executives, and take part in the eventual party
celebrating the publication of Netscape Navigator's
source code. The code name for Navigator's source code
was "Mozilla": a reference both to the program's
gargantuan size-30 million lines of code-and to its
heritage. Developed as a proprietary offshoot of
Mosaic, the web browser created by Marc Andreessen at
the University of Illinois, Mozilla was proof, yet
again, that when it came to building new programs, most
programmers preferred to borrow on older, modifiable programs.

While in California, Raymond also managed to squeeze in
a visit to VA Research, a Santa Clara-based company
selling workstations with the GNU/Linux operating
system preinstalled. Convened by Raymond, the meeting
was small. The invite list included VA founder Larry
Augustin, a few VA employees, and Christine Peterson,
president of the Foresight Institute, a Silicon Valley
think tank specializing in nanotechnology.

"The meeting's agenda boiled down to one item: how to
take advantage of Netscape's decision so that other
companies might follow suit?" Raymond doesn't recall
the conversation that took place, but he does remember
the first complaint addressed. Despite the best efforts
of Stallman and other hackers to remind people that the
word "free" in free software stood for freedom and not
price, the message still wasn't getting through. Most
business executives, upon hearing the term for the
first time, interpreted the word as synonymous with
"zero cost," tuning out any follow up messages in short
order. Until hackers found a way to get past this
cognitive dissonance, the free software movement faced
an uphill climb, even after Netscape.

Peterson, whose organization had taken an active
interest in advancing the free software cause, offered
an alternative: open source.

Looking back, Peterson says she came up with the open
source term while discussing Netscape's decision with a
friend in the public relations industry. She doesn't
remember where she came upon the term or if she
borrowed it from another field, but she does remember
her friend disliking the term.5

At the meeting, Peterson says, the response was
dramatically different. "I was hesitant about
suggesting it," Peterson recalls. "I had no standing
with the group, so started using it casually, not
highlighting it as a new term." To Peterson's surprise,
the term caught on. By the end of the meeting, most of
the attendees, including Raymond, seemed pleased by it.

Raymond says he didn't publicly use the term "open
source" as a substitute for free software until a day
or two after the Mozilla launch party, when O'Reilly
had scheduled a meeting to talk about free software.
Calling his meeting "the Freeware Summit," O'Reilly
says he wanted to direct media and community attention
to the other deserving projects that had also
encouraged Netscape to release Mozilla. "All these guys
had so much in common, and I was surprised they didn't
all know each other," says O'Reilly. "I also wanted to
let the world know just how great an impact the free
software culture had already made. People were missing
out on a large part of the free software tradition."

In putting together the invite list, however, O'Reilly
made a decision that would have long-term political
consequences. He decided to limit the list to
west-coast developers such as Wall, Eric Allman,
creator of sendmail, and Paul Vixie, creator of BIND.
There were exceptions, of course: Pennsylvania-resident
Raymond, who was already in town thanks to the Mozilla
launch, earned a quick invite. So did Virginia-resident
Guido van Rossum, creator of Python. "Frank Willison,
my editor in chief and champion of Python within the
company, invited him without first checking in with
me," O'Reilly recalls. "I was happy to have him there,
but when I started, it really was just a local gathering."

For some observers, the unwillingness to include
Stallman's name on the list qualified as a snub. "I
decided not to go to the event because of it," says
Perens, remembering the summit. Raymond, who did go,
says he argued for Stallman's inclusion to no avail.
The snub rumor gained additional strength from the fact
that O'Reilly, the event's host, had feuded publicly
with Stallman over the issue of software-manual
copyrights. Prior to the meeting, Stallman had argued
that free software manuals should be as freely copyable
and modifiable as free software programs. O'Reilly,
meanwhile, argued that a value-added market for nonfree
books increased the utility of free software by making
it more accessible to a wider community. The two had
also disputed the title of the event, with Stallman
insisting on "Free Software" over the less politically
laden "Freeware."

Looking back, O'Reilly doesn't see the decision to
leave Stallman's name off the invite list as a snub.
"At that time, I had never met Richard in person, but
in our email interactions, he'd been inflexible and
unwilling to engage in dialogue. I wanted to make sure
the GNU tradition was represented at the meeting, so I
invited John Gilmore and Michael Tiemann, whom I knew
personally, and whom I knew were passionate about the
value of the GPL but seemed more willing to engage in a
frank back-and-forth about the strengths and weaknesses
of the various free software projects and traditions.
Given all the later brouhaha, I do wish I'd invited
Richard as well, but I certainly don't think that my
failure to do so should be interpreted as a lack of
respect for the GNU Project or for Richard personally."

Snub or no snub, both O'Reilly and Raymond say the term
"open source" won over just enough summit-goers to
qualify as a success. The attendees shared ideas and
experiences and brainstormed on how to improve free
software's image. Of key concern was how to point out
the successes of free software, particularly in the
realm of Internet infrastructure, as opposed to playing
up the GNU/Linux challenge to Microsoft Windows. But
like the earlier meeting at VA, the discussion soon
turned to the problems associated with the term "free
software." O'Reilly, the summit host, remembers a
particularly insightful comment from Torvalds, a summit attendee.

"Linus had just moved to Silicon Valley at that point,
and he explained how only recently that he had learned
that the word `free' had two meanings-free as in
`libre' and free as in `gratis'-in English."

Michael Tiemann, founder of Cygnus, proposed an
alternative to the troublesome "free software" term:
sourceware. "Nobody got too excited about it," O'Reilly
recalls. "That's when Eric threw out the term `open source.'"

Although the term appealed to some, support for a
change in official terminology was far from unanimous.
At the end of the one-day conference, attendees put the
three terms-free software, open source, or
sourceware-to a vote. According to O'Reilly, 9 out of
the 15 attendees voted for "open source." Although some
still quibbled with the term, all attendees agreed to
use it in future discussions with the press. "We wanted
to go out with a solidarity message," O'Reilly says.

The term didn't take long to enter the national
lexicon. Shortly after the summit, O'Reilly shepherded
summit attendees to a press conference attended by
reporters from the New York Times, the Wall Street
Journal, and other prominent publications. Within a few
months, Torvalds' face was appearing on the cover of
Forbes magazine, with the faces of Stallman, Perl
creator Larry Wall, and Apache team leader Brian
Behlendorf featured in the interior spread. Open source
was open for business.

For summit attendees such as Tiemann, the solidarity
message was the most important thing. Although his
company had achieved a fair amount of success selling
free software tools and services, he sensed the
difficulty other programmers and entrepreneurs faced.

"There's no question that the use of the word free was
confusing in a lot of situations," Tiemann says. "Open
source positioned itself as being business friendly and
business sensible. Free software positioned itself as
morally righteous. For better or worse we figured it
was more advantageous to align with the open source crowd.

For Stallman, the response to the new "open source"
term was slow in coming. Raymond says Stallman briefly
considered adopting the term, only to discard it. "I
know because I had direct personal conversations about
it," Raymond says.

By the end of 1998, Stallman had formulated a position:
open source, while helpful in communicating the
technical advantages of free software, also encouraged
speakers to soft-pedal the issue of software freedom.
Given this drawback, Stallman would stick with the term
free software.

Summing up his position at the 1999 LinuxWorld
Convention and Expo, an event billed by Torvalds
himself as a "coming out party" for the Linux
community, Stallman implored his fellow hackers to
resist the lure of easy compromise.

"Because we've shown how much we can do, we don't have
to be desperate to work with companies or compromise
our goals," Stallman said during a panel discussion.
"Let them offer and we'll accept. We don't have to
change what we're doing to get them to help us. You can
take a single step towards a goal, then another and
then more and more and you'll actually reach your goal.
Or, you can take a half measure that means you don't
ever take another step and you'll never get there."

Even before the LinuxWorld show, however, Stallman was
showing an increased willingness to alienate his more
conciliatory peers. A few months after the Freeware
Summit, O'Reilly hosted its second annual Perl
Conference. This time around, Stallman was in
attendance. During a panel discussion lauding IBM's
decision to employ the free software Apache web server
in its commercial offerings, Stallman, taking advantage
of an audience microphone, disrupted the proceedings
with a tirade against panelist John Ousterhout, creator
of the Tcl scripting language. Stallman branded
Ousterhout a "parasite" on the free software community
for marketing a proprietary version of Tcl via
Ousterhout's startup company, Scriptics. "I don't think
Scriptics is necessary for the continued existence of
Tcl," Stallman said to hisses from the fellow audience members.See Malcolm
Maclachlan, "Profit Motive Splits Open
Source Movement," TechWeb News (August 26, 1998).
http://content.techweb.com/wire/story/TWB19980824S0012

"It was a pretty ugly scene," recalls Prime Time
Freeware's Rich Morin. "John's done some pretty
respectable things: Tcl, Tk, Sprite. He's a real contributor."

Despite his sympathies for Stallman and Stallman's
position, Morin felt empathy for those troubled by
Stallman's discordant behavior.

Stallman's Perl Conference outburst would momentarily
chase off another potential sympathizer, Bruce Perens.
In 1998, Eric Raymond proposed launching the Open
Source Initiative, or OSI, an organization that would
police the use of the term "open source" and provide a
definition for companies interested in making their own
programs. Raymond recruited Perens to draft the definition.See Bruce Perens et
al., "The Open Source Definition,"
The Open Source Initiative (1998).
http://www.opensource.org/docs/definition.html

Perens would later resign from the OSI, expressing
regret that the organization had set itself up in
opposition to Stallman and the FSF. Still, looking back
on the need for a free software definition outside the
Free Software Foundation's auspices, Perens understands
why other hackers might still feel the need for
distance. "I really like and admire Richard," says
Perens. "I do think Richard would do his job better if
Richard had more balance. That includes going away from
free software for a couple of months."

Stallman's monomaniacal energies would do little to
counteract the public-relations momentum of open source
proponents. In August of 1998, when chip-maker Intel
purchased a stake in GNU/Linux vendor Red Hat, an
accompanying New York Times article described the
company as the product of a movement "known
alternatively as free software and open source."See Amy Harmon, "For Sale: Free
Operating System," New
York Times (September 28, 1998).

http://www.nytimes.com/library/tech/98/09/biztech/articles/28linux.html

 Six months later, a John Markoff article on Apple

Computer was proclaiming the company's adoption of the

"open source" Apache server in the article headline.See John Markoff, "Apple

Adopts `Open Source' for its

Server Computers," New York Times (March 17, 1999).

http://www.nytimes.com/library/tech/99/03/biztech/articles/17apple.html

Such momentum would coincide with the growing momentum
of companies that actively embraced the "open source"
term. By August of 1999, Red Hat, a company that now
eagerly billed itself as "open source," was selling
shares on Nasdaq. In December, VA Linux-formerly VA
Research-was floating its own IPO to historical effect.
Opening at $30 per share, the company's stock price
exploded past the $300 mark in initial trading only to
settle back down to the $239 level. Shareholders lucky
enough to get in at the bottom and stay until the end
experienced a 698% increase in paper wealth, a Nasdaq record.

Among those lucky shareholders was Eric Raymond, who,
as a company board member since the Mozilla launch, had
received 150,000 shares of VA Linux stock. Stunned by
the realization that his essay contrasting the
Stallman-Torvalds managerial styles had netted him $36
million in potential wealth, Raymond penned a follow-up
essay. In it, Raymond mused on the relationship between
the hacker ethic and monetary wealth: Reporters often
ask me these days if I think the open-source community
will be corrupted by the influx of big money. I tell
them what I believe, which is this: commercial demand
for programmers has been so intense for so long that
anyone who can be seriously distracted by money is
already gone. Our community has been self-selected for
caring about other things-accomplishment, pride,
artistic passion, and each other.See Eric Raymond, "Surprised by Wealth," Linux
Today
(December 10, 1999).

http://linuxtoday.com/news_story.php3?ltsn=1999-12-10-001-05-NW-LF

 Whether or not such comments allayed suspicions that

Raymond and other open source proponents had simply

been in it for the money, they drove home the open

source community's ultimate message: all you needed to

sell the free software concept is a friendly face and a

sensible message. Instead of fighting the marketplace

head-on as Stallman had done, Raymond, Torvalds, and

other new leaders of the hacker community had adopted a

more relaxed approach-ignoring the marketplace in some

areas, leveraging it in others. Instead of playing the

role of high-school outcasts, they had played the game

of celebrity, magnifying their power in the process.

"On his worst days Richard believes that Linus Torvalds
and I conspired to hijack his revolution," Raymond
says. "Richard's rejection of the term open source and
his deliberate creation of an ideological fissure in my
view comes from an odd mix of idealism and
territoriality. There are people out there who think
it's all Richard's personal ego. I don't believe that.
It's more that he so personally associates himself with
the free software idea that he sees any threat to that
as a threat to himself."

Ironically, the success of open source and open source
advocates such as Raymond would not diminish Stallman's
role as a leader. If anything, it gave Stallman new
followers to convert. Still, the Raymond territoriality
charge is a damning one. There are numerous instances
of Stallman sticking to his guns more out of habit than
out of principle: his initial dismissal of the Linux
kernel, for example, and his current unwillingness as a
political figure to venture outside the realm of
software issues.

Then again, as the recent debate over open source also
shows, in instances when Stallman has stuck to his
guns, he's usually found a way to gain ground because
of it. "One of Stallman's primary character traits is
the fact he doesn't budge," says Ian Murdock. "He'll
wait up to a decade for people to come around to his
point of view if that's what it takes."

Murdock, for one, finds that unbudgeable nature both
refreshing and valuable. Stallman may no longer be the
solitary leader of the free software movement, but he
is still the polestar of the free software community.
"You always know that he's going to be consistent in
his views," Murdock says. "Most people aren't like
that. Whether you agree with him or not, you really
have to respect that."

A Brief Journey Through Hacker Hell

Richard Stallman stares, unblinking, through the
windshield of a rental car, waiting for the light to
change as we make our way through downtown Kihei.

The two of us are headed to the nearby town of Pa'ia,
where we are scheduled to meet up with some software
programmers and their wives for dinner in about an hour
or so.

It's about two hours after Stallman's speech at the
Maui High Performance Center, and Kihei, a town that
seemed so inviting before the speech, now seems
profoundly uncooperative. Like most beach cities, Kihei
is a one-dimensional exercise in suburban sprawl.
Driving down its main drag, with its endless succession
of burger stands, realty agencies, and bikini shops,
it's hard not to feel like a steel-coated morsel
passing through the alimentary canal of a giant
commercial tapeworm. The feeling is exacerbated by the
lack of side roads. With nowhere to go but forward,
traffic moves in spring-like lurches. 200 yards ahead,
a light turns green. By the time we are moving, the
light is yellow again.

For Stallman, a lifetime resident of the east coast,
the prospect of spending the better part of a sunny
Hawaiian afternoon trapped in slow traffic is enough to
trigger an embolism. Even worse is the knowledge that,
with just a few quick right turns a quarter mile back,
this whole situation easily could have been avoided.
Unfortunately, we are at the mercy of the driver ahead
of us, a programmer from the lab who knows the way and
who has decided to take us to Pa'ia via the scenic
route instead of via the nearby Pilani Highway.

"This is terrible," says Stallman between frustrated
sighs. "Why didn't we take the other route?"

Again, the light a quarter mile ahead of us turns
green. Again, we creep forward a few more car lengths.
This process continues for another 10 minutes, until we
finally reach a major crossroad promising access to the
adjacent highway.

The driver ahead of us ignores it and continues through
the intersection.

"Why isn't he turning?" moans Stallman, throwing up his
hands in frustration. "Can you believe this?"

I decide not to answer either. I find the fact that I
am sitting in a car with Stallman in the driver seat,
in Maui no less, unbelievable enough. Until two hours
ago, I didn't even know Stallman knew how to drive.
Now, listening to Yo-Yo Ma's cello playing the mournful
bass notes of "Appalachian Journey" on the car stereo
and watching the sunset pass by on our left, I do my
best to fade into the upholstery.

When the next opportunity to turn finally comes up,
Stallman hits his right turn signal in an attempt to
cue the driver ahead of us. No such luck. Once again,
we creep slowly through the intersection, coming to a
stop a good 200 yards before the next light. By now,
Stallman is livid.

"It's like he's deliberately ignoring us," he says,
gesturing and pantomiming like an air craft carrier
landing-signals officer in a futile attempt to catch
our guide's eye. The guide appears unfazed, and for the
next five minutes all we see is a small portion of his
head in the rearview mirror.

I look out Stallman's window. Nearby Kahoolawe and
Lanai Islands provide an ideal frame for the setting
sun. It's a breathtaking view, the kind that makes
moments like this a bit more bearable if you're a
Hawaiian native, I suppose. I try to direct Stallman's
attention to it, but Stallman, by now obsessed by the
inattentiveness of the driver ahead of us, blows me off.

When the driver passes through another green light,
completely ignoring a "Pilani Highway Next Right," I
grit my teeth. I remember an early warning relayed to
me by BSD programmer Keith Bostic. "Stallman does not
suffer fools gladly," Bostic warned me. "If somebody
says or does something stupid, he'll look them in the
eye and say, `That's stupid.'"

Looking at the oblivious driver ahead of us, I realize
that it's the stupidity, not the inconvenience, that's
killing Stallman right now.

"It's as if he picked this route with absolutely no
thought on how to get there efficiently," Stallman says.

The word "efficiently" hangs in the air like a bad
odor. Few things irritate the hacker mind more than
inefficiency. It was the inefficiency of checking the
Xerox laser printer two or three times a day that
triggered Stallman's initial inquiry into the printer
source code. It was the inefficiency of rewriting
software tools hijacked by commercial software vendors
that led Stallman to battle Symbolics and to launch the
GNU Project. If, as Jean Paul Sartre once opined, hell
is other people, hacker hell is duplicating other
people's stupid mistakes, and it's no exaggeration to
say that Stallman's entire life has been an attempt to
save mankind from these fiery depths.

This hell metaphor becomes all the more apparent as we
take in the slowly passing scenery. With its multitude
of shops, parking lots, and poorly timed street lights,
Kihei seems less like a city and more like a poorly
designed software program writ large. Instead of
rerouting traffic and distributing vehicles through
side streets and expressways, city planners have
elected to run everything through a single main drag.
From a hacker perspective, sitting in a car amidst all
this mess is like listening to a CD rendition of nails
on a chalkboard at full volume.

"Imperfect systems infuriate hackers," observes Steven
Levy, another warning I should have listened to before
climbing into the car with Stallman. "This is one
reason why hackers generally hate driving cars-the
system of randomly programmed red lights and oddly laid
out one-way streets causes delays which are so goddamn
unnecessary [Levy's emphasis] that the impulse is to
rearrange signs, open up traffic-light control boxes .
. . redesign the entire system."See Steven Levy, Hackers (Penguin USA
[paperback],
1984): 40.

More frustrating, however, is the duplicity of our
trusted guide. Instead of searching out a clever
shortcut-as any true hacker would do on instinct-the
driver ahead of us has instead chosen to play along
with the city planners' game. Like Virgil in Dante's
Inferno, our guide is determined to give us the full
guided tour of this hacker hell whether we want it or not.

Before I can make this observation to Stallman, the
driver finally hits his right turn signal. Stallman's
hunched shoulders relax slightly, and for a moment the
air of tension within the car dissipates. The tension
comes back, however, as the driver in front of us slows
down. "Construction Ahead" signs line both sides of the
street, and even though the Pilani Highway lies less
than a quarter mile off in the distance, the two-lane
road between us and the highway is blocked by a dormant
bulldozer and two large mounds of dirt.

It takes Stallman a few seconds to register what's
going on as our guide begins executing a clumsy
five-point U-turn in front of us. When he catches a
glimpse of the bulldozer and the "No Through Access"
signs just beyond, Stallman finally boils over.

"Why, why, why?" he whines, throwing his head back.
"You should have known the road was blocked. You should
have known this way wouldn't work. You did this deliberately."

The driver finishes the turn and passes us on the way
back toward the main drag. As he does so, he shakes his
head and gives us an apologetic shrug. Coupled with a
toothy grin, the driver's gesture reveals a touch of
mainlander frustration but is tempered with a
protective dose of islander fatalism. Coming through
the sealed windows of our rental car, it spells out a
succinct message: "Hey, it's Maui; what are you gonna do?"

Stallman can take it no longer.

"Don't you fucking smile!" he shouts, fogging up the
glass as he does so. "It's your fucking fault. This all
could have been so much easier if we had just done it
my way."

Stallman accents the words "my way" by gripping the
steering wheel and pulling himself towards it twice.
The image of Stallman's lurching frame is like that of
a child throwing a temper tantrum in a car seat, an
image further underlined by the tone of Stallman's
voice. Halfway between anger and anguish, Stallman
seems to be on the verge of tears.

Fortunately, the tears do not arrive. Like a summer
cloudburst, the tantrum ends almost as soon as it
begins. After a few whiny gasps, Stallman shifts the
car into reverse and begins executing his own U-turn.
By the time we are back on the main drag, his face is
as impassive as it was when we left the hotel 30
minutes earlier.

It takes less than five minutes to reach the next
cross-street. This one offers easy highway access, and
within seconds, we are soon speeding off toward Pa'ia
at a relaxing rate of speed. The sun that once loomed
bright and yellow over Stallman's left shoulder is now
burning a cool orange-red in our rearview mirror. It
lends its color to the gauntlet wili wili trees flying
past us on both sides of the highway.

For the next 20 minutes, the only sound in our vehicle,
aside from the ambient hum of the car's engine and
tires, is the sound of a cello and a violin trio
playing the mournful strains of an Appalachian folk
tune. Endnote

Continuing the Fight

For Richard Stallman, time may not heal all wounds, but
it does provide a convenient ally.

Four years after " The Cathedral and the Bazaar,"
Stallman still chafes over the Raymond critique. He
also grumbles over Linus Torvalds' elevation to the
role of world's most famous hacker. He recalls a
popular T-shirt that began showing at Linux tradeshows
around 1999. Designed to mimic the original promotional
poster for Star Wars, the shirt depicted Torvalds
brandishing a lightsaber like Luke Skywalker, while
Stallman's face rides atop R2D2. The shirt still grates
on Stallmans nerves not only because it depicts him as
a Torvalds' sidekick, but also because it elevates
Torvalds to the leadership role in the free
software/open source community, a role even Torvalds
himself is loath to accept. "It's ironic," says
Stallman mournfully. "Picking up that sword is exactly
what Linus refuses to do. He gets everybody focusing on
him as the symbol of the movement, and then he won't
fight. What good is it?"

Then again, it is that same unwillingness to "pick up
the sword," on Torvalds part, that has left the door
open for Stallman to bolster his reputation as the
hacker community's ethical arbiter. Despite his
grievances, Stallman has to admit that the last few
years have been quite good, both to himself and to his
organization. Relegated to the periphery by the
unforeseen success of GNU/Linux, Stallman has
nonetheless successfully recaptured the initiative. His
speaking schedule between January 2000 and December
2001 included stops on six continents and visits to
countries where the notion of software freedom carries
heavy overtones-China and India, for example.

Outside the bully pulpit, Stallman has also learned how
to leverage his power as costeward of the GNU General
Public License (GPL). During the summer of 2000, while
the air was rapidly leaking out of the 1999 Linux IPO
bubble, Stallman and the Free Software Foundation
scored two major victories. In July, 2000, Troll Tech,
a Norwegian software company and developer of Qt, a
valuable suite of graphics tools for the GNU/Linux
operating system, announced it was licensing its
software under the GPL. A few weeks later, Sun
Microsystems, a company that, until then, had been
warily trying to ride the open source bandwagon without
giving up total control of its software properties,
finally relented and announced that it, too, was dual
licensing its new OpenOffice application suite under
the Lesser GNU Public License (LGPL) and the Sun
Industry Standards Source License (SISSL).

Underlining each victory was the fact that Stallman had
done little to fight for them. In the case of Troll
Tech, Stallman had simply played the role of free
software pontiff. In 1999, the company had come up with
a license that met the conditions laid out by the Free
Software Foundation, but in examining the license
further, Stallman detected legal incompatibles that
would make it impossible to bundle Qt with
GPL-protected software programs. Tired of battling
Stallman, Troll Tech management finally decided to
split the Qt into two versions, one GPL-protected and
one QPL-protected, giving developers a way around the
compatibility issues cited by Stallman.

In the case of Sun, they desired to play according to
the Free Software Foundation's conditions. At the 1999
O'Reilly Open Source Conference, Sun Microsystems
cofounder and chief scientist Bill Joy defended his
company's "community source" license, essentially a
watered-down compromise letting users copy and modify
Sun-owned software but not charge a fee for said
software without negotiating a royalty agreement with
Sun. A year after Joy's speech, Sun Microsystems vice
president Marco Boerries was appearing on the same
stage spelling out the company's new licensing
compromise in the case of OpenOffice, an
office-application suite designed specifically for the
GNU/Linux operating system.

"I can spell it out in three letters," said Boerries. "GPL."

At the time, Boerries said his company's decision had
little to do with Stallman and more to do with the
momentum of GPL-protected programs. "What basically
happened was the recognition that different products
attracted different communities, and the license you
use depends on what type of community you want to
attract," said Boerries. "With [OpenOffice], it was
clear we had the highest correlation with the GPL community."See Marco
Boerries, interview with author (July, 2000).

Such comments point out the under-recognized strength
of the GPL and, indirectly, the political genius of man
who played the largest role in creating it. "There
isn't a lawyer on earth who would have drafted the GPL
the way it is," says Eben Moglen, Columbia University
law professor and Free Software Foundation general
counsel. "But it works. And it works because of
Richard's philosophy of design."

A former professional programmer, Moglen traces his pro
bono work with Stallman back to 1990 when Stallman
requested Moglen's legal assistance on a private
affair. Moglen, then working with encryption expert
Phillip Zimmerman during Zimmerman's legal battles with
the National Security Administration, says he was
honored by the request. "I told him I used Emacs every
day of my life, and it would take an awful lot of
lawyering on my part to pay off the debt."

Since then, Moglen, perhaps more than any other
individual, has had the best chance to observe the
crossover of Stallman's hacker philosophies into the
legal realm. Moglen says the difference between
Stallman's approach to legal code and software code are
largely the same. "I have to say, as a lawyer, the idea
that what you should do with a legal document is to
take out all the bugs doesn't make much sense," Moglen
says. "There is uncertainty in every legal process, and
what most lawyers want to do is to capture the benefits
of uncertainty for their client. Richard's goal is the
complete opposite. His goal is to remove uncertainty,
which is inherently impossible. It is inherently
impossible to draft one license to control all
circumstances in all legal systems all over the world.
But if you were to go at it, you would have to go at it
his way. And the resulting elegance, the resulting
simplicity in design almost achieves what it has to
achieve. And from there a little lawyering will carry
you quite far."

As the person charged with pushing the Stallman agenda,
Moglen understands the frustration of would-be allies.
"Richard is a man who does not want to compromise over
matters that he thinks of as fundamental," Moglen says,
"and he does not take easily the twisting of words or
even just the seeking of artful ambiguity, which human
society often requires from a lot of people."

Because of the Free Software Foundation's unwillingness
to weigh in on issues outside the purview of GNU
development and GPL enforcement, Moglen has taken to
devoting his excess energies to assisting the
Electronic Frontier Foundation, the organization
providing legal aid to recent copyright defendants such
as Dmitri Skylarov. In 2000, Moglen also served as
direct counsel to a collection of hackers that were
joined together from circulating the DVD decryption
program deCSS. Despite the silence of his main client
in both cases, Moglen has learned to appreciate the
value of Stallman's stubbornness. "There have been
times over the years where I've gone to Richard and
said, `We have to do this. We have to do that. Here's
the strategic situation. Here's the next move. Here's
what he have to do.' And Richard's response has always
been, `We don't have to do anything.' Just wait. What
needs doing will get done."

"And you know what?" Moglen adds. "Generally, he's been right."

Such comments disavow Stallman's own self-assessment:
"I'm not good at playing games," Stallman says,
addressing the many unseen critics who see him as a
shrewd strategist. "I'm not good at looking ahead and
anticipating what somebody else might do. My approach
has always been to focus on the foundation, to say
`Let's make the foundation as strong as we can make it.'"

The GPL's expanding popularity and continuing
gravitational strength are the best tributes to the
foundation laid by Stallman and his GNU colleagues.
While no longer capable of billing himself as the "last
true hacker," Stallman nevertheless can take sole
credit for building the free software movement's
ethical framework. Whether or not other modern
programmers feel comfortable working inside that
framework is immaterial. The fact that they even have a
choice at all is Stallman's greatest legacy.

Discussing Stallman's legacy at this point seems a bit
premature. Stallman, 48 at the time of this writing,
still has a few years left to add to or subtract from
that legacy. Still, the autopilot nature of the free
software movement makes it tempting to examine
Stallman's life outside the day-to-day battles of the
software industry and within a more august, historical setting.

To his credit, Stallman refuses all opportunities to
speculate. "I've never been able to work out detailed
plans of what the future was going to be like," says
Stallman, offering his own premature epitaph. "I just
said `I'm going to fight. Who knows where I'll get?'"

There's no question that in picking his fights,
Stallman has alienated the very people who might
otherwise have been his greatest champions. It is also
a testament to his forthright, ethical nature that many
of Stallman's erstwhile political opponents still
manage to put in a few good words for him when pressed.
The tension between Stallman the ideologue and Stallman
the hacker genius, however, leads a biographer to
wonder: how will people view Stallman when Stallman's
own personality is no longer there to get in the way?

In early drafts of this book, I dubbed this question
the "100 year" question. Hoping to stimulate an
objective view of Stallman and his work, I asked
various software-industry luminaries to take themselves
out of the current timeframe and put themselves in a
position of a historian looking back on the free
software movement 100 years in the future. From the
current vantage point, it is easy to see similarities
between Stallman and past Americans who, while somewhat
marginal during their lifetime, have attained
heightened historical importance in relation to their
age. Easy comparisons include Henry David Thoreau,
transcendentalist philosopher and author of On Civil
Disobedience, and John Muir, founder of the Sierra Club
and progenitor of the modern environmental movement. It
is also easy to see similarities in men like William
Jennings Bryan, a.k.a. "The Great Commoner," leader of
the populist movement, enemy of monopolies, and a man
who, though powerful, seems to have faded into
historical insignificance.

Although not the first person to view software as
public property, Stallman is guaranteed a footnote in
future history books thanks to the GPL. Given that
fact, it seems worthwhile to step back and examine
Richard Stallman's legacy outside the current time
frame. Will the GPL still be something software
programmers use in the year 2102, or will it have long
since fallen by the wayside? Will the term "free
software" seem as politically quaint as "free silver"
does today, or will it seem eerily prescient in light
of later political events?

Predicting the future is risky sport, but most people,
when presented with the question, seemed eager to bite.
"One hundred years from now, Richard and a couple of
other people are going to deserve more than a
footnote," says Moglen. "They're going to be viewed as
the main line of the story."

The "couple other people" Moglen nominates for future
textbook chapters include John Gilmore, Stallman's GPL
advisor and future founder of the Electronic Frontier
Foundation, and Theodor Holm Nelson, a.k.a. Ted Nelson,
author of the 1982 book, Literary Machines . Moglen
says Stallman, Nelson, and Gilmore each stand out in
historically significant, nonoverlapping ways. He
credits Nelson, commonly considered to have coined the
term "hypertext," for identifying the predicament of
information ownership in the digital age. Gilmore and
Stallman, meanwhile, earn notable credit for
identifying the negative political effects of
information control and building organizations-the
Electronic Frontier Foundation in the case of Gilmore
and the Free Software Foundation in the case of
Stallman-to counteract those effects. Of the two,
however, Moglen sees Stallman's activities as more
personal and less political in nature.

"Richard was unique in that the ethical implications of
unfree software were particularly clear to him at an
early moment," says Moglen. "This has a lot to do with
Richard's personality, which lots of people will, when
writing about him, try to depict as epiphenomenal or
even a drawback in Richard Stallman's own life work."

Gilmore, who describes his inclusion between the
erratic Nelson and the irascible Stallman as something
of a "mixed honor," nevertheless seconds the Moglen
argument. Writes Gilmore: My guess is that Stallman's
writings will stand up as well as Thomas Jefferson's
have; he's a pretty clear writer and also clear on his
principles . . . Whether Richard will be as influential
as Jefferson will depend on whether the abstractions we
call "civil rights" end up more important a hundred
years from now than the abstractions that we call
"software" or "technically imposed restrictions."
Another element of the Stallman legacy not to be
overlooked, Gilmore writes, is the collaborative
software-development model pioneered by the GNU
Project. Although flawed at times, the model has
nevertheless evolved into a standard within the
software-development industry. All told, Gilmore says,
this collaborative software-development model may end
up being even more influential than the GNU Project,
the GPL License, or any particular software program
developed by Stallman: Before the Internet, it was
quite hard to collaborate over distance on software,
even among teams that know and trust each other.
Richard pioneered collaborative development of
software, particularly by disorganized volunteers who
seldom meet each other. Richard didn't build any of the
basic tools for doing this (the TCP protocol, email
lists, diff and patch, tar files, RCS or CVS or
remote-CVS), but he used the ones that were available
to form social groups of programmers who could
effectively collaborate. Lawrence Lessig, Stanford law
professor and author of the 2001 book, The Future of
Ideas , is similarly bullish. Like many legal scholars,
Lessig sees the GPL as a major bulwark of the current
so-called "digital commons," the vast agglomeration of
community-owned software programs, network and
telecommunication standards that have triggered the
Internet's exponential growth over the last three
decades. Rather than connect Stallman with other
Internet pioneers, men such as Vannevar Bush, Vinton
Cerf, and J. C. R. Licklider who convinced others to
see computer technology on a wider scale, Lessig sees
Stallman's impact as more personal, introspective, and,
ultimately, unique: [Stallman] changed the debate from
is to ought. He made people see how much was at stake,
and he built a device to carry these ideals forward . .
. That said, I don't quite know how to place him in the
context of Cerf or Licklider. The innovation is
different. It is not just about a certain kind of code,
or enabling the Internet. [It's] much more about
getting people to see the value in a certain kind of
Internet. I don't think there is anyone else in that
class, before or after. Not everybody sees the Stallman
legacy as set in stone, of course. Eric Raymond, the
open source proponent who feels that Stallman's
leadership role has diminished significantly since
1996, sees mixed signals when looking into the 2102
crystal ball: I think Stallman's artifacts (GPL, Emacs,
GCC) will be seen as revolutionary works, as
foundation-stones of the information world. I think
history will be less kind to some of the theories from
which RMS operated, and not kind at all to his personal
tendency towards territorial, cult-leader behavior. As
for Stallman himself, he, too, sees mixed signals: What
history says about the GNU Project, twenty years from
now, will depend on who wins the battle of freedom to
use public knowledge. If we lose, we will be just a
footnote. If we win, it is uncertain whether people
will know the role of the GNU operating system-if they
think the system is "Linux," they will build a false
picture of what happened and why.

But even if we win, what history people learn a hundred
years from now is likely to depend on who dominates
politically. Searching for his own 19th-century
historical analogy, Stallman summons the figure of John
Brown, the militant abolitionist regarded as a hero on
one side of the Mason Dixon line and a madman on the other.

John Brown's slave revolt never got going, but during
his subsequent trial he effectively roused national
demand for abolition. During the Civil War, John Brown
was a hero; 100 years after, and for much of the 1900s,
history textbooks taught that he was crazy. During the
era of legal segregation, while bigotry was shameless,
the US partly accepted the story that the South wanted
to tell about itself, and history textbooks said many
untrue things about the Civil War and related events.

Such comparisons document both the self-perceived
peripheral nature of Stallman's current work and the
binary nature of his current reputation. Although it's
hard to see Stallman's reputation falling to the level
of infamy as Brown's did during the post-Reconstruction
period-Stallman, despite his occasional war-like
analogies, has done little to inspire violence-it's
easy to envision a future in which Stallman's ideas
wind up on the ash-heap. In fashioning the free
software cause not as a mass movement but as a
collection of private battles against the forces of
proprietary temptation, Stallman seems to have created
a unwinnable situation, especially for the many
acolytes with the same stubborn will.

Then again, it is that very will that may someday prove
to be Stallman's greatest lasting legacy. Moglen, a
close observer over the last decade, warns those who
mistake the Stallman personality as counter-productive
or epiphenomenal to the "artifacts" of Stalllman's
life. Without that personality, Moglen says, there
would be precious few artifiacts to discuss. Says
Moglen, a former Supreme Court clerk: Look, the
greatest man I ever worked for was Thurgood Marshall. I
knew what made him a great man. I knew why he had been
able to change the world in his possible way. I would
be going out on a limb a little bit if I were to make a
comparison, because they could not be more different.
Thurgood Marshall was a man in society, representing an
outcast society to the society that enclosed it, but
still a man in society. His skill was social skills.
But he was all of a piece, too. Different as they were
in every other respect, that the person I most now
compare him to in that sense, all of a piece, compact,
made of the substance that makes stars, all the way
through, is Stallman. In an effort to drive that image
home, Moglen reflects on a shared moment in the spring
of 2000. The success of the VA Linux IPO was still
resonating in the business media, and a half dozen free
software-related issues were swimming through the news.
Surrounded by a swirling hurricane of issues and
stories each begging for comment, Moglen recalls
sitting down for lunch with Stallman and feeling like a
castaway dropped into the eye of the storm. For the
next hour, he says, the conversation calmly revolved
around a single topic: strengthening the GPL.

"We were sitting there talking about what we were going
to do about some problems in Eastern Europe and what we
were going to do when the problem of the ownership of
content began to threaten free software," Moglen
recalls. "As we were talking, I briefly thought about
how we must have looked to people passing by. Here we
are, these two little bearded anarchists, plotting and
planning the next steps. And, of course, Richard is
plucking the knots from his hair and dropping them in
the soup and behaving in his usual way. Anybody
listening in on our conversation would have thought we
were crazy, but I knew: I knew the revolution's right
here at this table. This is what's making it happen.
And this man is the person making it happen."

Moglen says that moment, more than any other, drove
home the elemental simplicity of the Stallman style.

"It was funny," recalls Moglen. "I said to him,
`Richard, you know, you and I are the two guys who
didn't make any money out of this revolution.' And then
I paid for the lunch, because I knew he didn't have the
money to pay for it .'" Endnote

Epilogue:

Crushing Loneliness Writing the biography of a living
person is a bit like producing a play. The drama in
front of the curtain often pales in comparison to the
drama backstage.

In The Autobiography of Malcolm X, Alex Haley gives
readers a rare glimpse of that backstage drama.
Stepping out of the ghostwriter role, Haley delivers
the book's epilogue in his own voice. The epilogue
explains how a freelance reporter originally dismissed
as a "tool" and "spy" by the Nation of Islam
spokesperson managed to work through personal and
political barriers to get Malcolm X's life story on paper.

While I hesitate to compare this book with The
Autobiography of Malcolm X, I do owe a debt of
gratitude to Haley for his candid epilogue. Over the
last 12 months, it has served as a sort of instruction
manual on how to deal with a biographical subject who
has built an entire career on being disagreeable. From
the outset, I envisioned closing this biography with a
similar epilogue, both as an homage to Haley and as a
way to let readers know how this book came to be.

The story behind this story starts in an Oakland
apartment, winding its way through the various locales
mentioned in the book-Silicon Valley, Maui, Boston, and
Cambridge. Ultimately, however, it is a tale of two
cities: New York, New York, the book-publishing capital
of the world, and Sebastopol, California, the
book-publishing capital of Sonoma County.

The story starts in April, 2000. At the time, I was
writing stories for the ill-fated BeOpen web site
(http://www.beopen.com/). One of my first assignments
was a phone interview with Richard M. Stallman. The
interview went well, so well that Slashdot
(http://www.slashdot.org/), the popular "news for
nerds" site owned by VA Software, Inc. (formerly VA
Linux Systems and before that, VA Research), gave it a
link in its daily list of feature stories. Within
hours, the web servers at BeOpen were heating up as
readers clicked over to the site.

For all intents and purposes, the story should have
ended there. Three months after the interview, while
attending the O'Reilly Open Source Conference in
Monterey, California, I received the following email
message from Tracy Pattison, foreign-rights manager at
a large New York publishing house:

To: sam@BeOpen.com Subject: RMS InterviewDate: Mon, 10

Jul 2000 15:56:37 -0400Dear Mr. Williams,

I read your interview with Richard Stallman on BeOpen
with great interest. I've been intrigued by RMS and his
work for some time now and was delighted to find your
piece which I really think you did a great job of
capturing some of the spirit of what Stallman is trying
to do with GNU-Linux and the Free Software Foundation.

What I'd love to do, however, is read more - and I
don't think I'm alone. Do you think there is more
information and/or sources out there to expand and
update your interview and adapt it into more of a
profile of Stallman? Perhaps including some more
anecdotal information about his personality and
background that might really interest and enlighten
readers outside the more hardcore programming scene?

The email asked that I give Tracy a call to discuss the
idea further. I did just that. Tracy told me her
company was launching a new electronic book line, and
it wanted stories that appealed to an early-adopter
audience. The e-book format was 30,000 words, about 100
pages, and she had pitched her bosses on the idea of
profiling a major figure in the hacker community. Her
bosses liked the idea, and in the process of searching
for interesting people to profile, she had come across
my BeOpen interview with Stallman. Hence her email to me.

That's when Tracy asked me: would I be willing to
expand the interview into a full-length feature profile?

My answer was instant: yes. Before accepting it, Tracy
suggested I put together a story proposal she could
show her superiors. Two days later, I sent her a
polished proposal. A week later, Tracy sent me a follow
up email. Her bosses had given it the green light.

I have to admit, getting Stallman to participate in an
e-book project was an afterthought on my part. As a
reporter who covered the open source beat, I knew
Stallman was a stickler. I'd already received a half
dozen emails at that point upbraiding me for the use of
"Linux" instead of "GNU/Linux."

Then again, I also knew Stallman was looking for ways
to get his message out to the general public. Perhaps
if I presented the project to him that way, he would be
more receptive. If not, I could always rely upon the
copious amounts of documents, interviews, and recorded
online conversations Stallman had left lying around the
Internet and do an unauthorized biography.

During my research, I came across an essay titled
"Freedom-Or Copyright?" Written by Stallman and
published in the June, 2000, edition of the MIT
Technology Review, the essay blasted e-books for an
assortment of software sins. Not only did readers have
to use proprietary software programs to read them,
Stallman lamented, but the methods used to prevent
unauthorized copying were overly harsh. Instead of
downloading a transferable HTML or PDF file, readers
downloaded an encrypted file. In essence, purchasing an
e-book meant purchasing a nontransferable key to
unscramble the encrypted content. Any attempt to open a
book's content without an authorized key constituted a
criminal violation of the Digital Millennium Copyright
Act, the 1998 law designed to bolster copyright
enforcement on the Internet. Similar penalties held for
readers who converted a book's content into an open
file format, even if their only intention was to read
the book on a different computer in their home. Unlike
a normal book, the reader no longer held the right to
lend, copy, or resell an e-book. They only had the
right to read it on an authorized machine, warned
Stallman: We still have the same old freedoms in using
paper books. But if e-books replace printed books, that
exception will do little good. With "electronic ink,"
which makes it possible to download new text onto an
apparently printed piece of paper, even newspapers
could become ephemeral. Imagine: no more used book
stores; no more lending a book to your friend; no more
borrowing one from the public library-no more "leaks"
that might give someone a chance to read without
paying. (And judging from the ads for Microsoft Reader,
no more anonymous purchasing of books either.) This is
the world publishers have in mind for us.See "Safari Tech Books Online;
Subscriber Agreement:
Terms of Service."

http://safari.oreilly.com/mainhlp.asp?help=service

Needless to say, the essay caused some concern. Neither

Tracy nor I had discussed the software her company

would use nor had we discussed the type of copyright

that would govern the e-book's usage. I mentioned the

Technology Review article and asked if she could give

me information on her company's e-book policies. Tracy

promised to get back to me.

Eager to get started, I decided to call Stallman anyway
and mention the book idea to him. When I did, he
expressed immediate interest and immediate concern.
"Did you read my essay on e-books?" he asked.

When I told him, yes, I had read the essay and was
waiting to hear back from the publisher, Stallman laid
out two conditions: he didn't want to lend support to
an e-book licensing mechanism he fundamentally opposed,
and he didn't want to come off as lending support. "I
don't want to participate in anything that makes me
look like a hypocrite," he said.

For Stallman, the software issue was secondary to the
copyright issue. He said he was willing to ignore
whatever software the publisher or its third-party
vendors employed just so long as the company specified
within the copyright that readers were free to make and
distribute verbatim copies of the e-book's content.
Stallman pointed to Stephen King's The Plant as a
possible model. In June, 2000, King announced on his
official web site that he was self-publishing The Plant
in serial form. According to the announcement, the
book's total cost would be $13, spread out over a
series of $1 installments. As long as at least 75% of
the readers paid for each chapter, King promised to
continue releasing new installments. By August, the
plan seemed to be working, as King had published the
first two chapters with a third on the way.

"I'd be willing to accept something like that,"

Stallman said. "As long as it also permitted verbatim copying."

I forwarded the information to Tracy. Feeling confident
that she and I might be able to work out an equitable
arrangement, I called up Stallman and set up the first
interview for the book. Stallman agreed to the
interview without making a second inquiry into the
status issue. Shortly after the first interview, I
raced to set up a second interview (this one in Kihei),
squeezing it in before Stallman headed off on a 14-day
vacation to Tahiti.

It was during Stallman's vacation that the bad news
came from Tracy. Her company's legal department didn't
want to adjust its copyright notice on the e-books.
Readers who wanted to make their books transferable
would either have to crack the encryption code or
convert the book to an open format such as HTML. Either
way, the would be breaking the law and facing criminal penalties.

With two fresh interviews under my belt, I didn't see
any way to write the book without resorting to the new
material. I quickly set up a trip to New York to meet
with my agent and with Tracy to see if there was a
compromise solution.

When I flew to New York, I met my agent, Henning
Guttman. It was our first face-to-face meeting, and
Henning seemed pessimistic about our chances of forcing
a compromise, at least on the publisher's end. The
large, established publishing houses already viewed the
e-book format with enough suspicion and weren't in the
mood to experiment with copyright language that made it
easier for readers to avoid payment. As an agent who
specialized in technology books, however, Henning was
intrigued by the novel nature of my predicament. I told
him about the two interviews I'd already gathered and
the promise not to publish the book in a way that made
Stallman "look like a hypocrite." Agreeing that I was
in an ethical bind, Henning suggested we make that our
negotiating point.

Barring that, Henning said, we could always take the
carrot-and-stick approach. The carrot would be the
publicity that came with publishing an e-book that
honored the hacker community's internal ethics. The
stick would be the risks associated with publishing an
e-book that didn't. Nine months before Dmitri Skylarov
became an Internet cause celebre, we knew it was only a
matter of time before an enterprising programmer
revealed how to hack e-books. We also knew that a major
publishing house releasing an encryption-protected
e-book on Richard M. Stallman was the software
equivalent of putting "Steal This E-Book" on the cover.

After my meeting with Henning, I put a call into
Stallman. Hoping to make the carrot more enticing, I
discussed a number of potential compromises. What if
the publisher released the book's content under a split
license, something similar to what Sun Microsystems had
done with Open Office, the free software desktop
applications suite? The publisher could then release
commercial versions of the e-book under a normal
format, taking advantage of all the bells and whistles
that went with the e-book software, while releasing the
copyable version under a less aesthetically pleasing
HTML format.

Stallman told me he didn't mind the split-license idea,
but he did dislike the idea of making the freely
copyable version inferior to the restricted version.
Besides, he said, the idea was too cumbersome. Split
licenses worked in the case of Sun's Open Office only
because he had no control over the decision making. In
this case, Stallman said, he did have a way to control
the outcome. He could refuse to cooperate.

I made a few more suggestions with little effect. About
the only thing I could get out of Stallman was a
concession that the e-book's copyright restrict all
forms of file sharing to "noncommercial redistribution."

Before I signed off, Stallman suggested I tell the
publisher that I'd promised Stallman that the work
would be free. I told Stallman I couldn't agree to that
statement but that I did view the book as unfinishable
without his cooperation. Seemingly satisfied, Stallman
hung up with his usual sign-off line: "Happy hacking."

Henning and I met with Tracy the next day. Tracy said
her company was willing to publish copyable excerpts in
a unencrypted format but would limit the excerpts to
500 words. Henning informed her that this wouldn't be
enough for me to get around my ethical obligation to
Stallman. Tracy mentioned her own company's contractual
obligation to online vendors such as Amazon.com. Even
if the company decided to open up its e-book content
this one time, it faced the risk of its partners
calling it a breach of contract. Barring a change of
heart in the executive suite or on the part of
Stallman, the decision was up to me. I could use the
interviews and go against my earlier agreement with
Stallman, or I could plead journalistic ethics and back
out of the verbal agreement to do the book.

Following the meeting, my agent and I relocated to a
pub on Third Ave. I used his cell phone to call
Stallman, leaving a message when nobody answered.
Henning left for a moment, giving me time to collect my
thoughts. When he returned, he was holding up the cell phone.

"It's Stallman," Henning said.

The conversation got off badly from the start. I
relayed Tracy's comment about the publisher's
contractual obligations.

"So," Stallman said bluntly. "Why should I give a damn
about their contractual obligations?"

Because asking a major publishing house to risk a legal
battle with its vendors over a 30,000 word e-book is a
tall order, I suggested.

"Don't you see?" Stallman said. "That's exactly why I'm
doing this. I want a signal victory. I want them to
make a choice between freedom and business as usual."

As the words "signal victory" echoed in my head, I felt
my attention wander momentarily to the passing foot
traffic on the sidewalk. Coming into the bar, I had
been pleased to notice that the location was less than
half a block away from the street corner memorialized
in the 1976 Ramones song, "53rd and 3rd," a song I
always enjoyed playing in my days as a musician. Like
the perpetually frustrated street hustler depicted in
that song, I could feel things falling apart as quickly
as they had come together. The irony was palpable.
After weeks of gleefully recording other people's
laments, I found myself in the position of trying to
pull off the rarest of feats: a Richard Stallman compromise.

When I continued hemming and hawing, pleading the
publisher's position and revealing my growing sympathy
for it, Stallman, like an animal smelling blood, attacked.

"So that's it? You're just going to screw me? You're
just going to bend to their will?"

I brought up the issue of a dual-copyright again.

"You mean license," Stallman said curtly.

"Yeah, license. Copyright. Whatever," I said, feeling
suddenly like a wounded tuna trailing a rich plume of
plasma in the water.

"Aw, why didn't you just fucking do what I told you to
do!" he shouted.

I must have been arguing on behalf of the publisher to
the very end, because in my notes I managed to save a
final Stallman chestnut: "I don't care. What they're
doing is evil. I can't support evil. Good-bye."

As soon as I put the phone down, my agent slid a
freshly poured Guinness to me. "I figured you might
need this," he said with a laugh. "I could see you
shaking there towards the end."

I was indeed shaking. The shaking wouldn't stop until
the Guinness was more than halfway gone. It felt weird,
hearing myself characterized as an emissary of "evil."
It felt weirder still, knowing that three months
before, I was sitting in an Oakland apartment trying to
come up with my next story idea. Now, I was sitting in
a part of the world I'd only known through rock songs,
taking meetings with publishing executives and drinking
beer with an agent I'd never even laid eyes on until
the day before. It was all too surreal, like watching
my life reflected back as a movie montage.

About that time, my internal absurdity meter kicked in.
The initial shaking gave way to convulsions of
laughter. To my agent, I must have looked like a
another fragile author undergoing an untimely emotional
breakdown. To me, I was just starting to appreciate the
cynical beauty of my situation. Deal or no deal, I
already had the makings of a pretty good story. It was
only a matter of finding a place to tell it. When my
laughing convulsions finally subsided, I held up my
drink in a toast.

"Welcome to the front lines, my friend," I said,
clinking pints with my agent. "Might as well enjoy it."

If this story really were a play, here's where it would
take a momentary, romantic interlude. Disheartened by
the tense nature of our meeting, Tracy invited Henning
and I to go out for drinks with her and some of her
coworkers. We left the bar on Third Ave., headed down
to the East Village, and caught up with Tracy and her friends.

Once there, I spoke with Tracy, careful to avoid shop
talk. Our conversation was pleasant, relaxed. Before
parting, we agreed to meet the next night. Once again,
the conversation was pleasant, so pleasant that the
Stallman e-book became almost a distant memory.

When I got back to Oakland, I called around to various
journalist friends and acquaintances. I recounted my
predicament. Most upbraided me for giving up too much
ground to Stallman in the preinterview negotiation. A
former j-school professor suggested I ignore Stallman's
"hypocrite" comment and just write the story. Reporters
who knew of Stallman's media-savviness expressed
sympathy but uniformly offered the same response: it's
your call.

I decided to put the book on the back burner. Even with
the interviews, I wasn't making much progress. Besides,
it gave me a chance to speak with Tracy without running
things past Henning first. By Christmas we had traded
visits: she flying out to the west coast once, me
flying out to New York a second time. The day before
New Year's Eve, I proposed. Deciding which coast to
live on, I picked New York. By February, I packed up my
laptop computer and all my research notes related to
the Stallman biography, and we winged our way to JFK
Airport. Tracy and I were married on May 11. So much
for failed book deals.

During the summer, I began to contemplate turning my
interview notes into a magazine article. Ethically, I
felt in the clear doing so, since the original
interview terms said nothing about traditional print
media. To be honest, I also felt a bit more comfortable
writing about Stallman after eight months of radio
silence. Since our telephone conversation in September,
I'd only received two emails from Stallman. Both
chastised me for using "Linux" instead of "GNU/Linux"
in a pair of articles for the web magazine Upside
Today. Aside from that, I had enjoyed the silence. In
June, about a week after the New York University
speech, I took a crack at writing a 5,000-word
magazine-length story about Stallman. This time, the
words flowed. The distance had helped restore my lost
sense of emotional perspective, I suppose.

In July, a full year after the original email from
Tracy, I got a call from Henning. He told me that
O'Reilly & Associates, a publishing house out of
Sebastopol, California, was interested in the running
the Stallman story as a biography. The news pleased me.
Of all the publishing houses in the world, O'Reilly,
the same company that had published Eric Raymond's The
Cathedral and the Bazaar, seemed the most sensitive to
the issues that had killed the earlier e-book. As a
reporter, I had relied heavily on the O'Reilly book
Open Sources as a historical reference. I also knew
that various chapters of the book, including a chapter
written by Stallman, had been published with copyright
notices that permitted redistribution. Such knowledge
would come in handy if the issue of electronic
publication ever came up again.

Sure enough, the issue did come up. I learned through
Henning that O'Reilly intended to publish the biography
both as a book and as part of its new Safari Tech Books
Online subscription service. The Safari user license
would involve special restrictions,1 Henning warned,
but O'Reilly was willing to allow for a copyright that
permitted users to copy and share and the book's text
regardless of medium. Basically, as author, I had the
choice between two licenses: the Open Publication
License or the GNU Free Documentation License.

I checked out the contents and background of each
license. The Open Publication License (OPL)See "The Open Publication License:
Draft v1.0" (June 8, 1999).

http://opencontent.org/openpub/

 gives readers the right to reproduce and distribute a

work, in whole or in part, in any medium "physical or

electronic," provided the copied work retains the Open

Publication License. It also permits modification of a

work, provided certain conditions are met. Finally, the

Open Publication License includes a number of options,

which, if selected by the author, can limit the

creation of "substantively modified" versions or

book-form derivatives without prior author approval.

The GNU Free Documentation License (GFDL),See "The GNU Free Documentation

License: Version 1.1"

(March, 2000).

http://www.gnu.org/copyleft/fdl.html

 meanwhile, permits the copying and distribution of a

document in any medium, provided the resulting work

carries the same license. It also permits the

modification of a document provided certain conditions.

Unlike the OPL, however, it does not give authors the

option to restrict certain modifications. It also does

not give authors the right to reject modifications that

might result in a competitive book product. It does

require certain forms of front- and back-cover

information if a party other than the copyright holder

wishes to publish more than 100 copies of a protected

work, however.

In the course of researching the licenses, I also made
sure to visit the GNU Project web page titled "Various
Licenses and Comments About Them."See
http://www.gnu.org/philosophy/license-list.html On that page, I
found a Stallman critique of the Open Publication
License. Stallman's critique related to the creation of
modified works and the ability of an author to select
either one of the OPL's options to restrict
modification. If an author didn't want to select either
option, it was better to use the GFDL instead, Stallman
noted, since it minimized the risk of the nonselected
options popping up in modified versions of a document.

The importance of modification in both licenses was a
reflection of their original purpose-namely, to give
software-manual owners a chance to improve their
manuals and publicize those improvements to the rest of
the community. Since my book wasn't a manual, I had
little concern about the modification clause in either
license. My only concern was giving users the freedom
to exchange copies of the book or make copies of the
content, the same freedom they would have enjoyed if
they purchased a hardcover book. Deeming either license
suitable for this purpose, I signed the O'Reilly
contract when it came to me.

Still, the notion of unrestricted modification
intrigued me. In my early negotiations with Tracy, I
had pitched the merits of a GPL-style license for the
e-book's content. At worst, I said, the license would
guarantee a lot of positive publicity for the e-book.
At best, it would encourage readers to participate in
the book-writing process. As an author, I was willing
to let other people amend my work just so long as my
name always got top billing. Besides, it might even be
interesting to watch the book evolve. I pictured later
editions looking much like online versions of the
Talmud, my original text in a central column surrounded
by illuminating, third-party commentary in the margins.

My idea drew inspiration from Project Xanadu
(http://www.xanadu.com/), the legendary software
concept originally conceived by Ted Nelson in 1960.
During the O'Reilly Open Source Conference in 1999, I
had seen the first demonstration of the project's open
source offshoot Udanax and had been wowed by the
result. In one demonstration sequence, Udanax displayed
a parent document and a derivative work in a similar
two-column, plain-text format. With a click of the
button, the program introduced lines linking each
sentence in the parent to its conceptual offshoot in
the derivative. An e-book biography of Richard M.
Stallman didn't have to be Udanax-enabled, but given
such technological possibilities, why not give users a
chance to play around?Anybody willing to "port" this book over to Udanax, the
free software version of Xanadu, will receive
enthusiastic support from me. To find out more about
this intriguing technology, visit

http://www.udanax.com/.

When Laurie Petrycki, my editor at O'Reilly, gave me a
choice between the OPL or the GFDL, I indulged the
fantasy once again. By September of 2001, the month I
signed the contract, e-books had become almost a dead
topic. Many publishing houses, Tracy's included, were
shutting down their e-book imprints for lack of
interest. I had to wonder. If these companies had
treated e-books not as a form of publication but as a
form of community building, would those imprints have survived?

After I signed the contract, I notified Stallman that
the book project was back on. I mentioned the choice
O'Reilly was giving me between the Open Publication
License and the GNU Free Documentation License. I told
him I was leaning toward the OPL, if only for the fact
I saw no reason to give O'Reilly's competitors a chance
to print the same book under a different cover.
Stallman wrote back, arguing in favor of the GFDL,
noting that O'Reilly had already used it several times
in the past. Despite the events of the past year, I
suggested a deal. I would choose the GFDL if it gave me
the possibility to do more interviews and if Stallman
agreed to help O'Reilly publicize the book. Stallman
agreed to participate in more interviews but said that
his participation in publicity-related events would
depend on the content of the book. Viewing this as only
fair, I set up an interview for December 17, 2001 in Cambridge.

I set up the interview to coincide with a business trip
my wife Tracy was taking to Boston. Two days before
leaving, Tracy suggested I invite Stallman out to dinner.

"After all," she said, "he is the one who brought us together."

I sent an email to Stallman, who promptly sent a return
email accepting the offer. When I drove up to Boston
the next day, I met Tracy at her hotel and hopped the T
to head over to MIT. When we got to Tech Square, I
found Stallman in the middle of a conversation just as
we knocked on the door.

"I hope you don't mind," he said, pulling the door open
far enough so that Tracy and I could just barely hear
Stallman's conversational counterpart. It was a
youngish woman, mid-20s I'd say, named Sarah.

"I took the liberty of inviting somebody else to have
dinner with us," Stallman said, matter-of-factly,
giving me the same cat-like smile he gave me back in
that Palo Alto restaurant.

To be honest, I wasn't too surprised. The news that
Stallman had a new female friend had reached me a few
weeks before, courtesy of Stallman's mother. "In fact,
they both went to Japan last month when Richard went
over to accept the Takeda Award," Lippman told me at
the time.Alas, I didn't find out about the Takeda Foundation's
decision to award Stallman, along with Linus Torvalds
and Ken Sakamura, with its first-ever award for
"Techno-Entrepreneurial Achievement for Social/Economic
Well-Being" until after Stallman had made the trip to
Japan to accept the award. For more information about
the award and its accompanying $1 million prize, visit
the Takeda site, http://www.takeda-foundation.jp/.

On the way over to the restaurant, I learned the
circumstances of Sarah and Richard's first meeting.
Interestingly, the circumstances were very familiar.
Working on her own fictional book, Sarah said she heard
about Stallman and what an interesting character he
was. She promptly decided to create a character in her
book on Stallman and, in the interests of researching
the character, set up an interview with Stallman.
Things quickly went from there. The two had been dating
since the beginning of 2001, she said.

"I really admired the way Richard built up an entire
political movement to address an issue of profound
personal concern," Sarah said, explaining her
attraction to Stallman.

My wife immediately threw back the question: "What was
the issue?"

"Crushing loneliness."

During dinner, I let the women do the talking and spent
most of the time trying to detect clues as to whether
the last 12 months had softened Stallman in any
significant way. I didn't see anything to suggest they
had. Although more flirtatious than I remembered-a
flirtatiousness spoiled somewhat by the number of times
Stallman's eyes seemed to fixate on my wife's
chest-Stallman retained the same general level of
prickliness. At one point, my wife uttered an emphatic
"God forbid" only to receive a typical Stallman rebuke.

"I hate to break it to you, but there is no God,"

Stallman said.

Afterwards, when the dinner was complete and Sarah had
departed, Stallman seemed to let his guard down a
little. As we walked to a nearby bookstore, he admitted
that the last 12 months had dramatically changed his
outlook on life. "I thought I was going to be alone
forever," he said. "I'm glad I was wrong."

Before parting, Stallman handed me his "pleasure card,"
a business card listing Stallman's address, phone
number, and favorite pastimes ("sharing good books,
good food and exotic music and dance") so that I might
set up a final interview.

<Graphic file:/home/craigm/books/free_ep10.png>

Stallman's "pleasure" card, handed to me the night of
our dinner.

The next day, over another meal of dim sum, Stallman
seemed even more lovestruck than the night before.
Recalling his debates with Currier House dorm maters
over the benefits and drawbacks of an immortality
serum, Stallman expressed hope that scientists might
some day come up with the key to immortality. "Now that
I'm finally starting to have happiness in my life, I
want to have more," he said.

When I mentioned Sarah's "crushing loneliness" comment,
Stallman failed to see a connection between loneliness
on a physical or spiritual level and loneliness on a
hacker level. "The impulse to share code is about
friendship but friendship at a much lower level," he
said. Later, however, when the subject came up again,
Stallman did admit that loneliness, or the fear of
perpetual loneliness, had played a major role in
fueling his determination during the earliest days of
the GNU Project.

"My fascination with computers was not a consequence of
anything else," he said. "I wouldn't have been less
fascinated with computers if I had been popular and all
the women flocked to me. However, it's certainly true
the experience of feeling I didn't have a home, finding
one and losing it, finding another and having it
destroyed, affected me deeply. The one I lost was the
dorm. The one that was destroyed was the AI Lab. The
precariousness of not having any kind of home or
community was very powerful. It made me want to fight
to get it back."

After the interview, I couldn't help but feel a certain
sense of emotional symmetry. Hearing Sarah describe
what attracted her to Stallman and hearing Stallman
himself describe the emotions that prompted him to take
up the free software cause, I was reminded of my own
reasons for writing this book. Since July, 2000, I have
learned to appreciate both the seductive and the
repellent sides of the Richard Stallman persona. Like
Eben Moglen before me, I feel that dismissing that
persona as epiphenomenal or distracting in relation to
the overall free software movement would be a grievous
mistake. In many ways the two are so mutually defining
as to be indistinguishable.

While I'm sure not every reader feels the same level of
affinity for Stallman-indeed, after reading this book,
some might feel zero affinity-I'm sure most will agree.
Few individuals offer as singular a human portrait as
Richard M. Stallman. It is my sincere hope that, with
this initial portrait complete and with the help of the
GFDL, others will feel a similar urge to add their own
perspective to that portrait.

Appendix A : Terminology

For the most part, I have chosen to use the term
GNU/Linux in reference to the free software operating
system and Linux when referring specifically to the
kernel that drives the operating system. The most
notable exception to this rule comes in Chapter 9 . In
the final part of that chapter, I describe the early
evolution of Linux as an offshoot of Minix. It is safe
to say that during the first two years of the project's
development, the operating system Torvalds and his
colleagues were working on bore little similarity to
the GNU system envisioned by Stallman, even though it
gradually began to share key components, such as the
GNU C Compiler and the GNU Debugger.

This decision further benefits from the fact that,
prior to 1993, Stallman saw little need to insist on credit.

Some might view the decision to use GNU/Linux for later
versions of the same operating system as arbitrary. I
would like to point out that it was in no way a
prerequisite for gaining Stallman's cooperation in the
making of this book. I came to it of my own accord,
partly because of the operating system's modular nature
and the community surrounding it, and partly because of
the apolitical nature of the Linux name. Given that
this is a biography of Richard Stallman, it seemed
inappropriate to define the operating system in
apolitical terms.

In the final phases of the book, when it became clear
that O'Reilly & Associates would be the book's
publisher, Stallman did make it a condition that I use
"GNU/Linux" instead of Linux if O'Reilly expected him
to provide promotional support for the book after
publication. When informed of this, I relayed my
earlier decision and left it up to Stallman to judge
whether the resulting book met this condition or not.
At the time of this writing, I have no idea what
Stallman's judgment will be.

A similar situation surrounds the terms "free software"
and "open source." Again, I have opted for the more
politically laden "free software" term when describing
software programs that come with freely copyable and
freely modifiable source code. Although more popular, I
have chosen to use the term "open source" only when
referring to groups and businesses that have championed
its usage. But for a few instances, the terms are
completely interchangeable, and in making this decision
I have followed the advice of Christine Peterson, the
person generally credited with coining the term. "The
`free software' term should still be used in
circumstances where it works better," Peterson writes.
"[`Open source'] caught on mainly because a new term
was greatly needed, not because it's ideal."

Appendix B Hack, Hackers, and Hacking

To understand the full meaning of the word " hacker,"
it helps to examine the word's etymology over the years.

The New Hacker Dictionary , an online compendium of
software-programmer jargon, officially lists nine
different connotations of the word "hack" and a similar
number for "hacker." Then again, the same publication
also includes an accompanying essay that quotes Phil
Agre, an MIT hacker who warns readers not to be fooled
by the word's perceived flexibility. "Hack has only one
meaning," argues Agre. "An extremely subtle and
profound one which defies articulation."

Regardless of the width or narrowness of the
definition, most modern hackers trace the word back to
MIT, where the term bubbled up as popular item of
student jargon in the early 1950s. In 1990 the MIT
Museum put together a journal documenting the hacking
phenomenon. According to the journal, students who
attended the institute during the fifties used the word
"hack" the way a modern student might use the word
"goof." Hanging a jalopy out a dormitory window was a
"hack," but anything harsh or malicious-e.g., egging a
rival dorm's windows or defacing a campus statue-fell
outside the bounds. Implicit within the definition of
"hack" was a spirit of harmless, creative fun.

This spirit would inspire the word's gerund form:
"hacking." A 1950s student who spent the better part of
the afternoon talking on the phone or dismantling a
radio might describe the activity as "hacking." Again,
a modern speaker would substitute the verb form of
"goof"-"goofing" or "goofing off"-to describe the same activity.

As the 1950s progressed, the word "hack" acquired a
sharper, more rebellious edge. The MIT of the 1950s was
overly competitive, and hacking emerged as both a
reaction to and extension of that competitive culture.
Goofs and pranks suddenly became a way to blow off
steam, thumb one's nose at campus administration, and
indulge creative thinking and behavior stifled by the
Institute's rigorous undergraduate curriculum. With its
myriad hallways and underground steam tunnels, the
Institute offered plenty of exploration opportunities
for the student undaunted by locked doors and "No
Trespassing" signs. Students began to refer to their
off-limits explorations as "tunnel hacking." Above
ground, the campus phone system offered similar
opportunities. Through casual experimentation and due
diligence, students learned how to perform humorous
tricks. Drawing inspiration from the more traditional
pursuit of tunnel hacking, students quickly dubbed this
new activity "phone hacking."

The combined emphasis on creative play and
restriction-free exploration would serve as the basis
for the future mutations of the hacking term. The first
self-described computer hackers of the 1960s MIT campus
originated from a late 1950s student group called the
Tech Model Railroad Club. A tight clique within the
club was the Signals and Power (S&P) Committee-the
group behind the railroad club's electrical circuitry
system. The system was a sophisticated assortment of
relays and switches similar to the kind that controlled
the local campus phone system. To control it, a member
of the group simply dialed in commands via a connected
phone and watched the trains do his bidding.

The nascent electrical engineers responsible for
building and maintaining this system saw their activity
as similar in spirit to phone hacking. Adopting the
hacking term, they began refining it even further. From
the S&P hacker point of view, using one less relay to
operate a particular stretch of track meant having one
more relay for future play. Hacking subtly shifted from
a synonym for idle play to a synonym for idle play that
improved the overall performance or efficiency of the
club's railroad system at the same time. Soon S&P
committee members proudly referred to the entire
activity of improving and reshaping the track's
underlying circuitry as "hacking" and to the people who
did it as "hackers."

Given their affinity for sophisticated electronics-not
to mention the traditional MIT-student disregard for
closed doors and "No Trespassing" signs-it didn't take
long before the hackers caught wind of a new machine on
campus. Dubbed the TX-0, the machine was one of the
first commercially marketed computers. By the end of
the 1950s, the entire S&P clique had migrated en masse
over to the TX-0 control room, bringing the spirit of
creative play with them. The wide-open realm of
computer programming would encourage yet another
mutation in etymology. "To hack" no longer meant
soldering unusual looking circuits, but cobbling
together software programs with little regard to
"official" methods or software-writing procedures. It
also meant improving the efficiency and speed of
already-existing programs that tended to hog up machine
resources. True to the word's roots, it also meant
writing programs that served no other purpose than to
amuse or entertain.

A classic example of this expanded hacking definition
is the game Spacewar, the first interactive video game.
Developed by MIT hackers in the early 1960s, Spacewar
had all the traditional hacking definitions: it was
goofy and random, serving little useful purpose other
than providing a nightly distraction for the dozen or
so hackers who delighted in playing it. From a software
perspective, however, it was a monumental testament to
innovation of programming skill. It was also completely
free. Because hackers had built it for fun, they saw no
reason to guard their creation, sharing it extensively
with other programmers. By the end of the 1960s,
Spacewar had become a favorite diversion for mainframe
programmers around the world.

This notion of collective innovation and communal
software ownership distanced the act of computer
hacking in the 1960s from the tunnel hacking and phone
hacking of the 1950s. The latter pursuits tended to be
solo or small-group activities. Tunnel and phone
hackers relied heavily on campus lore, but the
off-limits nature of their activity discouraged the
open circulation of new discoveries. Computer hackers,
on the other hand, did their work amid a scientific
field biased toward collaboration and the rewarding of
innovation. Hackers and "official" computer scientists
weren't always the best of allies, but in the rapid
evolution of the field, the two species of computer
programmer evolved a cooperative-some might say
symbiotic-relationship.

It is a testament to the original computer hackers'
prodigious skill that later programmers, including
Richard M. Stallman, aspired to wear the same hacker
mantle. By the mid to late 1970s, the term "hacker" had
acquired elite connotations. In a general sense, a
computer hacker was any person who wrote software code
for the sake of writing software code. In the
particular sense, however, it was a testament to
programming skill. Like the term "artist," the meaning
carried tribal overtones. To describe a fellow
programmer as hacker was a sign of respect. To describe
oneself as a hacker was a sign of immense personal
confidence. Either way, the original looseness of the
computer-hacker appellation diminished as computers
became more common.

As the definition tightened, "computer" hacking
acquired additional semantic overtones. To be a hacker,
a person had to do more than write interesting
software; a person had to belong to the hacker
"culture" and honor its traditions the same way a
medieval wine maker might pledge membership to a
vintners' guild. The social structure wasn't as rigidly
outlined as that of a guild, but hackers at elite
institutions such as MIT, Stanford, and Carnegie Mellon
began to speak openly of a "hacker ethic": the
yet-unwritten rules that governed a hacker's day-to-day
behavior. In the 1984 book Hackers, author Steven Levy,
after much research and consultation, codified the
hacker ethic as five core hacker tenets.

In many ways, the core tenets listed by Levy continue
to define the culture of computer hacking. Still, the
guild-like image of the hacker community was undermined
by the overwhelmingly populist bias of the software
industry. By the early 1980s, computers were popping up
everywhere, and programmers who once would have had to
travel to top-rank institutions or businesses just to
gain access to a machine suddenly had the ability to
rub elbows with major-league hackers via the ARPAnet.
The more these programmers rubbed elbows, the more they
began to appropriate the anarchic philosophies of the
hacker culture in places like MIT. Lost within the
cultural transfer, however, was the native MIT cultural
taboo against malicious behavior. As younger
programmers began employing their computer skills to
harmful ends-creating and disseminating computer
viruses, breaking into military computer systems,
deliberately causing machines such as MIT Oz, a popular
ARPAnet gateway, to crash-the term "hacker" acquired a
punk, nihilistic edge. When police and businesses began
tracing computer-related crimes back to a few renegade
programmers who cited convenient portions of the
hacking ethic in defense of their activities, the word
"hacker" began appearing in newspapers and magazine
stories in a negative light. Although books like
Hackers did much to document the original spirit of
exploration that gave rise to the hacking culture, for
most news reporters, "computer hacker" became a synonym
for "electronic burglar."

Although hackers have railed against this perceived
misusage for nearly two decades, the term's rebellious
connotations dating back to the 1950s make it hard to
discern the 15-year-old writing software programs that
circumvent modern encryption programs from the 1960s
college student, picking locks and battering down doors
to gain access to the lone, office computer terminal.
One person's creative subversion of authority is
another person's security headache, after all. Even so,
the central taboo against malicious or deliberately
harmful behavior remains strong enough that most
hackers prefer to use the term " cracker"-i.e., a
person who deliberately cracks a computer security
system to steal or vandalize data-to describe the
subset of hackers who apply their computing skills maliciously.

This central taboo against maliciousness remains the
primary cultural link between the notion of hacking in
the early 21st century and hacking in the 1950s. It is
important to note that, as the idea of computer hacking
has evolved over the last four decades, the original
notion of hacking-i.e., performing pranks or exploring
underground tunnels-remains intact. In the fall of
2000, the MIT Museum paid tradition to the Institute's
age-old hacking tradition with a dedicated exhibit, the
Hall of Hacks. The exhibit includes a number of
photographs dating back to the 1920s, including one
involving a mock police cruiser. In 1993, students paid
homage to the original MIT notion of hacking by placing
the same police cruiser, lights flashing, atop the
Institute's main dome. The cruiser's vanity license
plate read IHTFP, a popular MIT acronym with many
meanings. The most noteworthy version, itself dating
back to the pressure-filled world of MIT student life
in the 1950s, is "I hate this fucking place." In 1990,
however, the Museum used the acronym as a basis for a
journal on the history of hacks. Titled, The Institute
for Hacks Tomfoolery and Pranks, the journal offers an
adept summary of the hacking.

"In the culture of hacking, an elegant, simple creation
is as highly valued as it is in pure science," writes
Boston Globe reporter Randolph Ryan in a 1993 article
attached to the police car exhibit. "A Hack differs
from the ordinary college prank in that the event
usually requires careful planning, engineering and
finesse, and has an underlying wit and inventiveness,"
Ryan writes. "The unwritten rule holds that a hack
should be good-natured, non-destructive and safe. In
fact, hackers sometimes assist in dismantling their own
handiwork."

The urge to confine the culture of computer hacking
within the same ethical boundaries is well-meaning but
impossible. Although most software hacks aspire to the
same spirit of elegance and simplicity, the software
medium offers less chance for reversibility.
Dismantling a police cruiser is easy compared with
dismantling an idea, especially an idea whose time has
come. Hence the growing distinction between "black hat"
and "white hat"-i.e., hackers who turn new ideas toward
destructive, malicious ends versus hackers who turn new
ideas toward positive or, at the very least,
informative ends.

Once a vague item of obscure student jargon, the word
"hacker" has become a linguistic billiard ball, subject
to political spin and ethical nuances. Perhaps this is
why so many hackers and journalists enjoy using it.
Where that ball bounces next, however, is anybody's guess.

Appendix C GNU Free Documentation License (GFDL)

GNU Free Documentation License Version 1.1, March 2000
Copyright (C) 2000 Free Software Foundation, Inc. 59
Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not
allowed. PREAMBLE The purpose of this License is to
make a manual, textbook, or other written document
"free" in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or
without modifying it, either commercially or
noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for
their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft," which means that
derivative works of the document must themselves be
free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for
manuals for free software, because free software needs
free documentation: a free program should come with
manuals providing the same freedoms that the software
does. But this License is not limited to software
manuals; it can be used for any textual work,
regardless of subject matter or whether it is published
as a printed book. We recommend this License
principally for works whose purpose is instruction or
reference. APPLICABILITY AND DEFINITIONS This License
applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be
distributed under the terms of this License. The
"Document", below, refers to any such manual or work.
Any member of the public is a licensee, and is
addressed as "you."

A "Modified Version" of the Document means any work
containing the Document or a portion of it, either
copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a
front-matter section of the Document that deals
exclusively with the relationship of the publishers or
authors of the Document to the Document's overall
subject (or to related matters) and contains nothing
that could fall directly within that overall subject.
(For example, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of
historical connection with the subject or with related
matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections

whose titles are designated, as being those of

Invariant Sections, in the notice that says that the

Document is released under this License.

The "Cover Texts" are certain short passages of text
that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is
released under this License.

A "Transparent" copy of the Document means a
machine-readable copy, represented in a format whose
specification is available to the general public, whose
contents can be viewed and edited directly and
straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or
for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in
an otherwise Transparent file format whose markup has
been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that
is not "Transparent" is called "Opaque."

Examples of suitable formats for Transparent copies
include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats
include PostScript, PDF, proprietary formats that can
be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated
HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title
page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to
appear in the title page. For works in formats which do
not have any title page as such, "Title Page" means the
text near the most prominent appearance of the work's
title, preceding the beginning of the body of the text.
VERBATIM COPYING You may copy and distribute the
Document in any medium, either commercially or
noncommercially, provided that this License, the
copyright notices, and the license notice saying this
License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever
to those of this License. You may not use technical
measures to obstruct or control the reading or further
copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If
you distribute a large enough number of copies you must
also follow the conditions in section 3.

You may also lend copies, under the same conditions
stated above, and you may publicly display copies.
COPYING IN QUANTITY If you publish printed copies of
the Document numbering more than 100, and the
Document's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back
cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The
front cover must present the full title with all words
of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too
voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the
Document numbering more than 100, you must either
include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy
a publicly-accessible computer-network location
containing a complete Transparent copy of the Document,
free of added material, which the general network-using
public has access to download anonymously at no charge
using public-standard network protocols. If you use the
latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at
least one year after the last time you distribute an
Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the
authors of the Document well before redistributing any
large number of copies, to give them a chance to
provide you with an updated version of the Document.
MODIFICATIONS You may copy and distribute a Modified
Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the
Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition,
you must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a
title distinct from that of the Document, and from
those of previous versions (which should, if there were
any, be listed in the History section of the Document).
You may use the same title as a previous version if the
original publisher of that version gives permission.

2. List on the Title Page, as authors, one or more
persons or entities responsible for authorship of the
modifications in the Modified Version, together with at
least five of the principal authors of the Document
(all of its principal authors, if it has less than five).

3. State on the Title page the name of the publisher of
the Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your
modifications adjacent to the other copyright notices.

6. Include, immediately after the copyright notices, a
license notice giving the public permission to use the
Modified Version under the terms of this License, in
the form shown in the Addendum below.

7. Preserve in that license notice the full lists of
Invariant Sections and required Cover Texts given in
the Document's license notice.

8. Include an unaltered copy of this License.

9. Preserve the section entitled "History," and its
title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no
section entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item
describing the Modified Version as stated in the
previous sentence.

10. Preserve the network location, if any, given in the
Document for public access to a Transparent copy of the
Document, and likewise the network locations given in
the Document for previous versions it was based on.
These may be placed in the "History" section. You may
omit a network location for a work that was published
at least four years before the Document itself, or if
the original publisher of the version it refers to
gives permission.

11. In any section entitled "Acknowledgements" or
"Dedications," preserve the section's title, and
preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or
dedications given therein.

12. Preserve all the Invariant Sections of the
Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered
part of the section titles.

13. Delete any section entitled "Endorsements." Such a
section may not be included in the Modified Version.

14. Do not retitle any existing section as
"Endorsements" or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter
sections or appendices that qualify as Secondary
Sections and contain no material copied from the
Document, you may at your option designate some or all
of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the
Modified Version's license notice. These titles must be
distinct from any other section titles.

You may add a section entitled "Endorsements," provided
it contains nothing but endorsements of your Modified
Version by various parties-for example, statements of
peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a
Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts
in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one
entity. If the Document already includes a cover text
for the same cover, previously added by you or by
arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do not
by this License give permission to use their names for
publicity for or to assert or imply endorsement of any
Modified Version. COMBINING DOCUMENTS You may combine
the Document with other documents released under this
License, under the terms defined in section 4 above for
modified versions, provided that you include in the
combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as
Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this
License, and multiple identical Invariant Sections may
be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different
contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of
the original author or publisher of that section if
known, or else a unique number. Make the same
adjustment to the section titles in the list of
Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections
entitled "History" in the various original documents,
forming one section entitled "History"; likewise
combine any sections entitled "Acknowledgements," and
any sections entitled "Dedications." You must delete
all sections entitled "Endorsements." COLLECTIONS OF
DOCUMENTS You may make a collection consisting of the
Document and other documents released under this
License, and replace the individual copies of this
License in the various documents with a single copy
that is included in the collection, provided that you
follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a
collection, and distribute it individually under this
License, provided you insert a copy of this License
into the extracted document, and follow this License in
all other respects regarding verbatim copying of that
document. AGGREGATION WITH INDEPENDENT WORKS A
compilation of the Document or its derivatives with
other separate and independent documents or works, in
or on a volume of a storage or distribution medium,
does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed
for the compilation. Such a compilation is called an
"aggregate," and this License does not apply to the
other self-contained works thus compiled with the
Document, on account of their being thus compiled, if
they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is
applicable to these copies of the Document, then if the
Document is less than one quarter of the entire
aggregate, the Document's Cover Texts may be placed on
covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around
the whole aggregate. TRANSLATION Translation is
considered a kind of modification, so you may
distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with
translations requires special permission from their
copyright holders, but you may include translations of
some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may
include a translation of this License provided that you
also include the original English version of this
License. In case of a disagreement between the
translation and the original English version of this
License, the original English version will prevail.
TERMINATION You may not copy, modify, sublicense, or
distribute the Document except as expressly provided
for under this License. Any other attempt to copy,
modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this
License. However, parties who have received copies, or
rights, from you under this License will not have their
licenses terminated so long as such parties remain in
full compliance. FUTURE REVISIONS OF THIS LICENSE The
Free Software Foundation may publish new, revised
versions of the GNU Free Documentation License from
time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail
to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing
version number. If the Document specifies that a
particular numbered version of this License "or any
later version" applies to it, you have the option of
following the terms and conditions either of that
specified version or of any later version that has been
published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version
number of this License, you may choose any version ever
published (not as a draft) by the Free Software
Foundation. ADDENDUM: How to Use This License for Your
Documents To use this License in a document you have
written, include a copy of the License in the document
and put the following copyright and license notices
just after the title page: Copyright (C) YEAR YOUR
NAME.Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with the
Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover
Texts being LIST. A copy of the license is included in
the section entitled "GNU Free Documentation License".
If you have no Invariant Sections, write "with no
Invariant Sections" instead of saying which ones are
invariant. If you have no Front-Cover Texts, write "no
Front-Cover Texts" instead of "Front-Cover Texts being
LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of
program code, we recommend releasing these examples in
parallel under your choice of free software license,
such as the GNU General Public License, to permit their
use in free software.

*** END OF THE PROJECT GUTENBERG EBOOK FREE AS IN FREEDOM: RICHARD STALLMAN'S CRUSADE FOR FREE SOFTWARE ***

Updated editions will replace the previous one—the old editions will
be renamed.

Creating the works from print editions not protected by U.S. copyright
law means that no one owns a United States copyright in these works,
so the Foundation (and you!) can copy and distribute it in the United
States without permission and without paying copyright
royalties. Special rules, set forth in the General Terms of Use part
of this license, apply to copying and distributing Project
Gutenberg™ electronic works to protect the PROJECT GUTENBERG™
concept and trademark. Project Gutenberg is a registered trademark,
and may not be used if you charge for an eBook, except by following
the terms of the trademark license, including paying royalties for use
of the Project Gutenberg trademark. If you do not charge anything for
copies of this eBook, complying with the trademark license is very
easy. You may use this eBook for nearly any purpose such as creation
of derivative works, reports, performances and research. Project
Gutenberg eBooks may be modified and printed and given away—you may
do practically ANYTHING in the United States with eBooks not protected
by U.S. copyright law. Redistribution is subject to the trademark
license, especially commercial redistribution.

START: FULL LICENSE

THE FULL PROJECT GUTENBERG LICENSE

PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK

To protect the Project Gutenberg™ mission of promoting the free
distribution of electronic works, by using or distributing this work
(or any other work associated in any way with the phrase “Project
Gutenberg”), you agree to comply with all the terms of the Full
Project Gutenberg™ License available with this file or online at
www.gutenberg.org/license.

Section 1. General Terms of Use and Redistributing Project Gutenberg™
electronic works

1.A. By reading or using any part of this Project Gutenberg™
electronic work, you indicate that you have read, understand, agree to
and accept all the terms of this license and intellectual property
(trademark/copyright) agreement. If you do not agree to abide by all
the terms of this agreement, you must cease using and return or
destroy all copies of Project Gutenberg™ electronic works in your
possession. If you paid a fee for obtaining a copy of or access to a
Project Gutenberg™ electronic work and you do not agree to be bound
by the terms of this agreement, you may obtain a refund from the person
or entity to whom you paid the fee as set forth in paragraph 1.E.8.

1.B. “Project Gutenberg” is a registered trademark. It may only be
used on or associated in any way with an electronic work by people who
agree to be bound by the terms of this agreement. There are a few
things that you can do with most Project Gutenberg™ electronic works
even without complying with the full terms of this agreement. See
paragraph 1.C below. There are a lot of things you can do with Project
Gutenberg™ electronic works if you follow the terms of this
agreement and help preserve free future access to Project Gutenberg™
electronic works. See paragraph 1.E below.

1.C. The Project Gutenberg Literary Archive Foundation (“the
Foundation” or PGLAF), owns a compilation copyright in the collection
of Project Gutenberg™ electronic works. Nearly all the individual
works in the collection are in the public domain in the United
States. If an individual work is unprotected by copyright law in the
United States and you are located in the United States, we do not
claim a right to prevent you from copying, distributing, performing,
displaying or creating derivative works based on the work as long as
all references to Project Gutenberg are removed. Of course, we hope
that you will support the Project Gutenberg™ mission of promoting
free access to electronic works by freely sharing Project Gutenberg™
works in compliance with the terms of this agreement for keeping the
Project Gutenberg™ name associated with the work. You can easily
comply with the terms of this agreement by keeping this work in the
same format with its attached full Project Gutenberg™ License when
you share it without charge with others.

This particular work is one of the few individual works protected
by copyright law in the United States and most of the remainder of the
world, included in the Project Gutenberg collection with the
permission of the copyright holder. Information on the copyright owner
for this particular work and the terms of use imposed by the copyright
holder on this work are set forth at the beginning of this work.

1.D. The copyright laws of the place where you are located also govern
what you can do with this work. Copyright laws in most countries are
in a constant state of change. If you are outside the United States,
check the laws of your country in addition to the terms of this
agreement before downloading, copying, displaying, performing,
distributing or creating derivative works based on this work or any
other Project Gutenberg™ work. The Foundation makes no
representations concerning the copyright status of any work in any
country other than the United States.

1.E. Unless you have removed all references to Project Gutenberg:

1.E.1. The following sentence, with active links to, or other
immediate access to, the full Project Gutenberg™ License must appear
prominently whenever any copy of a Project Gutenberg™ work (any work
on which the phrase “Project Gutenberg” appears, or with which the
phrase “Project Gutenberg” is associated) is accessed, displayed,
performed, viewed, copied or distributed:

 This eBook is for the use of anyone anywhere in the United States and most
 other parts of the world at no cost and with almost no restrictions
 whatsoever. You may copy it, give it away or re-use it under the terms
 of the Project Gutenberg License included with this eBook or online
 at www.gutenberg.org. If you
 are not located in the United States, you will have to check the laws
 of the country where you are located before using this eBook.

1.E.2. If an individual Project Gutenberg™ electronic work is
derived from texts not protected by U.S. copyright law (does not
contain a notice indicating that it is posted with permission of the
copyright holder), the work can be copied and distributed to anyone in
the United States without paying any fees or charges. If you are
redistributing or providing access to a work with the phrase “Project
Gutenberg” associated with or appearing on the work, you must comply
either with the requirements of paragraphs 1.E.1 through 1.E.7 or
obtain permission for the use of the work and the Project Gutenberg™
trademark as set forth in paragraphs 1.E.8 or 1.E.9.

1.E.3. If an individual Project Gutenberg™ electronic work is posted
with the permission of the copyright holder, your use and distribution
must comply with both paragraphs 1.E.1 through 1.E.7 and any
additional terms imposed by the copyright holder. Additional terms
will be linked to the Project Gutenberg™ License for all works
posted with the permission of the copyright holder found at the
beginning of this work.

1.E.4. Do not unlink or detach or remove the full Project Gutenberg™
License terms from this work, or any files containing a part of this
work or any other work associated with Project Gutenberg™.

1.E.5. Do not copy, display, perform, distribute or redistribute this
electronic work, or any part of this electronic work, without
prominently displaying the sentence set forth in paragraph 1.E.1 with
active links or immediate access to the full terms of the Project
Gutenberg™ License.

1.E.6. You may convert to and distribute this work in any binary,
compressed, marked up, nonproprietary or proprietary form, including
any word processing or hypertext form. However, if you provide access
to or distribute copies of a Project Gutenberg™ work in a format
other than “Plain Vanilla ASCII” or other format used in the official
version posted on the official Project Gutenberg™ website
(www.gutenberg.org), you must, at no additional cost, fee or expense
to the user, provide a copy, a means of exporting a copy, or a means
of obtaining a copy upon request, of the work in its original “Plain
Vanilla ASCII” or other form. Any alternate format must include the
full Project Gutenberg™ License as specified in paragraph 1.E.1.

1.E.7. Do not charge a fee for access to, viewing, displaying,
performing, copying or distributing any Project Gutenberg™ works
unless you comply with paragraph 1.E.8 or 1.E.9.

1.E.8. You may charge a reasonable fee for copies of or providing
access to or distributing Project Gutenberg™ electronic works
provided that:

 	• You pay a royalty fee of 20% of the gross profits you derive from
 the use of Project Gutenberg™ works calculated using the method
 you already use to calculate your applicable taxes. The fee is owed
 to the owner of the Project Gutenberg™ trademark, but he has
 agreed to donate royalties under this paragraph to the Project
 Gutenberg Literary Archive Foundation. Royalty payments must be paid
 within 60 days following each date on which you prepare (or are
 legally required to prepare) your periodic tax returns. Royalty
 payments should be clearly marked as such and sent to the Project
 Gutenberg Literary Archive Foundation at the address specified in
 Section 4, “Information about donations to the Project Gutenberg
 Literary Archive Foundation.”

 	• You provide a full refund of any money paid by a user who notifies
 you in writing (or by e-mail) within 30 days of receipt that s/he
 does not agree to the terms of the full Project Gutenberg™
 License. You must require such a user to return or destroy all
 copies of the works possessed in a physical medium and discontinue
 all use of and all access to other copies of Project Gutenberg™
 works.

 	• You provide, in accordance with paragraph 1.F.3, a full refund of
 any money paid for a work or a replacement copy, if a defect in the
 electronic work is discovered and reported to you within 90 days of
 receipt of the work.

 	• You comply with all other terms of this agreement for free
 distribution of Project Gutenberg™ works.

1.E.9. If you wish to charge a fee or distribute a Project
Gutenberg™ electronic work or group of works on different terms than
are set forth in this agreement, you must obtain permission in writing
from the Project Gutenberg Literary Archive Foundation, the manager of
the Project Gutenberg™ trademark. Contact the Foundation as set
forth in Section 3 below.

1.F.

1.F.1. Project Gutenberg volunteers and employees expend considerable
effort to identify, do copyright research on, transcribe and proofread
works not protected by U.S. copyright law in creating the Project
Gutenberg™ collection. Despite these efforts, Project Gutenberg™
electronic works, and the medium on which they may be stored, may
contain “Defects,” such as, but not limited to, incomplete, inaccurate
or corrupt data, transcription errors, a copyright or other
intellectual property infringement, a defective or damaged disk or
other medium, a computer virus, or computer codes that damage or
cannot be read by your equipment.

1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the “Right
of Replacement or Refund” described in paragraph 1.F.3, the Project
Gutenberg Literary Archive Foundation, the owner of the Project
Gutenberg™ trademark, and any other party distributing a Project
Gutenberg™ electronic work under this agreement, disclaim all
liability to you for damages, costs and expenses, including legal
fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE
TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGE.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
defect in this electronic work within 90 days of receiving it, you can
receive a refund of the money (if any) you paid for it by sending a
written explanation to the person you received the work from. If you
received the work on a physical medium, you must return the medium
with your written explanation. The person or entity that provided you
with the defective work may elect to provide a replacement copy in
lieu of a refund. If you received the work electronically, the person
or entity providing it to you may choose to give you a second
opportunity to receive the work electronically in lieu of a refund. If
the second copy is also defective, you may demand a refund in writing
without further opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth
in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO
OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied
warranties or the exclusion or limitation of certain types of
damages. If any disclaimer or limitation set forth in this agreement
violates the law of the state applicable to this agreement, the
agreement shall be interpreted to make the maximum disclaimer or
limitation permitted by the applicable state law. The invalidity or
unenforceability of any provision of this agreement shall not void the
remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
trademark owner, any agent or employee of the Foundation, anyone
providing copies of Project Gutenberg™ electronic works in
accordance with this agreement, and any volunteers associated with the
production, promotion and distribution of Project Gutenberg™
electronic works, harmless from all liability, costs and expenses,
including legal fees, that arise directly or indirectly from any of
the following which you do or cause to occur: (a) distribution of this
or any Project Gutenberg™ work, (b) alteration, modification, or
additions or deletions to any Project Gutenberg™ work, and (c) any
Defect you cause.

Section 2. Information about the Mission of Project Gutenberg™

Project Gutenberg™ is synonymous with the free distribution of
electronic works in formats readable by the widest variety of
computers including obsolete, old, middle-aged and new computers. It
exists because of the efforts of hundreds of volunteers and donations
from people in all walks of life.

Volunteers and financial support to provide volunteers with the
assistance they need are critical to reaching Project Gutenberg™’s
goals and ensuring that the Project Gutenberg™ collection will
remain freely available for generations to come. In 2001, the Project
Gutenberg Literary Archive Foundation was created to provide a secure
and permanent future for Project Gutenberg™ and future
generations. To learn more about the Project Gutenberg Literary
Archive Foundation and how your efforts and donations can help, see
Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

Section 3. Information about the Project Gutenberg Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a non-profit
501(c)(3) educational corporation organized under the laws of the
state of Mississippi and granted tax exempt status by the Internal
Revenue Service. The Foundation’s EIN or federal tax identification
number is 64-6221541. Contributions to the Project Gutenberg Literary
Archive Foundation are tax deductible to the full extent permitted by
U.S. federal laws and your state’s laws.

The Foundation’s business office is located at 809 North 1500 West,
Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up
to date contact information can be found at the Foundation’s website
and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg
Literary Archive Foundation

Project Gutenberg™ depends upon and cannot survive without widespread
public support and donations to carry out its mission of
increasing the number of public domain and licensed works that can be
freely distributed in machine-readable form accessible by the widest
array of equipment including outdated equipment. Many small donations
($1 to $5,000) are particularly important to maintaining tax exempt
status with the IRS.

The Foundation is committed to complying with the laws regulating
charities and charitable donations in all 50 states of the United
States. Compliance requirements are not uniform and it takes a
considerable effort, much paperwork and many fees to meet and keep up
with these requirements. We do not solicit donations in locations
where we have not received written confirmation of compliance. To SEND
DONATIONS or determine the status of compliance for any particular state
visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we
have not met the solicitation requirements, we know of no prohibition
against accepting unsolicited donations from donors in such states who
approach us with offers to donate.

International donations are gratefully accepted, but we cannot make
any statements concerning tax treatment of donations received from
outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation
methods and addresses. Donations are accepted in a number of other
ways including checks, online payments and credit card donations. To
donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project
Gutenberg™ concept of a library of electronic works that could be
freely shared with anyone. For forty years, he produced and
distributed Project Gutenberg™ eBooks with only a loose network of
volunteer support.

Project Gutenberg™ eBooks are often created from several printed
editions, all of which are confirmed as not protected by copyright in
the U.S. unless a copyright notice is included. Thus, we do not
necessarily keep eBooks in compliance with any particular paper
edition.

Most people start at our website which has the main PG search
facility: www.gutenberg.org.

This website includes information about Project Gutenberg™,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.

 OEBPS/5120402676123191500_5768-cover.png
Free as in Freedom: Richard Stallman’s
Crusade for Free Software

Sam Williams

ProjectGétenberg

