
    
      [image: ]
      
    

  The Project Gutenberg eBook of Time and Clocks: A Description of Ancient and Modern Methods of Measuring Time

    
This ebook is for the use of anyone anywhere in the United States and
most other parts of the world at no cost and with almost no restrictions
whatsoever. You may copy it, give it away or re-use it under the terms
of the Project Gutenberg License included with this ebook or online
at www.gutenberg.org. If you are not located in the United States,
you will have to check the laws of the country where you are located
before using this eBook.


Title: Time and Clocks: A Description of Ancient and Modern Methods of Measuring Time


Author: Sir Henry H. Cunynghame



Release date: April 13, 2017 [eBook #54546]

                Most recently updated: October 23, 2024


Language: English


Credits: E-text prepared by deaurider, Charlie Howard, and the Online Distributed Proofreading Team (http://www.pgdp.net) from page images generously made available by Internet Archive (https://archive.org)




*** START OF THE PROJECT GUTENBERG EBOOK TIME AND CLOCKS: A DESCRIPTION OF ANCIENT AND MODERN METHODS OF MEASURING TIME ***




The Project Gutenberg eBook, Time and Clocks, by Sir Henry H. (Henry
Hardinge) Cunynghame

 

 



	
      Note:
    
	
      Images of the original pages are available through
      Internet Archive. See
      
      https://archive.org/details/timeclocksdescri00cuny





 



 

 


TIME AND CLOCKS.



[Frontispiece.


NUREMBERG CLOCK. CONVERTED FROM A VERGE ESCAPEMENT

    TO A PENDULUM MOVEMENT.







TIME AND CLOCKS:

A DESCRIPTION OF ANCIENT

AND MODERN METHODS OF

MEASURING TIME.

BY

H. H. CUNYNGHAME M.A. C.B. M.I.E.E.

WITH MANY ILLUSTRATIONS.

LONDON:

ARCHIBALD CONSTABLE & CO. Ltd.

16 JAMES STREET HAYMARKET.

1906.




BRADBURY, AGNEW, & CO. LD., PRINTERS,
LONDON AND TONBRIDGE.






CONTENTS.




	 
	PAGE


	Introduction
	1


	Chapter I.
	 
	7


	Chapter II.
	 
	50


	Chapter III.
	 
	90


	Chapter IV.
	 
	123


	Appendix on the Shape of the Teeth of Wheels
	187


	Index
	199












TIME AND CLOCKS.



INTRODUCTION.

When we read the works of Homer, or Virgil,
or Plato, or turn to the later productions of Dante,
of Shakespeare, of Milton, and the host of writers
and poets who have done so much to instruct and
amuse us, and to make our lives good and agreeable,
we are apt to look with some disappointment
upon present times. And when we turn to the field
of art and compare Greek statues and Gothic or
Renaissance architecture with our modern efforts,
we must feel bound to admit our inferiority to our
ancestors. And this leads us perhaps to question
whether our age is the equal of those which have
gone before, or whether the human intellect is not
on the decline.

This feeling, however, proceeds from a failure
to remember that each age of the world has its
peculiar points of strength, as well as of weakness.
During one period that self-denying patriotism and
zeal for the common good will be developing, which
is necessary for the formation of society. During
another, the study of the principles of morality and
religion will be in the ascendant. During another
the arts will take the lead; during another, poetry,
tragedy, and lyric poetry and prose will be cultivated;
during another, music will take its turn,
and out of rude peasant songs will evolve the
harmony of the opera.

To our age is reserved the glory of being easily
the foremost in scientific discovery. Future ages
may despise our literature, surpass us in poetry,
complain that in philosophy we have done nothing,
and even deride and forget our music; but they
will only be able to look back with admiration on
the band of scientific thinkers who in the seventeenth
century reduced to a system the laws that govern
the motions of worlds no less than those of
atoms, and who in the eighteenth and nineteenth
founded the sciences of chemistry, electricity, sound,
heat, light, and who gave to mankind the steam-engine,
the telegraph, railways, the methods of
making huge structures of iron, the dynamo, the
telephone, and the thousand applications of science
to the service of man.

And future students of history who shall be
familiar with the conditions of our life will, I
think, be also struck with surprise at our estimate
of our own peculiar capabilities and faculties. They
will note with astonishment that a gentleman of the
nineteenth century, an age mighty in science, and
by no means pre-eminent in art, literature and
philosophy, should have considered it disgraceful
to be ignorant of the accent with which a Greek or
a Roman thought fit to pronounce a word, should
have been ashamed to be unable to construe a
Latin aphorism, and yet should have considered
it no shame at all not to know how a telephone was
made and why it worked. They will smile when
they observe that our highest university degrees, our
most lucrative rewards, were given for the study
of dead languages or archæological investigations,
and that science, our glory and that for which we
have shown real ability, should only have occupied
a secondary place in our education.

They will smile when they learn that we
considered that a knowledge of public affairs could
only be acquired by a grounding in Greek particles,
or that it could ever have been thought that men
could not command an army without a study of the
tactics employed at the battle of Marathon.

But the battle between classical and scientific
education is not in reality so much a dispute
regarding subjects to be taught, as between
methods of teaching. It is possible to teach classics
so that they become a mental training of the
highest value. It is possible to teach science so
that it becomes a mere enslaving routine.

The one great requirement for the education
of the future is firmly to grasp the fact that a study
of words is not a study of things, and that a man
cannot become a carpenter merely by learning the
names of his tools.

It was the mistake of the teachers of the Middle
Ages to believe that the first step in knowledge
was to get a correct set of concepts of all things,
and then to deduce or bring out all knowledge
from them. Admirable plan if you can get your
concepts! But unfortunately concepts do not exist
ready made—they must be grown; and as your
knowledge increases, so do your concepts change.
A concept of a thing is not a mere definition, it is
a complete history of it. And you must build up
your edifice of scientific knowledge from the earth,
brick by brick and stone by stone. There is no
magic process by which it can with a word be
conjured into existence like a palace in the Arabian
Nights.

For nothing is more fatal than a juggle with
words such as force, weight, attraction, mass, time,
space, capacity, or gravity. Words are like purses,
they contain only as much money as you put into
them. You may jingle your bag of pennies till they
sound like sovereigns, but when you come to pay
your bills the difference is soon discovered.

This fatal practice of learning words without
trying to obtain a clear comprehension of their
meaning, causes many teachers to use mathematical
formulæ not as mere steps in a logical chain, but
like magical chaldrons into which they put the
premises as the witches put herbs and babies’ thumbs
into their pots, and expect the answers to rise like
apparitions by some occult process that they cannot
explain. This tendency is encouraged by foolish
parents who like to see their infant prodigies appear to
understand things too hard for themselves, and look
on at their children’s lessons in mathematics like rustics
gaping at a fair. They forget that for the practical
purposes of life one thing well understood is worth
a whole book-full of muddled ill-digested formulæ.
Unfortunately it is possible to cram boys up and
run them through the examination sieves with the
appearance of knowledge without its reality. If it
were cricket or golf that were being tested how soon
would the fraud be discovered. No humbug would
be permitted in those interesting and absorbing
subjects. And really, when one reflects how easy
it is to present the appearance of book knowledge
without the reality, one can hardly blame those who
select men for service in India and Egypt a good
deal for their proficiency in sports and games.
Better a good cricketer than a silly pedant stuffed
full of learning that “lies like marl upon a barren
soil encumbering what is not in its power to
fertilize.”

Another kindred error is to expect too much of
science. For with all our efforts to obtain a further
knowledge of the mysteries of nature, we are only
like travellers in a forest. The deeper we penetrate
it, the darker becomes the shade. For science is
“but an exchange of ignorance for that which is
another kind of ignorance”A and all our analysis of
incomprehensible things leads us only to things
more incomprehensible still.


AManfred, Act II., scene iv.


It is, therefore, by the firm resolution never to
juggle with words or ideas, or to try and persuade
ourselves or others that we understand what we do
not understand, that any scientific advance can be
made.









CHAPTER I.

All students of any subject are at first apt to be
perplexed with the number and complication of the
new ideas presented to them.

The need of comprehending these ideas is felt, and
yet they are difficult to grasp and to define. Thus,
for instance, we are all apt to think we know what
is meant when force, weight, length, capacity, motion,
rest, size, are spoken of. And yet when we come
to examine these ideas more closely, we find that
we know very little about them. Indeed, the more
elementary they are, the less we are able to
understand them.

The most primordial of our ideas seem to be those
of number and quantity; we can count things, and
we can measure them, or compare them with one
another. Arithmetic is the science which deals with
the numbers of things and enables us to multiply
and divide them. The estimation of quantities is
made by the application of our faculty of comparison
to different subjects. The ideas of number and
quantity appear to pervade all our conceptions.

The study of natural phenomena of the world
around us is called the study of physics from the
Greek word φυσίς or “inanimate nature,” the
term physics is usually confined to such part of
nature as is not alive. The study of living things
is usually termed biology (from βια, life).

In the study of natural phenomena there are,
however, three ideas which occupy a peculiar and
important position, because they may be used as
the means of measuring or estimating all the rest.
In this sense they seem to be the most primitive
and fundamental that we possess. We are not
entitled to say that all other ideas are formed from
and compounded of these ideas, but we are entitled
to say that our correct understanding of physics,
that is of the study of nature, depends in no slight
degree upon our clear understanding of them. The
three fundamental ideas are those of space, time
and mass.

Space appears to be the universal accompaniment
of all our impressions of the world around us. Try
as we may, we cannot think of material bodies
except in space, and occupying space. Though we
can imagine space as empty we cannot conceive it
as destroyed. And this space has three dimensions,
length, breadth measured across or at right angles
to length, and thickness measured at right angles
to length and breadth. More dimensions than this
we cannot have. For some inscrutable reason it
has been arranged that space shall present these
three dimensions and no more. A fourth dimension
is to us unimaginable—I will not say inconceivable—we
can conceive that a world might be with space
in four dimensions, but we cannot imagine it to
ourselves or think what things would be like
in it.

With difficulty we can perhaps imagine a world
with space of only two dimensions, a “flat land,”
where flat beings of different shapes, like figures cut
out of paper, slide or float about on a flat table.
They could not hop over one another, for they would
only have length and breadth; to hop up you would
want to be able to move in a third dimension, but
having two dimensions only you could only slide
forward and sideways in a plane. To such beings
a ring would be a box. You would have to break
the ring to get anything out of it, for if you tried to
slide out you would be met by a wall in every
direction. You could not jump out of it like a sheep
would jump out of a pen over the hurdles, for to
jump would require a third dimension, which you
have not got. Beings in a world with one dimension
only would be in a worse plight still. Like
beads on a string they could slide about in one
direction as far as the others would let them.
They could not pass one another. To such a being
two other beings would be a box one on each side
of him, for if thus imprisoned, he could not get
away. Like a waggon on a railway, he could not
walk round another waggon. That would want
power of moving in two dimensions, still less could
he jump over them, that would want three.

We have not the smallest idea why our world has
been thus limited. Some philosophers think that
the limitation is in us, not in the world, and that
perhaps when our minds are free from the limitations
imposed by their sojourn in our bodies, and
death has set us free, we may see not only what is
the length and breadth and height, but a great
deal more also of which we can now form no
conception. But these speculations lead us out of
science into the shadowy land of metaphysics, of
which we long to know something, but are condemned
to know so little. Area is got by multiplying
length by breadth. Cubic content is got by
multiplying length by breadth and by height.
Of all the conceptions respecting space, that of
a line is the simplest. It has direction, and
length.

The idea of mass is more difficult to grasp than
that of space. It means quantity of matter. But
what is matter? That we do not know. It is not
weight, though it is true that all matter has weight.
Yet matter would still have mass even if its property
of weight were taken away.

For consider such a thing as a pound packet of
tea. It has size, it occupies space, it has length,
breadth, and thickness. It has also weight. But
what gives it weight? The attraction of the earth.
Suppose you double the size of the earth. The
earth being bigger would attract the package of tea
more strongly. The weight of the tea, that is, the
attraction of the earth on the package of tea, would
be increased—the tea would weigh more than
before. Take the package of tea to the planet
Jupiter, which, being very large, has an attraction
at the surface 2½ times that of the earth. Its
size would be the same, but it would feel to carry
like a package of sand. Yet there would be the
same “mass” of tea. You could make no more
cups of tea out of it in Jupiter than on earth. Take
it to the moon, and it would weigh a little over two
ounces, but still it would be a pound of tea. We are
in the habit of estimating mass by its weight, and we
do so rightly, for at any place on the earth, as London,
the weights of masses are always proportioned to
the masses, and if you want to find out what mass
of tea you have got, you weigh it, and you know for
certain. Hence in our minds we confuse mass
with weight. And even in our Acts of Parliament
we have done the same thing, so that it is difficult
in the statutes respecting standard weights to know
what was meant by those who drew them up, and
whether a pound of tea means the mass of a certain
amount of tea or the weight of that mass. For
accurate thinking we must, of course, always deal
with masses, not with weights. For so far as we
can tell mass appears indestructible. A mass is a
mass wherever it is, and for all time, whereas its
weight varies with the attractive force of the planet
upon which it happens to be, and with its distance
from that planet’s centre. A flea on this earth can
skip perhaps eight inches high; put that flea on the
moon, and with the expenditure of the same energy
he could skip four feet high. Put him on the planet
Jupiter and he could only skip 3⅕ inches high. A
man in a street in the moon could jump up into
a window on the first floor of a house. One pound
of tea taken to the sun would be as heavy as twenty-eight
pounds of it at the earth’s surface; and weight
varies at different parts of the earth. Hence the
true measure of quantity of matter is mass, not
weight.

The mass of bodies varies according to their
size; if you have the same nature of material,
then for a double size you have a double mass.
Some bodies are more concentrated than others,
that is to say, more dense; it is as though they
were more tightly squeezed together. Thus a ball
of lead of an inch in diameter contains forty-eight
times as much mass as a ball of cork an inch in
diameter. In order to know the weight of a certain
mass of matter, we should have to multiply the
mass by a figure representing the attractive force
or pull of the earth.

In physics it is usual to employ the letters of the
alphabet as a sort of shorthand to represent words.
So that the letter m stands for the mass of a body.
So again g stands for the attractive pull of the
earth at a given place. w stands for the weight of
the body. Hence then, since the weight of a body
depends on its mass and also on the attractive pull
of the earth, we express this in short language
by saying, w = m × g; or w is equal to m multiplied
by g; the symbol = being used for equality, and ×
the sign of multiplication. In common use × is
usually omitted, and when letters are put together
they are intended to be understood as multiplied.
So that this is written

w = mg.

Of course by this equation we do not mean that
weight is mass multiplied into the force of gravity,
we only mean that the number of units of weight
is to be found by multiplying the number of units
of mass into the number of units of the earth’s force
of gravity.

In the same way, if when estimating the number
of waggons, w, that would be wanted for an army of
men, n, which consumed a number of pounds, p, of
provisions a day, we might put

w = np.

But this would not mean that we were multiplying
soldiers into food to produce waggons, but only
that we were performing a numerical calculation.

Time is one of the most mysterious of our
elementary ideas. It seems to exist or not to exist,
according as we are thinking or not thinking. It
seems to run or stand still and to go fast or
slowly. How it drags through a wearisome lesson;
how it flies during a game of cricket; how it
seems to stop in sleep. If we measured time by our
own thoughts it would be a very uncertain quantity.
But other considerations seem to show us that
Nature knows no such uncertainty as regards time,
that she produces her phenomena in a uniform
manner in uniform times, and that time has an
existence independent of our thoughts and wills.

The idea of a state of things in which time
existed no more was quite familiar to mediæval
thinkers, and was regarded by many of them as
the condition that would exist after the Day of
Judgment. In recent times Kant propounded the
theory that time was only a necessary condition of
our thoughts, and had no existence apart from
thinking beings—in fact, that it was our way of
looking at things.

Scientifically, however, we are warranted in
treating time as perfectly real and capable of the
most exact measurement. For example, if we
arrange a stream of sand to run out of an orifice,
and observe how much will run out while an egg is
being boiled hard, we find as a fact that if the
same quantity of sand runs out, the state of the
egg is uniform. If we walk for an hour by a watch,
we find that we can go half the distance that we
should if we walked two hours. It is the correspondence
of these various experiments that gives
us faith in the treatment of time as a thing
existing independently of ourselves, or, at all events,
independent of our transient moods.

The ideas of time acquired by the races of men
that first evolved from a state of barbarism were
no doubt derived from the observation of day and
night, the month and the year.
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For, suppose that a shepherd were on the plains
of Chaldea, or perhaps on those mountains of India
known as the roof of the world, which according to
some archæologists was the site of the garden of
Eden and the early home of the European race,
what would he see?

He would see the sun rise in the east, slowly
mount the heavens till it stood over the south at
middle day, then it would sink towards the west
and disappear. In summer the rising point of the
sun would be more to the northward than in
winter, and so also would be its point of setting A´.
In winter it would rise a little to the south of east,
and set a little to the south of west, and not rise
so high in the heavens at midday, so that the
summer day would be longer than the winter day.
If the day were always divided into twelve hours,
whether it were long or short, then in summer the
hours of the day would be long; in winter they
would be short. This mode of dividing the day
was that used by the Greeks. The Egyptians, on
the other hand, averaged their day by dividing the
whole round of the sun into twenty-four hours, so
that the summer day contained more hours than
the winter day. Hence, for the Egyptians, sun-rise
did not always take place at six o’clock. For in
winter it took place after six, and in summer before
six; and this is the system that has descended
to us.

The moon also would rise at different places,
varying between A and B, and set at places varying
between A´ and B´, but these would be independent
of those at which the sun rose and set.

Moreover, the moon each day would appear to
get further and further away from the sun in the
direction of the arrow, as shown in the sketch. If
the moon rose an hour after the sun on one day,
the next day it would rise more than two hours
after the sun, and so on. This delay in rising of
the moon would go on day by day till at last she
came right round to the sun again, as shown at M´.
And in her path she would change her form from
a crescent, as at M, up to a full moon, when she
would be half way round from the sun, that is,
when she would rise twelve hours after him, or
just be rising as the sun set. This delay and
accompanying change of form would go on, till
after three weeks she would have got round to a
position A´, when she would rise eighteen hours
after the sun, and have become a crescent with her
back to the sun; in fact, she would always turn her
convex side to the sun. At length, when twenty-eight
days had passed, she would be round again
about opposite to the sun, and consequently her
pale light would be extinguished in his beams, and
she would gradually reappear as a new moon on the
other side of him. This series of changes of the
moon takes place once every twenty-eight days, and
is called a lunar or “moon” month, and was used
as a division of time by very early nations. The
changes of the seasons recurred with the changes
in the times of rising of the sun, and took a year to
bring about. And there were nearly thirteen moon
changes in the year.

It was also observed that during its cycle of
changes, the sun was slowly moving round backwards
among the stars in the same direction as the
moon, only it made its retrograde cycle in a year,
and thus arose the division of time into months
and years. The stars turned round in the heavens
once in the complete day. The sun, therefore,
appeared to move back among them, passing successively
through groups of stars, so as to make
the circuit of them all in a year. The stars through
which he passed in a year, and through which the
moon travelled in a month, were divided by the
ancients into groups called constellations, and its
yearly path in the heavens was called the zodiac.
There were twelve of these constellations in the
zodiac called the signs. Hence, then, the sun
passed through a sign in every month, making
the tour of them all in the year. To these
signs fanciful names were given, such as “the
Ram,” “the Water-bearer,” “the Virgin,” “the
Scorpion,” and so on, and the sun and moon were
then said to pass through the signs of the zodiac.

Hence, since the path of the sun marked the
year, you could tell the seasons by knowing what
sign of the zodiac the sun was in. The age of the
moon was easily known by her form.

When the winter was over, then, just as the sun
set the dog star would be rising in the east, and
this would show that the spring was at hand.
Then the peasants prepared to till the earth and
sow the seed and lead the oxen out to pasture, and
celebrated with joyful mirth the glad advent of the
spring, corresponding to our Easter, when the sun
had run through three constellations of the zodiac.
Then came the summer heat, and with many a
mystic rite they celebrated Midsummer’s Day. In
autumn, after three more signs of the zodiac
have been traversed by the sun, the sun again
rises exactly in the east and sets in the west,
and the days and nights are equal. This is the
autumnal equinox, and was once celebrated by the
feast which we now know as Michaelmas Day, and
the goose is the remnant of the ancient festival.
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And the great winter feast of the ancients is now
known to us as Christmas, and chosen to celebrate
the birth of our Lord; for when Christianity came
into the world and the heathens were converted,
the old feast days were deliberately changed into
Christian festivals.

To us, therefore, the whole heavens, and the fixed
stars with them, appear to turn from east to west,
or from left to right, as we look towards the south,
as shown by the big arrow. But the moon and sun,
though apparently placed in the heavens, move
backwards among the fixed stars, as shown by the
small arrows. The sun moves at such a rate that
he goes round the circle of the heavens in a year of
three hundred and sixty-five days. The moon goes
round the circle in twenty-eight and a half days,
or a lunar month. Of course, in reality the sun is
at rest, and it is the earth that moves round the
sun and spins on its axis as it moves. But it will
presently be shown that the appearance to a person
on the earth is the same whether the earth goes
round the sun or the sun round the earth.

From the works of Greek writers we know a good
deal about the ideas of the world that were entertained
by the ancients. The most early notions
were, of course, connected with the worship of the
gods. The sun was considered as a huge light
carried in a chariot, driven by Apollo, with four
spirited steeds. It descended to the ocean when
the day declined, and then the horses were unyoked
by the nymphs of the ocean and led round
to the east, so as to be ready for the journey of the
following day. The Egyptians figured the sun as
placed in a boat which sailed over the heavens.
At night the sun god descended into the infernal
regions, carrying with him the souls of those who
had died during the day. There they passed through
different regions of hell, with portals guarded by
hideous monsters. Those who had well learned the
ritual of the dead knew the words of power wherewith
to appease the demons. Those unprovided with
the watchwords were subjected to terrible dangers.
Then the soul appeared before Minos, and was
weighed and dealt with according to its deserts.
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The earth was considered as a huge island in the
midst of a circular sea. Gradually, however, astronomical
ideas became subjected to science. One of
the first truths that dawned on astronomers was
the fact that the earth was a sphere. For they
noticed that as people went further and further to
the north, the elevation of the sun at midday
above the horizon became smaller and smaller.
This can easily be seen from the diagram. When
an observer is at A the sun appears at an altitude
above the horizon equal to the angle α, but as
he goes along the curved surface of the earth to a
point B nearer to the north pole, the sun appears
to be lower and only to have an altitude β. From
this it was easy for men so skilled in geometry as
the Greeks to calculate how big the earth was.
They did so, and it appeared to have the enormous
diameter of 8,000 miles. They only knew quite a
small portion of it. They thought that the rest
was ocean. But they had, of course, a clear idea
of the “antipodes” or up-side-down side of it, and
they believed that if men were on the other side
of it that their feet must all point towards its
centre. From this they got the idea of the centre
of the earth as a point of attraction for all things
that had an earth-seeking or earthy nature.
Fire appeared always to desire to go upwards, so
they thought that fire had an earth-repellent,
heaven-seeking character. Water they thought
partly earth-seeking, partly heaven-seeking, for it
appeared in the ocean or floated as clouds. Air
they thought to be indifferent. And out of the four
elements fire, water, earth, and air they believed
the world was made. The earth they thought must
be at rest; for if it was in motion things would fly
off from it. They saw that either the sun must be
moving round the earth, or else the earth must be
turning on its axis. They chose the former hypothesis,
because they argued that if the earth were
twisting round once in twenty-four hours then such
a country as Greece must be flying round like a
spot on the surface of a top, at the rate of about
18,000 miles in twenty-four hours, that is, at the
rate of about 180 yards in a second, or faster than
an arrow from a bow. But if that was the case
then a bird that flew up from the earth would be
left far behind. If a ball were thrown up it would
fall hundreds of yards behind the person who
threw it. They could not conceive how it was possible
for a ball thrown up by someone standing on
a moving object not to fall behind the thrower.

This decided them in their error. The mistaken
astronomy of the Greeks was also much forwarded
by Aristotle, the tutor of Alexander the Great. This
great genius in politics and philosophy was only in
the second rank as a man of science, and, as I think,
hardly equal to Archimedes or Hipparchus, or
even to Ptolemy. Aristotle wrote a book concerning
the heavens which bristles with the most wantonly
erroneous scientific ideas, such as, for instance, that
the motion of the heavenly bodies must be circular
because the most perfect curve is a circle, and
similar assumptions as to the course of nature.

The earth, then, being fixed, they thought that
the moon, the sun, and the seven planets were carried
round it, fixed each of them in an enormous
crystal spherical shell. These spheres, like coats of
an onion, slid round one upon another, each carrying
his celestial luminary. The moon was the
nearest, then Mercury, then Venus, then the sun,
then Mars, Jupiter and Saturn. Outside them was
the sphere of the stars, and outside all the
“primum mobile,” or great Prime Mover of the
universe. When one of the celestial bodies, such
as the moon, got in front of another, such as the
sun, there was an eclipse. They soon observed that
the moon derived its light from the sun. As they
knew the size of the earth, by comparison they got
some vague idea of the huge distances that the
heavenly bodies must be from us. In fact, they
measured the distance of the moon with approximate
accuracy, making it 240,000 miles, or about
thirty times the earth’s diameter.

This, of course, gave them the moon’s diameter,
for they were easily able to calculate how big an
object must be, that looks as big as the moon and is
240,000 miles away.

This large size of the moon gave them some idea of
the distance of the sun, but they failed to realise
how big and far away he really is.

Several ancient nations used weeks as means of
measuring time. They made four weeks to the
lunar month. The order of the days was rather
curiously arranged. For, assuming that the earth
is the centre of the planetary system, put the
planets in a column, putting the nearest (the moon)
at the bottom and the furthest off at the top—



Saturn,

Jupiter,

Mars,

The Sun,

Venus,

Mercury,

The Moon.






Then divide the day into three watches of eight
hours each, and let each watch be presided over by
one of the planet-gods: begin with Saturn. We
then have Saturn as the first god ruling Saturday,
and Jupiter and Mars, the two other gods, for that
day. The first watch for Sunday will be the sun;
Venus and Mercury will preside over the next two
watches of that day. The planet that will preside
over the first watch of the next day will be the
moon, and the day will, therefore, be called Monday;
Saturn and Jupiter will be the other gods for Monday.
The first watch of the next day will be presided
over by Mars, and the day will, therefore, be
called Mars-day or Mardi, or, in the Teutonic languages,
Tuesday, after Tuesco, a Scandinavian god
of war. Mercury will give a name to Mercredi, or
to Wednesday, or Wodin’s-day. Jupiter to Jeudi,
or “Thurs” day. Venus to Vendredi, or in the
Scandinavian, Friday, the day of the Scandinavian
goddess Freya, the goddess of love and beauty, who
corresponds to Venus, and thus the week is
completed.
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This weekly scheme came probably from the
Chaldean astronomers. It appears probable that
the great tower of Babel, the ruins of which exist
to this day, consisted of seven stages, one over the
other, the top one painted white, or perhaps purple,
to represent the Moon, the next lower blue for
Mercury, then green for Venus, yellow for the Sun,
red for Mars, orange for Jupiter, and black for
Saturn. Unfortunately, of the colours no trace
now remains.

But nightly on the long terraces the Babylonian
priests observed eclipses and other celestial phenomena.
Their records were afterwards taken to
Alexandria and kept in the great library that was
subsequently burned by the Turks. In that library
they were seen by the astronomer Ptolemy, who
used them in the writing of his work on astronomy
called the “Great Syntaxis” or “Collection.” The
original work perished, but it had been translated
into Arabic by the Arab astronomers, who called
it “Al Magest,” the Great Book. It was translated
from Arabic into Latin, and remained the textbook
for astronomers in Europe quite down to the
time of Queen Elizabeth, when a better system
took its place.

For the use of men engaged in practical astronomy,
it is very convenient to consider the sun,
moon, stars, and planets as going round the earth
at rest. For instance, seamen use the heavenly
bodies as in a way hands of a huge clock from
which they can know the time and their position
on the earth. “The Nautical Almanac,” which is
printed yearly, gives the true position of these
heavenly bodies for every hour, minute, and second
of the year, and I will presently show how useful
this is to sailors.

We will deal with the sun first. From the
motions of the sun we can observe the time.
This is done in every garden by means of sun-dials,
and I will now describe how they are constructed.
If a light, such as the light of a candle, be moved
round in a circle at a uniform pace so as to go
round once in some given period, such as twenty-four
hours, it is obvious that it would serve to
measure time. Thus, for example, if a sheet of
white paper be placed upon the table, and a pencil
be stuck on to it upright with some sealing wax, or
a pen propped up in an ink-pot, then a candle
held by anyone will cast the shadow of the pen on
the paper.
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If the person holding the candle walk round the
table at a uniform speed, the shadow will go round
like the hand of a clock, and might be made to
mark the time. If the candle took twenty-four hours
to go round the table, as the sun takes twenty-four
hours to go round the earth, then marks placed on
the paper would serve to measure the hours, and
the paper and pen would serve as a sort of sun-dial.

But the sun does not go round the earth as the
candle round the table. Its path is an inclined
one, like that shown by the dotted line. Sometimes
it is above the level of the table, sometimes below
it. And, moreover, its winter path is different from
its summer path. Whence then it follows that the
hour-marks on the paper cannot be put equidistant
like the hours on the dial of a clock, and that some
arrangement must be made so that the line as
shown by the summer sun shall correspond with
the time as shown by the winter sun.
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Let us suppose that N O S is the axis of the
heavens, and the lines N A S, N B S, N C S, are
meridian lines drawn from one of the poles N of the
heavens round on the surface of a celestial sphere
whose centre is at O. Let A B C be a circle also
on this sphere, passing through O, the centre of
the sphere, in a plane at right angles to N S, the
axis. Then A B C is called the equatorial. It is a
circle in the heavens corresponding to the equator
on the earth. At the vernal and autumnal equinox,
namely on March 25 and September 25, the sun
is in the equatorial. In midsummer and midwinter
it is on opposite sides of the equatorial.
In midsummer it is nearer to N, as at V; in midwinter
it is nearer to S, as at W. Suppose we
were on an island in the midst of a surrounding
ocean, we should only have a limited range of
view. If the highest point on the island were 100
feet, then from that altitude we should be able to
see about thirteen miles to the horizon. More
than that could not be seen on account of the
rotundity of the earth.

Let us suppose then such an island surrounded
for thirteen miles distant on every side by an ocean,
and let us consider what would be the apparent
motions of the sun when seen from such an island.
At the vernal and autumnal equinoxes, when the sun
is on the equatorial, it would appear to rise out of
the ocean at a point E, due east; it traverses half the
equatorial and sets in the ocean at a point W, due
west. The day is twelve hours long, from 6 a.m.
to 6 p.m.
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In summer the sun is higher, and nearer to the
pole N, say at a point s. It rises at a point a in
the ocean more to the north than E, the eastern
point, and sets at a point b, also more north than
W, the western point, and traverses the path a s b.
But to traverse this path it takes longer than
twelve hours, for a s b is more than half the circle
a s b. Hence then it rises say at 4.30 a.m. and sets
at 7.30 p.m. The night, during which the sun moves
round the path from b to a, is correspondingly
short, being only nine hours in length, from 7.30
p.m. till 4.30 a.m. So you have a long summer
day and a short summer night. But in winter,
when the sun gets nearer to the south pole of
the heavens, it rises at a point C in the ocean at
7.30 a.m., and traverses the arc c t d, and sets at
the point d at 4.30 p.m. So that the winter day is
only nine hours long. But the winter night lasts
from 4.30 p.m. till 7.30 a.m., and is therefore
fifteen hours long, the sun going round the path
d r c in the interval. It is therefore the obliquity
of the poles N S, coupled with the fact that the
sun’s position is nearer to one pole, N, in summer,
and nearer to the other pole, S, in winter, that
produces the inequality of days and nights in our
latitudes. Suppose our island were on the equator.
The north pole and the south pole would appear to
be on the horizon, and then whether the sun moved
in the circle a s b in the summer, or E S W at the
vernal or autumnal equinoxes, or c t d in the winter,
in each of these cases, though the places of rising
and setting in the ocean might vary in summer
from a and b to c and d in winter, yet in each of
these cases the path from a to b, A to B, and c to d
would still always be a half-circle and occupy
twelve hours. Hence at the equator the days and
nights never vary in length, but the sun always
rises at six and sets at six. And, besides, it always
rises straight up from the ocean and plunges down
vertically into it, so that there is but little twilight
and dawn.
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But now let us suppose we were living at the
north pole. In this case the north pole would be
directly overhead, the south pole directly under
our feet. At the vernal and autumnal equinoxes
the sun would appear with half its disc above the
ocean, and go round the ocean horizon, always
appearing with half its disc above the sea. In
summer it would appear at a point s nearer to the
pole N. It would go round in the heavens, always
appearing above the horizon, and would never set
at all. As the summer waned the sun would
become lower and lower, still, however, going round
and round without setting till at the autumn
equinox it reached the horizon. So that for six
months it would never have set. But when it did
set, there would then be six months without a
sun at all.
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Thus then all over the world the period of darkness
and light is equivalent. At the tropics the
days and nights are always equal. At the poles
light for six months is followed by darkness for six
months. In the intermediate temperate regions
nights of varying lengths follow days of varying
lengths, a short night following a long day and
vice versâ.
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It is evident that for a person living on the
north pole a sun-dial would be an easy thing to
make. All that would be needful would be to put
a post vertically in the ground, and observe its
shadow as the sun
went round (Fig. 10).
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In latitudes such as
that of England, where
the pole of the earth
is inclined at an angle
to the horizon, it is
necessary that the rod,
or “style” as it is
called, of the sun-dial should be inclined to the
horizontal. For if we used an upright “style,” as
O A, then when the sun was in the south, at midday,
the shadow would lie along the same direction,
O B, whether the sun
were high in summer,
as at S, or low in
winter, as at s. But
at other hours, such
as nine o’clock in the
morning, the shadow of
the “style” O A would,
when the sun was at its summer position T, lie
along O D, whereas when the sun was at its winter
position t the shadow would lie along O C. Thus
the time would appear different in summer and in
winter; and the dial would lead to errors. But if
the “style” is inclined in the direction of the poles,
then, however, the sun moves from or towards the
pole. As its position varies in winter and summer,
the shadow still remains unchanged for any particular
hour, and it is only the circular motion of
the sun round in its daily path that affects the
position of the shadows.
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Therefore the first condition of making a sun-dial
is that the “style” which
casts the shadow should be
parallel to the earth’s axis,
that is to say should point
to the polar star. This is
the case whether the sun-dial
is horizontal or is
vertical, and whether it
stands on a pillar in the
garden or is attached to the wall of a house.

To divide the dial, we have only to imagine it
surrounded by a sort of cage formed of twenty-four
arcs drawn from the north pole to the south
pole, and equidistant from one another. In its
course the sun would cross one of them every
hour. Hence the points to which the shadows
o a, o b, o c, o d, of the inclined “style” O N would
point are the points where these arcs meet the
horizontal circle. This consideration leads to a
simple method of constructing a sun-dial, which
is given at the end of this chapter in an
appendix.

Sun-dials were largely in use in ancient times. It
is thought that the circular rows of stones used by
the Druids were used to mark the sun’s path, and
indicate the times and seasons. Obelisks are also
supposed to have been used to cast sun-shadows.
The Greeks were perfectly acquainted
with the method of
making sun-dials with inclined
“styles,” or “gnomons.”
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Small portable sun-dials were
once much used before the introduction
of watches, and were
provided with compasses by
which they could be turned
round, so that the “style”
pointed to the north.

Sun-dials were only available
during the hours of the day
when the sun was shining. The desire to mark
the hours of the night led to the adoption of
water clocks, which measured time by the amount
of water which escaped from a small hole in a level
of water. Some care, however, is required to
secure correct registration. For suppose that we
have a vessel with a small pipe leading out near the
bottom, then the amount of water which will run out
of the pipe in a given time depends upon the pressure
of the water at the pipe, and this depends in its turn
upon P Q, the head of water in the vessel. Whence
it follows that the division Q R, due to say an hour’s
run of the clock at Q R, will be more than q r,
the division corresponding to an hour, at q, a point
lower down between P and Q, and hence the
divisions marked on the vessel to show the hours
by means of the level of the water would be uneven,
becoming smaller and smaller as the water fell in
the vessel.

To avoid the inconvenience of unequal divisions,
the water to be measured was allowed to escape into
an empty vessel from a vessel in which its surface
was always kept at a constant level. Inasmuch as
the pressure on the pipe or orifice in the vessel in
which the water was always kept at a constant
level was always constant, it followed that equal
volumes of water indicated equal times, and the
vessel into which the water fell needed only to be
equally divided.

As a measure of hours of the day in countries
such as Egypt, where the hours were always equal,
and thus where the longer days contained more
hours, the water clock was very suitable; but in
Greece and Rome, where the day, whatever its
length, was always divided into twelve hours, the
simple water clock was as unsuitable as a modern
clock would be, for it always divided the hours
equally, and took no account of the fact that by
such a system the hours in summer were longer
than in winter.

In order, therefore, to make the water clock
available in Greece and Italy, it became necessary
to make the hours unequal, and to arrange them to
correspond with unequal hours of the Greek day.
This plan was accomplished as follows. Upon the
water which was poured into the vessel that
measured the hours was placed a float; and on
the float stood a figure made of thin copper, with
a wand in its hand. This wand pointed to an unequally
divided scale. A separate scale was provided
for every day in the year, and these scales were
mounted on a drum which revolved so as to turn
round once in the year. Thus as the figure rose
each day by means of a cogwheel it moved the drum
round one division, or one three hundred and sixty-fifth
part of a revolution. By this means the scale
corresponding to any particular day of winter or
summer was brought opposite the wand of the figure,
and thus the scale of hours was kept true. In fact,
the water clock, which kept true time, was made by
artificial means to keep untrue time, in order to
correspond with the unequal hours of the Greek
days. In the picture A is the receiving water
vessel, P the pipe through which the water flows; B
is the figure, C the rod; D is the drum, made to
revolve by the cogwheel E, containing 365 teeth, of
which one tooth was driven forward at the close of
each day. A syphon G was fixed in the vessel A, so
that when the figure had risen to the top and pushed
forward the lever F, the syphon suddenly emptied
the vessel through the pipe H, and the figure fell
to the bottom of the vessel A and became ready to
rise and register another day. The divisions on the
drum are, of course, uneven. On one side, corresponding
to the summer, the day hours would
reckon about seventy minutes each, the night hours
would be only about fifty minutes each, so that the
day divisions on the scale would be long, and the
night divisions short. The reverse would be the
case in winter. And, therefore, the lines round the
drum would go in an uneven wavy form.
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Such water clocks as these were used by the
ancient Romans.

Sand was also used to measure time. As soon as
the art of blowing glass had been perfected by the
people of Byzantium, from whom the art passed to
the Venetians, sand-glasses were made. These
glasses were used for all sorts of purposes, for
speeches and for cooking, but their most important
use was at sea. For it was very important in the
early days of navigation to know the speed at
which the vessel was proceeding in order that one’s
place at sea might be calculated. The earliest
method was to throw over a heavy piece of wood of
a shape that resisted being dragged through the
water, and with a string tied to it. The block of
wood was called the log, and the string had knots
in it. The knots were so arranged that when one
of them ran through one’s fingers in a half-minute
measured by a sand-glass it indicated that the
vessel was going at the speed of one nautical mile in
an hour. The nautical mile was taken so that sixty
of them constituted one degree, that is one three
hundred and sixtieth part of a great circle of the
earth. Each nautical mile has, therefore, 6,080 feet.
This is bigger than an ordinary mile on land, which
has only 5,280 feet. The knots, therefore, have to be
arranged so that when the ship is going one nautical
mile—that is to say, 6,080 feet—in an hour, a knot
shall run out during the half-minute run of the
minute glass. This is attained by putting the knots
1/120 × 6,080 = 50 feet 7 inches apart. As one sailor
heaved the log over he gave a stamp on the deck
and allowed the cord to run out through his fingers.
Another sailor then turned the sand-glass. When
the sand had all run out, showing that half a minute
had passed, the man who was letting the cord run
through his fingers gripped it fast, and observed
how many knots or parts of knots of string had
run out, and thus was able to tell how many
“knots” per half-minute the vessel was going,
that is to say, how many nautical miles an hour.

The modern plan of observing the speed of vessels
is different. Now we use a patent log, consisting
of a miniature screw propeller tied to a string and
dragged through the water after the vessel. As it
is pulled through the water it revolves, and the
number of revolutions it makes shows how much
water it has passed through, and thus what distance
it has gone. The number of revolutions is measured
by a counting mechanism, and can be read off when
the log is pulled in. Or sometimes the screw is
attached to a stiff wire, and the counting mechanism
is kept on board the ship.

We use the expression “knots an hour” quite
incorrectly. It should be “knots per half-minute,”
or “nautical miles an hour.”

It is easy to use the flow of sand for all sorts of
purposes to measure time. Thus, if sand be allowed
to flow from a hopper through a fine hole into a
bucket, the bucket may be arranged so that when
a given time has elapsed, and a given weight of sand
has therefore fallen, the bucket shall tip over, and
release a catch, which shall then allow a weight to
fall and any mechanical operation to be done that is
required. Thus, for example, we might put an egg
in a small holder tied to a string and lower it into
a saucepan of boiling water. The string might have
a counter-weight attached to it, acting over a pulley
and thus always trying to pull it up out of the
water. But this might be prevented by a pin passing
through a loop in the string and preventing it
moving. A hopper or funnel might be filled with
sand which was allowed gradually to escape into a
small tip-waggon or other similar device, so that
when a given amount of sand had entered the tip-waggon
would tip over, lurch the pin out of the
loop, and thus release the weight, which in its turn
would pull the egg up out of the water in three
minutes or any desired time after it had been put
in, or a hole could be made in the saucepan, furnished
with a little tap, and the water that ran out
might be made to fall into a tip-waggon and tip it
over, and thus when it had run out to put an
extinguisher on to the spirit lamp that was heating
the saucepan, and at the same time make a contact
and ring an electric bell. By this means the egg
would be always exactly cooked to the right amount,
would be kept warm after it was cooked, and a signal
given when it was ready.
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The sketch shows such an arrangement. The
saucepan is about three inches in diameter and two
inches high. When filled with water it will hold
an egg comfortably. The extinguisher E, mounted
on a hinge Q, is turned back, and the spirit lamp
L is lit. As soon as the water boils, the tap T is
turned, and the water gradually trickles away into
the tip-waggon. As soon as it is full it tips over
and strikes the arm X of the extinguisher, and turns
the lamp out. The little hot water left in the
saucepan will keep the egg warm for some time.
The waggon W must have a weight P at
one end of it, and the fulcrum must be
nearer to that end, so that when empty it
rests with the end P down, but when full
it tips over on the fulcrum, when the
waggon has received the right quantity of
water. I leave to the ingenious reader the
task of working out the details of such a
machine, which, if made properly, will act
very well and may be made for a number
of eggs and worked with very little trouble.
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Mercury has been used also as an hour-glass.
The orifice must be exceedingly fine. Or a bubble
of mercury may be put into a tube which contains
air, and made gradually as it falls to drive the air
out through a minute hole. The difficulty is to get
the hole fine enough. All that can be done is to
draw out a fine tube in the blow-lamp, break it off,
and put the broken point in the blow-lamp until it
is almost completely closed up. A tube may thus
be made about twelve inches long that will take
twelve hours for a bubble of mercury to descend in
it. But the trouble of making so small a hole is
considerable.
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King Alfred is said to have used candles made of
wax to mark the time. As they blew about with
the draughts, he put them in lanterns of horn.
They had no glass
windows in those days,
but only openings
closed with heavy
wooden shutters. These
large shutters were for
use in fine weather.
Smaller shutters were
made in them, so as to
let a little light in in
rainy weather without
letting in too much
wind and rain.

Rooms must then
have been very
draughty, so that people
required to wear caps and gowns, and beds had
thick curtains drawn round them. When glass
was first invented it was only used by kings and
princes, and glass casements were carried about with
them to be fixed into the windows of the houses to
which they came, and removed at their departure.

Oil lamps were also used to mark the time.
Some of them certainly as early as the fifteenth
century were made like bird-bottles; that is to say,
they consisted of a reservoir closed at the top with
a pipe leading out of the bottom. When full, the
pressure of the external atmosphere keeps the oil
in the bottle, and the oil stands in the neck and
feeds the wick. As the oil is consumed bubbles of
air pass back along the neck and rise up to the top
of the oil, the level of which gradually sinks. Of
course the time shown by the lamp varies with the
rate of burning of the oil, and hence with the size
of the wick, so that the method of measuring time
is a very rough one.

Appendix.

To make a sun-dial, procure a circular piece of
zinc, about ⅛ inch thick, and say twelve inches in
diameter. Have a “style” or “gnomon” cast such
that the angle of its edge equals the latitude of the
place where the sun-dial is to be set up. This for
London will be equal to 51° 30´´. A pattern may be
made for this in wood; it should then be cast in
gun-metal, which is much better for out-of-door
exposure than brass. On a sheet of paper draw a
circle A B C with centre O. Make the angle
B O D equal to the latitude of the place for London
= 51° 30´´. From A draw A E parallel to O B to
meet O D in E, and with radius O E describe
another circle about O. Divide the inner circle
A B C into twenty-four parts, and draw radii
through them from O to meet the larger circle.
Through any divisions (say that corresponding to
two o’clock) draw lines parallel to O B, O C, respectively
to meet in a. Then the line O a is the
shadow line of the gnomon at two o’clock. The
lines thus drawn on paper may be transferred
to the dial and engraved
on it, or else
eaten in with acid
in the manner in
which etchings are
done.
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The centre O need
not be in the centre
of the zinc disc, but
may be on one side
of it, so as to give
better room for the hours, etc. A motto may be
etched upon the dial, such as “Horas non numero
nisi serenas,” or “Qual ’hom senza Dio, son senza
sol io,” or any suitable inscription, and the dial is
ready for use. It is best put up by turning it
till the hour is shown truly as compared with a
correctly timed watch. It must be levelled with
a spirit level. It must be remembered that the
sun does not move quite uniformly in his yearly
path among the fixed stars. This is because he
moves not in a circle, but in an ellipse of which
the earth is in one of the foci. Hence the hours
shown on the dial are slightly irregular, the sun
being sometimes in advance of the clock, sometimes
behind it. The difference is never more than a
quarter of an hour. There is no difference at
midsummer and midwinter.
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Civil time is solar time averaged, so as to make the
hours and days all equal. The difference between
civil time and apparent solar time is called the
equation of time, and is the amount by which the
sun-dial is in advance of or in retard of the clock.
In setting a dial by means of a watch, of course
allowance must be made for the equation of time.









CHAPTER II.

In the last chapter a short description has been
given of the ideas of the ancients as to the nature
of the earth and heavens. Before we pass to the
changes introduced by modern science, it will be
well to devote a short space to an examination of
ancient scientific ideas.

All science is really based upon a combination
of two methods, called respectively inductive and
deductive reasoning. The first of these consists in
gathering together the results of observation and
experiment, and, having put them all together, in
the formulation of universal laws. Having, for
example, long observed that all heavy things
tended to go towards the centre of the earth,
we might conclude that, since the stars remain up
in the sky, they can have no weight. The conclusion
would be wrong in this case, not because
the method is wrong, but because it is wrongly
applied. It is true that all heavy things tend to go
to the centre of the earth, but if they are being
whirled round like a stone in a sling the centrifugal
force will counteract this tendency. The first
part of the reasoning would be inductive, the second
deductive. All this reasoning consists, therefore, in
forming as complete an idea as possible respecting
the nature of a thing, and then concluding from
that idea what the thing will do or what its other
properties will be. In fact, you form correct ideas,
or “concepts,” as they are called, and reason from
them.

But the danger arises when you begin to reason
before you are sure of the nature of your concepts,
and this has been the great source of error, and it
was this error that all men of science so commonly
fell into all through ancient and modern times up
to the seventeenth century.

Of course, if it were possible by mere observation
to derive a complete knowledge of any objects, it
would be the simplest method. All that would be
necessary to do would be to reason correctly from
this knowledge. Unfortunately, however, it is not
possible to obtain knowledge of this kind in any
branch of science.

The ancient method resembled the action of one
who should contend that by observing and talking
to a man you could acquire such a knowledge of
his character as would infallibly enable you to
understand and predict all his actions, and to take
little trouble to see whether what he did verified
your predictions.

The only difference between the old methods and
the new is that in modern times men have learned
to give far more care to the formation of correct
ideas to start with, are much more cautious in
arguing from them, and keep testing them again
and again on every possible opportunity.

The constant insistence on the formation of clear
ideas and the practice of, as Lord Bacon called it,
“putting nature to the torture,” is the main cause
of the advance of physical science in modern times,
and the want of application of these principles
explains why so little progress is being made in
the so-called “humanitarian” studies, such as
philosophy, ethics, and politics.

The works of Aristotle are full of the fallacious
method of the old system. In his work on the
heavens he repeatedly argues that the heavenly
bodies must move in circles, because the circle is
the most perfect figure. He affects a perplexity as
to how a circle can at the same time be convex and
also its opposite, concave, and repeatedly entangles
his readers in similar mere word confusion.

Regarded as a man of science, he must be
placed, I think, in spite of his great genius,
below Archimedes, Hipparchus, and several other
ancient astronomers and physicists.

His errors lived after him and dominated the
thought of the middle ages, and for a long time
delayed the progress of science.

The other great writer on astronomy of ancient
times was Ptolemy of Alexandria.


His work was called the “Great Collection,”
and was what we should now term a compendium
of astronomy. Although based on a fundamental
error, it is a thoroughly scientific work. There
is none of the false philosophy in it that so much
disfigures the work of Aristotle. The reasons for
believing that the earth is at rest are interesting.
Ptolemy argues that if the earth were moving
round on its axis once in twenty-four hours a bird
that flew up from it would be left behind. At first
sight this argument seems very convincing, for it
appears impossible to conceive a body spinning at
the rate at which the earth is alleged to move, and
yet not leaving behind any bodies that become
detached from it.

On the other hand, the system which taught
that the sun and planets moved round the earth,
and which had been adopted largely on account of
its supposed simplicity, proved, on further examination,
to be exceedingly complicated. Each planet,
instead of moving simply and uniformly round the
earth in a circle, had to be supposed to move
uniformly in a circle round another point that
moved round the earth in a circle. This secondary
circle, in which the planet moved, was called an
epicycle. And even this more complicated view
failed to explain the facts.

A system which, like that of Aristotle and
Ptolemy, was based on deductions from concepts,
and which consisted rather of drawing conclusions
than of examining premises, was very well adapted
to mediæval thought, and formed the foundation
of astronomy and geography as taught by the
schoolmen.
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The poem of Dante accurately represents the
best scientific knowledge of his day. According
to his views, the centre of the earth was a fixed
point, such that all things
of a heavy nature tended
towards it. Thus the earth
and water collected round
it in the form of a ball.
He had no idea of the
attraction of one particle
of matter for another particle.
The only conception
he had of gravity
was of a force drawing all
heavy things to a certain
point, which thus became the point round which the
world was formed. The habitable part of the earth
was an island, with Jerusalem in the middle of
it J. Round this island was an ocean O. Under
the island, in the form of a hollow cone, was
hell, with its seven circles of torment, each circle
becoming smaller and smaller, till it got down
into the centre C. Heaven was at the opposite
side H of the earth to Jerusalem, and was
beyond the circles of the planets, in the primum
mobile. When Lucifer was expelled from heaven
after his rebellion against God, having become
of a nature to be attracted to the centre of the
earth, and no longer drawn heavenwards, he fell
from heaven, and impinged upon the earth just
at the antipodes of Jerusalem, with such violence
that he plunged right through it to the centre,
throwing up behind him a hill. On the summit
of this hill was the Garden of Eden, where our
first parents lived, and down the sides of the
hill was a spiral winding way which constituted
purgatory. Dante, having descended into hell, and
passed the centre, found his head immediately
turned round so as to point the other way up,
and, having ascended a tortuous path, came out
upon the hill of Purgatory. Having seen this, he
was conducted to the various spheres of the planets,
and in each sphere he became put into spiritual
communion with the spirits of the blessed who
were of the character represented by that sphere,
and he supposes that he was thus allowed to proceed
from sphere to sphere until he was permitted
to come into the presence of the Almighty, who
in the primum mobile presided over the celestial
hosts.

The astronomical descriptions given by Dante of
the rising and setting of the sun and moon and
planets are quite accurate, according to the system
of the world as conceived by him, and show not
only that he was a competent astronomer, but that
he probably possessed an astrolabe and some tables
of the motions of the heavenly bodies.

Our own poet Chaucer may also be credited
with accurate knowledge of the astronomy of his
day. His poems often mention the constellations,
and one of them is devoted to a description of
the astrolabe, an instrument somewhat like the
celestial globe which used to be employed in
schools.

But with the revival of learning in Europe
and the rise of freedom of thought, the old
theories were questioned in more than one
quarter.

It occurred to Copernicus, an ecclesiastic who
lived in the sixteenth century, to re-examine the
theory that had been started in ancient times,
and to consider what explanation of the appearance
of the heavenly bodies could be given on
the hypothesis put forward by Pythagoras, that
the earth moved round on its own axis, and also
round the sun.

It may appear rather curious that two theories so
different, one that the sun goes round the earth
and the other that the earth goes round the sun,
should each be capable of explaining the observed
appearances of those bodies. But it must be
remembered that motion is relative. If in a waltz
the gentleman goes round the lady, the lady
also goes round the gentleman. If you take
away the room in which they are turning, and
consider them as spinning round like two insects
in space, who is to say which of them is at rest
and which in motion? For motion is relative. I
can consider motion in a train from London to York.
As I leave London I get nearer to York, and
I move with respect to London and York. But if
both London and York were annihilated how should
I know that I was in motion at all? Or, again, if,
while I was at rest in the train at a station on the
way, instead of the train moving the whole earth
began to move in a southward direction, and the
train in some way were left stationary, then,
though the earth was moving, and the train was
at rest, yet, so far as I was concerned, the train
would appear to have started again on its journey
to York, at which place it would appear to arrive in
due time. The trees and hedges would fly by at
the proper rate, and who was to say whether the
train was in motion or the earth?

The theory of Copernicus, however, remained
but a theory. It was opposed to the evidence of
the senses, which certainly leads us to think that
the earth is at rest, and it was opposed also to
the ideas of some among the theologians who
thought that the Bible taught us that the earth was
so fast that it could not be moved. Therefore the
theory found but little favour. It was in fact
necessary before the question could be properly
considered on its merits that more should be
known about the laws of motion, and this was
the principal work of Galileo.

The merit of Galileo is not only to have placed
on a firm basis the study of mechanics, but to
have set himself definitely and consciously to
reverse the ancient methods of learning.

He discarded authority, basing all knowledge
upon reason, and protested against the theory
that the study of words could be any substitute
for the study of things.

Alluding to the mathematicians of his day, “This
sort of men,” says Galileo in a letter to the
astronomer Kepler, “fancied that philosophy was
to be studied like the ‘Æneid’ or ‘Odyssey,’ and
that the true reading of nature was to be detected
by the collating of texts.” And most of his life was
spent in fighting against preconceived ideas. It
was maintained that there could only be seven
planets, because God had ordered all things in
nature by sevens (“Dianoia Astronomica,” 1610);
and even the discoveries of the spots on the sun
and the mountains in the moon were discredited
on the ground that celestial bodies could have no
blemishes. “How great and common an error,”
writes Galileo, “appears to me the mistake of those
who persist in making their knowledge and
apprehension the measure of the knowledge and
apprehension of God, as if that alone were perfect
which they understand to be so. But ... nature
has other scales of perfection, which
we, being unable to comprehend, class among
imperfections.

“If one of our most celebrated architects had
had to distribute the vast multitude of fixed
stars over the great vault of heaven, I believe he
would have disposed them with beautiful arrangements
of squares, hexagons, and octagons; he
would have dispersed the larger ones among the
middle-sized or lesser, so as to correspond exactly
with each other; and then he would think he had
contrived admirable proportions; but God, on the
contrary, has shaken them out from His hand as
if by chance, and we, forsooth, must think that
He has scattered them up yonder without any
regularity, symmetry, or elegance.”

In one of Galileo’s “Dialogues” Simplicio says,
“That the cause that the parts of the earth move
downwards is notorious, and everyone knows that
it is gravity.” Salviati replies, “You are out, Master
Simplicio: you should say that everyone knows
that it is called gravity; I do not ask you for the
name, but for the nature, of the thing of which
nature neither you nor I know anything.”

Too often are we still inclined to put the name
for the thing, and to think when we use big words
such as art, empire, liberty, and the rights of
man, that we explain matters instead of obscuring
them. Not one man in a thousand who uses them
knows what he means; no two men agree as to
their signification.

The relativity of motion mentioned above was
very elegantly illustrated by Galileo. He called
attention to the fact that if an artist were making
a drawing with a pen while in a ship that was in
rapid passage through the water, the true line
drawn by the pen with regard to the surface of the
earth would be a long straight line with some small
dents or variations in it. Yet the very same line
traced by the pen upon a paper carried along in the
ship made up a drawing. Whether you saw a long
uneven line or a drawing in the path that the pen
had traced depended altogether on the point of
view with which you regarded its motion.
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But the first great step in science which Galileo
made when quite a young professor at Pisa was the
refutation of Aristotle’s opinion that heavy bodies
fell to the earth faster than light ones. In the
presence of a number of professors he dropped
two balls, a large and a small one, from the
parapet of the leaning tower of Pisa. They fell to
the ground almost exactly in the same time. This
experiment is quite an easy one to try. One of the
simplest ways is as follows: Into any beam (the
lintel of a door will do), and about four inches apart,
drive three smooth pins so as to project each about a
quarter of an inch; they must not have any heads.
Take two unequal weights, say of 1 lb. and 3 lbs.
Anything will do, say a boot for one and pocket-knife
for the other; fasten loops of fine string to
them, put the loops over the centre peg of the
three, and pass the strings one over each of the
side pegs. Now of course if you hitch the loops off
the centre peg P the objects will be released together.
This can be done by making a loop at the end of
another piece of string, A, and putting it on to the
centre peg behind the other loops. If the string
be pulled of course the loop on it pulls the other
two loops off the central peg, and allows the boot
and the knife to drop.
The boot and the knife
should be hung so as to
be at the same height.
They will then fall to the
ground together. The
same experiment can be
tried by dropping two
objects from an upper
window, holding one in
each hand, and taking care to let them go together.
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This result is very puzzling; one does not understand
it. It appears as though two unequal forces
produced the same effect. It is as though a strong
horse could run no faster than a weaker one.

The professors were so irritated at the result of
this experiment, and indeed at the general character
of young Professor Galileo’s attacks on the time-honoured
ideas of Aristotle, that they never rested
till they worried him out of his very poorly paid
chair at Pisa. He then took a professorship at
Padua.

Let us now examine this result and see why it is
that the ideas we should at first naturally form are
wrong, and that the heavy body will fall in exactly
the same time as the light one.

We may reason the matter in this way. The
heavy body has more force pulling on it; that is
true, but then, on the other hand there is more
matter which has got to be moved. If a crowd of
persons are rushing out of a building, the total
force of the crowd will be greater than the force of
one man, but the speed at which they can get out
will not be greater than the speed of one man; in
fact, each man in the crowd has only force enough
to move his own mass. And so it is with the
weights: each part of the body is occupied in moving
itself. If you add more to the body you only add
another part which has itself to move. A hundred
men by taking hands cannot run faster than one
man.

But, you will say, cannot a man run faster
than a child? Yes, because his impelling power
is greater in proportion to his weight than that
of a child.

If it were the fact that the attraction of gravity
due to the earth acted on some bodies with forces
greater in proportion to their masses than the
forces that acted on other bodies, then it is true
that those different bodies would fall in unequal
time. But it is an experimental fact that the
attractive force of gravity is always exactly proportional
to the mass of a body, and the resistance to
motion is also proportional to mass, hence the force
with which a body is moved by the earth’s attraction
is always proportional to the difficulty of moving
the body. This would not be the case with other
methods of setting a body in motion. If I kick a
small ball with all my might, I shall send it further
than a kick of equal strength would send a heavier
ball. Why? Because the impulse is the same in
each case, but the masses are different. But if
those balls are pulled by gravity, then, by the very
nature of the earth’s attraction (the reason of which
we cannot explain), the small ball receives a little
pull, and the big ball receives a big pull, the earth
exactly apportioning its pull in each case to the
mass of the body on which it has to act. It is to
this fact, that the earth pulls bodies with a strength
always in each case exactly proportional to their
masses, that is due the result that they fall in
equal times, each body having a pull given to it
proportional to its needs.

The error of the view of Aristotle was not only
demonstrated by Galileo by experiment, but was
also demonstrated by argument. In this argument
Galileo imitated the abstract methods of the
Aristotelians, and turned those methods against
themselves. For he said, “You” (the Aristotelians)
“say that a lighter body will fall more slowly than a
heavy one. Well, then, if you bind a light body on
to a heavy one by means of a string, and let them
fall together, the light body ought to hang behind,
and impede the heavy body, and thus the two
bodies together ought to fall more slowly than the
heavy body alone; this follows from your view:
but see the contradiction. For the two bodies tied
together constitute a heavier body than the heavy
body alone, and thus, on your own theory, ought
to fall more quickly than the heavy body alone.
Your theory, therefore, contradicts itself.”

The truth is that each body is occupied in moving
itself without troubling about moving its neighbour,
so that if you put any number of marbles into a
bag and let them drop they all go down individually,
as it were, and all in the time which a single marble
would take to fall. For any other result would be
a contradiction. If you cut a piece of bread in two,
and put the two halves together, and tie them
together with a thread, will the mere fact that they
are two pieces make each of them fall more slowly
than if they were one? Yet that is what you would
be bound to assert on the Aristotelian theory. Hold
an egg in your open hand and jump down from a
chair. The egg is not left behind; it falls with you.
Yet you are the heavier of the two, and on Aristotelian
principles you ought to leave the egg
behind you. It is true that when you jump down
a bank your straw hat will often come off, but that
is because the air offers more resistance to it than
the air offers to your body. It is the downward
rush through the air that causes your hat to be left
behind, just as wind will blow your hat off without
blowing you away. For since motion is relative, it
is all one whether you jump down through the air,
or the air rushes past you, as in a wind. If there
were no air, the hat would fall as fast as your
body.

This is easy to see if we have an airpump and
are thus enabled to pump out almost all the air
from a glass vessel. In that vessel so exhausted, a
feather and a coin will fall in equal times. If we
have not an airpump, we can try the experiment
in a more simple way. For let us put a feather
into a metal egg-cup and drop them together. The
cup will keep the air from the feather, and the
feather will not come out of the cup. Both will
fall to the ground together. But if the lighter body
fall more slowly, the feather ought to be left behind.
If, however, you tie some strings across a napkin
ring so as to make a sort of rough sieve, and put a
feather in it, and then drop the ring, then as the
ring falls the air can get through the bottom of the
ring and act on the feather, which will be left
floating as the ring falls.

Let us now go on to examine the second fallacy
that was derived from the Aristotelians, and that so
long impeded the advance of science, namely, that
the earth must be at rest.

The principal reason given for this was that if
bodies were thrown up from the earth they ought,
if the earth were in motion, to remain behind.
Now, if this were so, then it would follow that if a
person in a train which was moving rapidly threw
a ball vertically, that is perpendicularly, up into
the air, the ball, instead of coming back into his
hand, ought to hit the side of the carriage behind
him. The next time any of my readers travel by
train he can easily satisfy himself that this is not
so. But there are other ways of proving it. For
instance, if a little waggon running on rails has a
spring gun fixed in it in a perpendicular position,
so arranged that when the waggon comes to a
particular point on the rails a catch releases the
trigger and shoots a ball perpendicularly upwards,
it will be found that the ball, instead of going
upwards in a vertical line, is carried along over the
waggon, and the ball as it ascends and descends
keeps always above the waggon, just as a hawk
might hover over a running mouse, and finally falls
not behind the waggon, but into it.

So, again, if an article is dropped out of the
window of a train, it will not simply be left behind
as it falls, but while it falls it will also partake of
the motion of the train, and touch the ground, not
behind the point from which it was dropped, but
just underneath it.

The reason is, that when the ball is dropped or
thrown it acquires not only the motion given to it
by the throw, or by gravity, but it takes also the
motion of the train from which it is thrown. If
a ball is thrown from the hand, it derives its motion
from the motion of the hand, and if at the time of
throwing the person who does so is moving rapidly
along in a train, his hand has not only the outward
motion of the throw, but also the onward motion of
the train, and the ball therefore acquires both
motions simultaneously. Hence then it is not
correct reasoning to say, because a ball thrown up
vertically falls vertically back to the spot from
which it was thrown, that therefore the earth must
be at rest; the same result will happen whether
the earth is at rest or in motion. You can no
more tell whether the earth is at rest or in motion
from the behaviour of falling bodies than you can
tell whether a ship on the ocean is at rest or in
motion from the behaviour of bodies on it.

But you will say. Then why do we feel sea-sick
on a ship? The answer is, that that is because the
motion of the ship is not uniform. If the earth,
instead of turning round uniformly, were to rock to
and fro, everything on it would be flung about in
the wildest fashion. For as soon as the earth had
communicated its motion to a body which then
moved with the earth, if the earth’s motion were
reversed, the body would go on like a passenger in
a train on which the break is quickly applied, and
he would be shot up against the side of the room.
Nay, more, the houses would be shaken off their
foundations. Changes of motion are perceptible
so long as the change is going on. We are therefore
justified in inferring from the behaviour of
bodies on the earth, not that the earth is at rest,
but that it is either at rest, or
else, if it is in motion, that its
motion is uniform and not in
jerks or variable.
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For if it were not so, consider
what would be happening around
us. The earth is about 8,000
miles in diameter, and a parallel
of latitude through London is therefore about
19,000 miles long, and this space is travelled in
twenty-four hours. So that London is spinning
through space at the rate of over 1,000 feet a
second, due to the earth’s rotary motion alone,
not to speak of the motion due to the earth’s
path round the sun. If a boy jumped up two and
a half feet into the air, he would take about half a
second to go up and come down, but if in jumping
he did not partake of the earth’s motion, he would
land more than 500 feet to the westward of the
point from which he jumped up, and if he did it in
a room, he would be dashed against the wall with a
force greater than he would experience from a drop
down from the top of Mont Blanc. He would be
not only killed, but dashed into an indistinguishable
mass. If the earth suddenly stood still, everything
on it would be shaken to pieces. It is bad
enough to have the concussion of a train going
thirty miles an hour when dashed against some
obstacle. But the concussion due to the earth’s
stoppage would be as of a train going about 800
miles an hour, which would smash up everything
and everybody.

Thus, then, the first effect of the new ideas
formulated by Galileo was to show that the Copernican
theory that the earth moved round on its
axis, and round the sun, was in agreement with
the laws of motion. In fact, he introduced quite
new ideas of force, and these ideas I must now
endeavour to explain.

Let us consider what is meant by the word
“force.” If I press my hand against the table, I
exert force. The harder I press, the more force there
is. If I put a weight on a stand, the weight presses
the stand down with a force. If I squeeze a spring,
the spring tries to recover itself and exerts a certain
force. In all these cases force is considered as a
pressure. And I can measure the force by seeing
how much it will press things. If I take a spring,
and press it in an inch, it takes perhaps a force of
1 lb. It will take a force of 2 lbs. to press it in
another inch. Or again, if I pull it out an inch, it
takes a force of 1 lb. If I pull it out another inch,
it takes a force of 2 lbs. We thus always get into
the habit of conceiving forces as producing pressures
and being measured by pressures.
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This is a perfectly legitimate way of looking at
the matter, just as the cook’s method of employing
a spring balance to weigh masses of meat is a perfectly
legitimate way of estimating
the forces acting
upon bodies at rest. But
when you come to consider
the laws of the pendulums
of clocks, to which all that I
am saying is a preparation,
then you have to deal with
bodies in motion. And for
this purpose a new idea of
force altogether is requisite.
We shall no longer speak of forces as producing
pressures. We shall treat them quite independently
of their pressing power. The sun exerts a force of
attraction on the earth, but it does not press upon
it. It exerts its force at a distance. Hence then
we want a new idea of “force.” This idea is to be
the following. We will consider that when a force
acts upon a body it endeavours to cause it to move;
in fact, it tries to impart motion to the body. We
may treat this motion as a sort of thing or property.
The longer the force acts on the body, the more
motion it imparts to it, provided the body is free to
receive that motion. So that we may say that the
test of the strength of the force is how much
motion it can give to a body of a given mass in a
given time. It does not matter how the force
acts. It may act by means of a string and pull it;
it may act by means of a stick and push it; it may act
by attraction and draw it; it may act by repulsion
and repel it; it may act as a sort of little spirit and
fly away with it. In all these cases it acts. The more
it acts, the more effect it has. In double the time it
produces double the motion. If the mass is big, it
takes more force to make the mass move; if the
mass of the body is small, it is moved more easily.
Therefore when we want to measure a force in this
way we do not press it against springs to see how
much it will press them in. What we do is to
cause it to act on bodies that are free to move and
see what motions it will produce in them. Of course
we can only do this with things that are free to
move. You cannot treat force in this way if you have
only a pair of scales; in that case you would have
to be content with simply measuring pressures. It
is important clearly to grasp this idea. If a body
has a certain mass, then the force acting on it is
measured by the amount of motion that will in a
given time be imparted to that mass, provided that
the mass is free to move. This is to be our definition
of force.

Therefore, by the action of an attraction or any
other force on a body free to move; motion is continually
being imparted to the body. Motion is, as
it were, poured into it, and therefore the body continually
moves faster and faster.

Here is a ball flying through the air. Let us
suppose that forces are acting on it. How can we
measure them? We cannot feel what pressures are
being exerted on it. The only thing we can do is
to watch its motions, and see how it flies. If it
goes more and more quickly, we say, “There is
propelling force acting on it”; if it begins to stop,
we say again, “There is retarding force acting on
it.” So long as it does not change its speed or
direction, we say, “There is no force acting on it.”
By this method, therefore, we tell whether a body
is being acted on by force, simply by observing
its speed or its change of speed. Merely to say a
body is moving does not tell us that force is acting
on it. All we know is that, if it is moving, force has
acted on it. It is only when we see it changing its
speed or direction, that is changing its motion, that
we say force is acting. Every change of motion,
either in direction or speed, must be the result of
force, and must be proportional to that force.
This is what we mean when we say motion is the
test and measure of force.


This most interesting way of looking at the
matter lies at the root of the whole theory of
mechanics. It is the foundation of the system which
the stupendous genius of Newton conceived in order
to explain the motion of the sun, moon, and stars.

Forces were treated by him as proportional to
the motions, and the motions proportional to the
forces, and with this idea he solved a part of the
riddle of the universe. Galileo had partly seen the
same thing, but he never saw it so clearly as
Newton. Great discoveries are only made by seeing
things clearly. What required the force of a genius
in one age to see in the next may be understood by
a child.

Hence then we say a force is that which in a given
time produces a given motion in a given mass which
is free to move.

You must have time for a force to act in; for
however great the force, in no time there can be
no motion. You must have mass for a force to
act on; no mass, no effect. You must have free
space for the mass to move in; no freedom to move,
no movement.

But what is this “mass”? We do not know;
it is a mystery. We call it “quantity of matter.”
In uniform substances it varies with size. Double
the volume, double the mass. Cut a cake in half,
each half has the same “mass.” But then is mass
“weight”? No, it is not. Weight is the action of
the earth’s attraction on matter. No earth to attract,
and you would have no weight, but you would still
have “mass.” What then is matter? Of that we
have no idea. The greatest minds are now at work
upon it. But mass is quantity of matter. Knock a
brick against your head, and you will know what
mass is. It is not the weight of the brick that gives
you a bump; it is the mass. Try to throw a ball
of lead, and you will know what mass is. Try
to push a heavy waggon, and you will know what
mass is. Weights, that is earth attractions on masses,
are proportional to the masses at the same place.
This, as we have seen, is known by experiment.

Therefore, when a force acts for a certain time
on a mass that is free to move, however small the
force and however small the time, that body will
move. When a baby in a temper stamps upon the
earth it makes the earth move—not much, it is true,
but still it moves; nay, more, in theory, not a fly
can jump into the air without moving the earth and
the whole solar system. Only, as you may imagine
they do not show it appreciably. Still, in theory
the motion is there.

Hence then there are two different ways of considering
and estimating forces, one suitable for
observations on bodies at rest, the other suitable
for observations of bodies that are free to move.
The force of course always tends to produce motion.
If, however, motion is impossible, then it develops
pressures which we can measure, and calculate,
and observe. If the body is free to move, then the
force produces motions which we can also measure,
calculate, and observe. And we can compare these
two sets of effects. We can say, “A force which,
acting on a ball of a mass of one pound, would produce
such and such motions, would if it acted on a
certain spring produce so much compression.”

The attraction of the earth on masses of matter
that are not free to move gives rise to forces which
are called weights. Thus the attraction of gravitation
on a mass of one pound produces a pressure
equal to a weight of one pound. Unfortunately the
same word “pound” is used to express both the
mass and the weight, and has come down to us from
days when the nature of mass was not very well
appreciated. But great care must be taken not to
confuse these two meanings.

But the earth’s attractions and all other forces
acting upon matter which is free to move give rise
to changes of motion. The word used for a change
of motion is “acceleration” or a quickening. “He
accelerated his pace,” we say. That is, he quickened
it; he added to his motion. So that force, acting
on mass during a time, produces acceleration.

From this, then, it follows that if a force continues
to act on a body the body keeps moving
quicker and quicker. When the force stops acting,
the motion already acquired goes on, but the
acceleration stops. That is to say, the body goes
on moving in a straight line uniformly at the pace
it had when the force stopped.

If, then, a body is exposed to the action of a force,
and held tight, what will happen? It will, of
course, remain fixed. Now let it go—it will then,
being a free body, begin to move. As long as the
force acts, the force keeps putting more and more
motion into the body, like pouring water into a
jug, the longer you pour the faster the motion
becomes. The body keeps all the motion it had,
and keeps adding all the motion it gains. It is like
a boy saving up his weekly pocket-money: he has
what he had, and he keeps adding to that. So if
in one second a motion is imparted of one foot a
second, then in another second a motion of one foot
a second more will be added, making together a
motion of two feet a second; in another second of
force action the motion will have been increased or
“accelerated” by another foot per second, and so
on. The speed will thus be always proportional to
the force and the time. If we write the letter V to
represent the motion, or speed, or velocity; F to
represent the acceleration or gain of motion; and
T to represent the time, then V = FT. Here V is
the velocity the body will have acquired at the end
of the time T, if free to move and submitted to a
force capable of producing an acceleration of F feet
per second in a unit of time.


V is the final velocity. The average velocity will
be 1/2 V, for it began with no velocity and increased
uniformly. How far will the body have fallen in
the interval? Manifestly we get that by multiplying
the time by the average velocity, that is
S = 1/2 VT, where V, as I said, is the final velocity,
but we found that V = FT. Hence by substitution
S = 1/2 FT × T = 1/2 FT².

It is to be carefully borne in mind that these
letters V, S, and T do not represent velocities,
spaces, and times, but merely represent arithmetical
numbers of units of velocities, spaces,
and times. Thus V represents V feet per second,
S represents S feet, and T represents T seconds.
And when we use the equation V = FT we do
not mean that by multiplying a force by a
time you can produce a velocity. If, for instance,
it be true that you can obtain the number of
inhabitants (H) in London by multiplying the
average number of persons (P) who live in a house
by the number of houses (N), this may be expressed
by the equation H = PN. But this does not
mean that by multiplying people into houses you
can produce inhabitants. H, P, and N are numbers
of units, and they are numbers only.

Therefore when a body is being acted on by an
accelerating force it tends to go faster and faster as
it proceeds, and therefore its velocity increases with
the time. But the space passed through increases
faster still, for as the time runs on not only does
the space passed through increase, but the rate of
passing also gets bigger. It goes on increasing at
an increasing rate. It is like a man who has an
increasing income and always goes on saving it.
His total mounts up not merely in proportion to the
time, but the very rate of increase also increases
with the time, so that the total increase is in proportion
to the time multiplied into the time, in
other words to the square of the time. So then, if
I let a body drop from rest under the action of any
force capable of producing an acceleration, the space
passed through will be as the square of the time.

Now let us see what the speed will be if the force
is gravity, that is the attraction of the earth.

Turning back to what was said about Galileo, it
will be remembered that he showed that all bodies,
big and small, light and heavy, fell to the earth at
the same speeds. What is that speed? Let us
denominate by G the number of feet per second of
increase of motion produced in a body by the earth’s
action during one second. Then the velocity at the
end of that second will be V = GT. The space
fallen through will be S = 1/2 GT².

What I want to know then is this: how far will a
body under the action of gravity fall in a second of
time?

This, of course, is a matter for measurement. If
we can get a machine to measure seconds, we shall
be able to do it; but inasmuch as falling bodies
begin by falling sixteen feet in the first second and
afterwards go on falling quicker and quicker, the
measurements are difficult. Galileo wanted to see
if he could make it easier to observe. He said to
himself, “If I can only water down the force of
gravity and make it weaker, so that the body will
move very slowly
under its action,
then the time of
falling will be
easier to observe.”
But how
to do it? This
is one of those
things the discovery
of which
at once marks
the inventor.
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The idea of
Galileo was, instead
of letting the body drop vertically, to make
it roll slowly down an incline, for a body put upon
an incline is not urged down the incline with the
same force which tends to make it fall vertically.

Can any law be discovered tending to show what
the force is with which gravity tends to drag a mass
down an incline?

There is a simple one, and before Galileo’s time
it had been discovered by Stevinus, an engineer.
Stevinus’ solution was as follows. Suppose that
A B C is a wedge-shaped block of wood. Let a loop
of heavy chain be hung over it, and suppose that
there is a little pulley at C and no friction anywhere.
Then the chain will hang at rest. But the
lower part, from A to B, is symmetrical; that is to
say, it is even in shape on both sides. Hence, so far
as any pull it exerts is concerned, the half from
A to D will balance the other half from B to D.
Therefore, like weights in a scale, you may remove
both, and then the force of gravity acting down the
plane on the part A C will balance the force of
gravity acting vertically on the part C B. Now the
weight of any part of the chain, since it is uniform,
is proportional to its length. Hence, then, the
gravitational force down the plane of a piece
whose weight equals C A is equal to the gravitational
force vertically of a piece whose weight
equals C B. In other words, the force of gravity
acting down a plane is diminished in the ratio of
C B to C A.

But when a body falls vertically, then, as we
have seen, S = 1/2 GT², where S is the space it
will fall through, G the number of feet per second
of velocity that gravity, acting vertically on a body,
will produce in it in a second, and T the number of
seconds of time. If then, instead of falling vertically,
the body is to fall obliquely down a plane,
instead of G we must put as the accelerating force

G × (vertical height of the end of the plane)/(length of the plane).

To try the experiment, he took a beam of wood
thirty-six feet long with a groove in it. He inclined
it so that one end was one foot higher than the
other. Hence the acceleration down the plane was
1/36 G, where G is the vertical acceleration due to
gravity which he wanted to discover. Then he
measured the time a brass ball took to run down
the plane thirty-six feet long, and found it to be
nine seconds. Whence from the equation given
above 36 feet = 1/2 acceleration of gravity down the
plane × (9 seconds)². Whence it follows that
the acceleration of gravity down the plane is
(36 × 2)/(9)² feet per second.

But the slope of the plane is one thirty-sixth to
the vertical. Therefore the vertical acceleration
of gravity, i.e., the velocity which gravity would
induce in a vertical direction in a second, is equal
to thirty-six times that which it exercises down
the plane, i.e.,

36 × (36 × 2)/(9)²; and this equals 32 feet per second.

Though this method is ingenious, it possesses two
defects. One is the error produced by friction, the
other from failure to observe that the force of
gravity on the ball is not only exerted in getting it
down the plane, but also in rotating it, and for this
no allowance has been made. The allowance to be
made for rotation is complicated, and involves more
knowledge than Galileo possessed. Still the result
is approximately true.



Fig. 26.


The next attempt to measure G, that is the
velocity that gravity will produce on a body in a
second of time, was made by Attwood, a Cambridge
professor. His idea was to weaken the force
of gravity and thus make the
action slow, not by making it act
obliquely, but by allowing it to act,
not on the whole, but only on a portion
of the mass to be moved. For
this purpose he hung two equal
weights over a very delicately constructed
pulley. Gravity, of course,
could not act on these, for any effect
it produced on one would be negatived by its effect
on the other. The weights would therefore remain
at rest. If, however, a small weight W, equal say
to a hundredth of the combined weight of the weights
A and B and W, were suddenly put on A, then it
would descend under an accelerating force equal to
a hundredth part of ordinary gravity. We should
then have

S (the space moved through by the weights) = 1/2 × G/100 × t².

With such a system, he found that in 7½ seconds
the weights moved through 9 feet. Whence he got

9 = 1/2 G/100 × (7½)².

From which

G = (2 × 9 × 100)/(7½)² = 32 feet per second nearly.

Thus by letting gravity only act on a hundredth
part of the total weight moved, namely A, B, and
W, he weakened its action 100 times, and thus
made the time of falling and the space fallen through
sufficiently large to be capable of measurement. To
sum up, when a body free to move is acted upon
by the force of gravity, its speed will increase in
proportion to the time it has been acted upon, and
the space it will pass through from rest is proportional
to the square of the time during which
the accelerating force has acted on it.

Gravity is, of course, not the only accelerating
force with which we are acquainted. If a spring
be suddenly allowed to act on a body and pull it,
the body begins to move, and its action is gradually
accelerated, just as though it were attracted, and
the acceleration of its motion will be proportional
to the time during which the accelerating force acts.
Similarly, if gunpowder be exploded in a gun-barrel,
and the force thus produced be allowed to act on a
bullet, the motion of the bullet is accelerated so
long as it is in the barrel. When the bullet leaves
the barrel it goes on with a uniform pace in a
straight line, which, however, by the earth’s attraction
is at once deflected into a curve, and altered
by the resistance of the air.
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It has been already stated that motions may be
considered independently one of another, so that if
a body be exposed to two different forces the action
of these forces can be considered and calculated
each independently of the other. Let us take an
example of this law. We have seen if a body
is propelled forwards, and then the force acting
on it ceases, that
it proceeds on
with uniform unchanging
velocity,
and if nothing
impeded it,
or influenced it, it would go on in a straight line at
a uniform speed.

We have also seen that if a body is exposed to
the action of an accelerating force such as gravity
it constantly keeps being accelerated, it constantly
keeps gaining motion, and its speed becomes quicker
and quicker.
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Let us suppose a body exposed to both of these
forces at the same time. Shoot it out of a cannon,
and let an accelerating force act on it, not in the
direction it is going, but in some other direction,
say at right angles. What will happen? In the
direction in which it is going, its speed will remain
uniform. In the direction in which the accelerating
force is acting, it will move faster and faster. Thus
along A B it will proceed uniformly. If it proceeded
uniformly also along A C (as it would do if a simple
force acted on it and then ceased to act), then as a
result it would go in the oblique line A D, the
obliquity being determined by the relative magnitude
of the forces acting on it. But how if it went
uniformly along A B, but at an accelerated pace
along A C? Then while in equal times the distances
along A B would be uniform the distances in the
same times along
A C would be
getting bigger
and bigger. It
would not describe
a straight line; it
would go in a curve. This is very interesting. Let
us take an example of it. Suppose we give a ball a
blow horizontally; as soon as it quits the bat it
would of course go on horizontally in a straight
line at a uniform speed; but now if I at the same
instant expose it to the accelerating force of gravity,
then, of course, while its horizontal movement will
go on uniformly, its downward drop will keep
increasing at a speed varying as the time. And
while the total distances horizontally will be uniform
in equal times, the total downward drop from A B
will be as the squares of the times. Here, then,
you have a point moving uniformly in a horizontal
direction, but as the squares of the times in a
vertical direction. It describes a curve. What
curve? Why, one whose distances go uniformly
one way, but increase as the squares the other way.
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This interesting
curve is called a
parabola. With a
ball simply hit by
a bat, the motion is
so very fast that we
cannot see it well.
Cannot we make it
go slowly? Let us
remember what
Galileo did. He used
an inclined plane to
water down his force
of gravity. Let us
do the same. Let
us take an inclined
plane and throw on
it a ball horizontally. It will go in a curve. Its
speed is uniform horizontally, but is accelerated
downwards. If we desire to trace the curve it is
easy to do. We coat the ball with cloth and then
dip it in the inkpot. It will then describe a visible
parabola. If I tilt up the plane and make the
force of gravity big, the parabola is long and thin;
if I weaken down the force of gravity by making
the plane nearly horizontal, then it is wide and
flat.

One can also show this by a stream of peas or
shot. The little bullets go each with a uniform
velocity horizontally, and an accelerated force
downwards.

Instead of peas we can use water. A stream of
it rushing horizontally out of an orifice will soon
bend down into a parabola.

Thus then I have tried to show what force is
and how it is measured. I repeat again, when a
body is free to move, then, if no further force acts on
it, it will go on in a straight line at a uniform speed,
but if a force continues to act on it in any direction,
then that force produces in each unit of time a unit
of acceleration in the direction in which the force
acts, and the result is that the body goes on moving
towards the direction of acceleration at a constantly
increasing speed, and hence passing over spaces
that are greater and greater as the speed increases.
This is the notion of a “force.” In all that has
been said above it has been assumed that the
attraction of gravity on a body does not increase as
that body gets nearer to the earth. This is not
strictly true; in reality the attractive force of
gravity increases as the earth’s centre is approached.
But small distances through which the weights in
Attwood’s machine fall make no appreciable
difference, being as nothing compared to the
radius of earth. For practical purposes, therefore,
the force may be considered uniform on bodies that
are being moved within a few feet of the earth’s
surface. It is only when we have to consider the
motions of the planets that considerations of the
change of attractive force due to distance have to
be considered.

I am glad to say that the most tiresome, or rather
the most difficult, part of our inquiry is now over.
With the help of the notions already acquired, we
are now ready to get to the pendulum, and to show
how it came about that a boy who once in church
amused himself by watching the swinging of the
great lamps instead of attending to the service laid
the foundation of our modern methods of measuring
time.









CHAPTER III.

We have examined the action of a body under
the accelerating or speed-quickening force due to
gravity, the attractive force of which on any body
is always proportional to the mass of
that body. Let us now consider another
form of acceleration.
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Take the case of a strip of indiarubber.
If pulled it resists and tends to spring
back. The more I pull it out the harder
is the pull I have to exert. This is true
of all springs. It is true of spiral springs,
whether they are pulled out or pushed
in, and in each case the amount by
which the spring is pulled out or pushed
in is proportional to the pressure. This
law is called Hooke’s law. It was expressed
by him in Latin, “Ut tensio, sic
vis”: “As the extension, so the force.”
It is true of all elastic bodies, and it
is true whether they are pulled out or
pushed in or bent aside. The common
spring balance is devised on this principle. The
body to be weighed is hung on a hook suspended
from a spring. The amount by which the spring is
pulled out is a measure of the weight of the body.
If you take a fishing rod and put the butt end of it
on a table and secure it by putting something heavy
on the end, then the tip will bend down on
account of its own weight. Mark the point to
which it goes. Now, if you hang a weight on the
tip, the tip will bend down a little further. If you
put double the weight the tip will go down double
the distance, and so on until the fishing rod is considerably
bent,
so that its form
is altered and
a new law of
flexure comes
into play. Suppose
I use a
spring as an accelerating
force.
For example, suppose I suspend a heavy ball by a
string and then attach a spiral spring to it and pull
the spring aside. The ball will be drawn after the
spring. If then I let the ball go, it will begin to
move. The force of the spring will act upon it as
an accelerating force, and the ball will go on moving
quicker and quicker. But the acceleration will not
be like that of gravity. There will be two differences.
The pull of the spring will in no way depend on
the mass of the ball, and the pull of the spring,
instead of being constant, like the pull of gravity,
will become weaker and weaker as the ball
yields to it. Consequently the equations above
given which determine the relations between this
space passed through, the velocity, and the time
which were determined in the case of gravity are
no longer true, and a different set of relations has
to be determined. This can be easily done by
mathematics. But I do not propose to go into it.
I prefer to offer a rough and ready explanation,
which, though it does not amount to a proof, yet
enables us to accept the truth that can be established
both by experiment and by calculation.
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Let a heavy ball (A) be suspended by a long
string, so that the action of gravity sideways on the
ball is very small and may be neglected, and to
each side attach an indiarubber thread fastened at
B and C. Then when the ball is pulled aside a
little, say to a position D, it will tend to fly back to
A with a force proportioned to the distance A D.
What will be the time it will take to do this? If
the distance A D is small, the ball has only a small
distance to go, but then, on the other hand, it has
only small forces acting on it. If the distance A D
is bigger, then it has a longer distance to go, but
larger forces to urge it. These counteract one
another, so that the time in each case will be
the same.



Fig. 32.


The question is this:—Will you go a long
distance with a powerful horse, or a small distance
with a weak horse? If the distance in each case
is proportioned to the power of the horse, then the
amount of the distance does not matter. The
powerful horse goes the long distance in the same
time that the weak horse goes the short distance.
And so it is here. However far you pull out the
spring, the accelerative pull on the ball is proportioned
to the distance. But the time of pulling
the ball in depends on the distance. So that
each neutralises the other. Whence then we have
this most important fact, that springs are all
isochronous; that is to say, any body attached to
any spring whatever, whether it is big or small,
straight or curly, long or short, has a time of
vibration quite independent of the bigness of the
vibration. The experiment is easy to try with a
ball mounted on a long arm that can swing
horizontally. It is attached on each side to an
elastic thread. If pulled aside, it vibrates, but
observe, the vibration is exactly the same whether
the bigness of the vibration is great or small. If
the pull aside is big, the force of restitution is big;
if the pull is small, the force of restitution is small.
In one case the ball has a longer distance to go, but
then at all points of its path it
has a proportionally stronger force
to pull it; if the ball has a smaller
distance to go, then at all the
corresponding points of its path it
has a proportionally weaker force
to pull it. Thus the time remains
the same whether you have the
powerful horse for the long journey
or the weaker horse for the smaller
journey.
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Next take a short, stiff spring of
steel. One of the kind known as
tuning forks may be employed.

The reader is probably aware
that sounds are produced by very rapid pulsations
of the air. Any series of taps becomes a continuous
sound if it is only rapid enough. For example, if
I tap a card at the rate of 264 times in a second,
I should get a continuous sound such as that given
by the middle C note of the piano. That, in fact,
is the rate at which the piano string is vibrating
when C is struck, and that vibration it is that
gives the taps to the air by which the note is
produced.

This can be very easily proved. For if you lift
up the end of a bicycle and cause the driving wheel
to spin pretty rapidly by turning the pedal with
the hand, then the wheel will rotate perhaps about
three times in a second. If a visiting card be held so
as to be flipped by the spokes as they fly by, since
there are about thirty-six of them, we should get a
series of taps at the rate of about 108 a second.
This on trial will be found to nearly correspond to
the note A, the lowest space on the bass clef of
music. As the speed of rotation is lowered, the
tone of the note becomes lower; if the speed is
made greater, the pitch of the note becomes higher,
and the note more shrill. However far or near
the card is held from the centre of the wheel makes
no difference, for the number of taps per second
remains the same. So, again, if a bit of watch-spring
be rapidly drawn over a file, you hear a musical note.
The finer the file, and the more rapid the action,
the higher the note. The action of a tuning fork
and of a vibrating string in producing a note
depends simply on the beating of the air. The
hum of insects is also similarly produced by the
rapid flapping of their wings.

It is an experimental fact that when a piano
note is struck, as the vibration gradually ceases
the sound dies away, but the pitch of the note
remains unchanged. A tune played softly, so
that the strings vibrate but little, remains the
same tune still, and with the same pitch for the
notes.

A “siren” is an ingenious apparatus for producing
a series of very rapid puffs of air. It consists of a
small wheel with oblique holes in it, mounted so as
to revolve in close proximity to a fixed wheel with
similar holes in it. If air be forced through the
wheels, by reason of the obliquity of the orifices in
the movable wheel it is caused to rotate. As it
does so, the air is alternately interrupted and
allowed to pass, so that a series of very rapid puffs
is produced. As the air is forced in, the wheel turns
faster and faster. The rapidity of succession of the
puffs increases so that the note produced by them
gradually increases in pitch till it rises to a sort of
scream. For steamers these “sirens” are worked by
steam, and make a very loud noise.

It is, however, impossible to make a tuning fork
or a stretched piano spring alter the pitch of its
note without altering the elastic force of the spring
by altering its tension, or without putting weights
on the arms of the tuning fork to make it go more
slowly. And this is because the tuning fork
and the piano spring, being elastic, obey Hooke’s
law, “As the deflection, so the force”; and therefore
the time of back spring is in each case
invariable, and the pitch of the note produced
therefore remains invariable, whatever the amplitude
of the vibration may be.

Upon this law depends the correct going of both
clocks and watches.

Wonderful nature, that causes the uniformity
of sounds of a piano, or a violin, to depend on
the same laws that govern the uniform going of
a watch! Nay, more, all creation is vibrating.
The surge of the sea upon the coast that swishes
in at regular intervals, the colours of light, which
consist of ripples made in an elastic ether, which
springs back with a restitutional force proportioned
to its displacement, all depend upon the
same law. This grand law by which so many
phenomena of nature are governed has a very
beautiful name, which I hope you will remember.
It is called “harmonic motion,” by which is meant
that when the atoms of nature vibrate they vibrate,
like piano strings, according to the laws of harmony.
The ancient Pythagorean philosophers thought
that all nature moved to music, and that dying
souls could begin to hear the tones to which the
stars moved in their orbits. They called it, as
you know, the music of the spheres. But could
they have seen what science has revealed to man’s
patient efforts, they would have seen a vision
of harmony in which not a ray of light, not a string
of a musical instrument, not a pipe of an organ,
not an undulation of all-pervading electricity, not
a wing of a fly, but vibrates according to the law
of harmony, the simple easy law of which a boy’s
catapult is the type, and which, as we have seen,
teaches us that when an elastic body is displaced
the force of restitution, in other words, the force
tending to restore it to its old position, is proportional
to the displacement, and the time of
vibration is uniform. The last is the important
thing for us; we seem to get a gleam of a notion
of how the clock and watch problem is going to be
solved.

But before we get to that we have yet to go back
a little.

About the year 1580 an inattentive youth (it was
our friend Galileo again) watched the swing of one
of the great chandeliers in the cathedral church at
Pisa. The chandeliers have been renewed since
his day, it was one of the old lamps that he
watched. It had been lit, and allowed to swing
through a considerable space. He expected that
as it gradually came to rest it would swing in a
quicker and quicker time, but it seemed to be
uniform. This was curious. He wanted to measure
the time of its swing. For this purpose he counted
his pulse-beats. So far as he could judge, there
were exactly the same number in each pendulum
swing.

This greatly interested him, and at home he
began to try some experiments. As he got older
his attention was repeatedly turned to that subject,
and he finally established in a satisfactory way the
law that, if a weight is hung to the end of a string
and caused to vibrate, it is isochronous, or equal-timed,
no matter what the extent of the arc of
vibration.

The first use of this that he made was to make a
little machine with a string of which you could
vary the length, for use by doctors. For the
doctors of that day had no gold watch to pull out
while with solemn face they watched the ticks.
They were delighted with the new invention,
and for years doctors used to take out the little
string and weight, and put one hand on the
patient’s pulse while they adjusted the string till
the pendulum beat in unison with the pulse. By
observing the length of the string, they were then
able to tell how many beats the pulse made in
a minute. But Galileo did not stop there. He
proceeded to examine the laws which govern the
pendulum.

We will follow these investigations, which will
largely depend on what we have already learned.

Before, however, it is possible to understand the
laws which govern the pendulum, there are one or
two simple matters connected with the balance and
operation of forces which have to be grasped.

Suppose that we have a flat piece of wood of any
shape like Fig. 34, and that we put a screw
through any spot A in it, no matter where, and
screw it to a wall, so that it can turn round the
screw as round a pivot.
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Next we will knock a tintack into any point B,
and tie a string on to B. Then if I pull at the
string in any direction B C the board tends to
twist round the screw at A. What will the strength
of the twisting force be? It will depend on the
strength of the pull, and on the “leverage,” or
distance of the line C B from A. We might imagine
the string, instead of being attached at B, to be
attached at D; then, if I put P as the strength
of the pull, the twisting power would be represented
by P × A D. This is called the “moment”
of the force P round
the centre A. It
would be the same
as if I had simply
an arm A D, and
pulled upon it with
the force P. It is an
experimental truth,
known to the old
Greek philosophers,
that moments, or
twisting powers, are
equal when in each
case the result of
multiplying the arm
by the power acting at right angles to it is
equal.

Now suppose A B is a pendulum, with a bob
B of 10 lbs. weight, and suppose it has been
drawn aside out of the vertical so that the bob is
in the position B. Then the weight of the bob will
act vertically downwards along the line B C. The
moment, or twisting power, of the weight will be
equal to 10 lbs. multiplied by A D, A D being a
line perpendicular to B C.
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Now suppose that another string were tied to the
bob B, and pulled in a direction at right angles to
A B, with a force P just enough to hold the bob
back in the position B. The pull along D B × A B
would be the moment of that pull round the point
A. But, because this moment just holds the
pendulum up, it follows that the moment of the
weight of the pendulum round A is equal to the
moment of the pull of the string B D round A.

Whence P × A B = 10 lbs. × A D.

Whence P = 10 lbs. × (A D)/(A B).


But A B is always the same, whatever the side
deflection or displacement of the pendulum may
be. Whence then we see that when a pendulum
is pulled aside a distance E B (which is always
equal to A D), then the force tending to bring it
back to E is always proportional to E B. But if
the pendulum be fairly long, say 39-1/7 inches, and
the displacement E B be small,—in other words, if
we do not drag it much out of the vertical,—then we
may say that the force tending to bring it back to
F, its position of rest, is not very different from the
force tending to bring it back to E. But F B is the
“displacement” of the pendulum, and, therefore,
we find that when a pendulum is displaced, or
deflected, or pulled aside a little, the amount of the
deflection is always very nearly proportional to
the force which was used to produce the deflection.
This important law can be verified by experiment.
If C is a small pulley, and B C a string attached to
a pendulum A B whose bob is B. Then if a weight
D be tied to the string and passed over a pulley C,
the amount F B by which the weight D will deflect
the bob B is almost exactly proportional to D, so
long as we only make the deflection E B small,
that is two or three inches, where say 39-1/7 inches is
the length A B of the pendulum.

If F B is made too big, then the line B F can no
longer be considered nearly equal to the arc of
deflection E B, and the proposition is no longer true.


Hence then, both by experiment and on theory,
we find that for small distances the displacement
of a pendulum bob is approximately equal to the
force by which that displacement is produced.

But if so, then from what has gone before, we
have an example of harmonic motion. The weight
of the bob, tending
to pull the bob
back to E, acts
just as an elastic
band would act,
that is to say pulls
more strongly in
proportion as the
distance F B is
bigger. In fact, if
we could remove
the force of gravity
still leaving the
mass B of the
pendulum bob, the
force of an elastic
band acting so as to tend to pull the bob back to
rest might be used to replace it. It would be all
one whether the bob were brought back to rest by
the downward force of its own gravity, or by the
horizontal force of a properly arranged elastic band
of suitable length.
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But the motion of the bob, under the influence
of the pull of an elastic band where the strain was
always proportional to the displacement, would, as
we have seen, be harmonic motion, and performed
in equal times whatever the extent of the swing.
Whence then we conclude that if the swings of a
pendulum are not too big, say not exceeding
two and a half inches each way, the motion may be
considered harmonic motion, and the swings will be
made in equal times whether they are large or small
ones. In other words, a clock with a 39-1/7 inch
pendulum and side swing on each side if not over
two inches will keep time, whatever the arc of swing
may be.

This may be verified experimentally. Take a
pendulum of wood 39-1/7 inches long, and affix to its
end a bob of 10 lbs. weight. The pendulum will
swing once in each second. To pull it aside
two inches we should want a weight such that its
moment about the point of support was equal to
the moment of the force of gravity acting on the
bob, about the point of support. In other words,
the weight required × 39-1/7 inches = 10 lbs. ×
2 inches. Whence the weight required = 1/2 lb.
(nearly).

Now fix a similar pendulum A B 39-1/7 inches long,
horizontally, with a weight B of 10 lbs. on it. Fasten
it to a vertical shaft C D, with a tie rod of wire or
string A B so as to keep it up, and attach to each
side of the rod A B elastic threads E F and E G.
Let these threads be tied on at such a point that
when B is pulled aside two inches the force tending
to bring it back to rest is half a pound. Then if set
vibrating the rod will swing backwards and forwards
in equal times, no matter how big, the arc of vibration
(provided the arc is kept small), and the time of
oscillation will be that of a pendulum, namely, one
swing in a second. In fact, whether you put A B
vertically and let it swing on the pivots C and D
by the force of gravity, or put it horizontally, and
thus prevent gravity acting on it, but make it swing
under the accelerating influence of a pair of elastic
bands so arranged as to be equivalent to gravity, in
each case it will swing in seconds.
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It is this curious property of the circle that
makes the vertical force of gravity on a pendulum
pull it as though it were a horizontally acting
elastic band; that is the reason why a pendulum is
equal-time-swinging, or, as it is called, isochronous,
from two Greek words that mean “the same” and
“time.”

But it must be remembered that this equal
swinging is only approximate, and only true when
the arc of vibration is small.

Here then we have a proof which shows us that
the pendulum of a clock and the balance wheel of
a watch depend on exactly the same principles.
They are each an example of harmonic motion.

The next question that arises is whether the
weight of the pendulum has any influence upon the
time of its vibration.

A little reflection will soon convince us that it
has none. For we know that the time that bodies
take to fall to the ground under the action of
gravity is independent of the weight. A falling
2 lb. weight is only equivalent to two pound-weights
falling side by side.

In the same way and by the same reasoning we
might take two pendulums of equal length, and
each with a bob weighing 1 lb. They would,
if put side by side close together swing in equal
times. But the time would be the same if they
were fastened together, and made into one
pendulum.

For inasmuch as the fall of a pendulum is due
to gravity, and the action of gravity upon a body
is proportional to its mass, it follows that in a
pendulum the part of the gravitational force that
acts upon each part of the mass is occupied in
moving that mass, and the whole pendulum may
be considered as a bundle of pendulums tied
together and vibrating together.

The same would be the case with a pendulum
vibrating under the influence of a spring. If you
have two bobs and two springs, they will vibrate in
the same time as one bob accelerated by one
spring. In this case, however, the force of the
one spring must be equal to the combined force
of the two springs. In other words, the springs
must be made proportional in strength to the
masses.

Hence, then, you cannot increase the speed of
the vibration of a pendulum by adding weight
to the bob.

On the other hand, if you have a bob vibrating
under the influence of a spring, like the balance
wheel of a watch, then if you increase the bob
without increasing the spring, since the mass to
be moved has increased without a corresponding
increase in the accelerating force acting on it, the
time of swing will alter accordingly.

But in the case of gravity, by altering the mass,
you thereby proportionally alter the attraction on
it, and therefore the time of swing is unaltered.
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The explanation which has been given above of
the reasons why a pendulum swings backwards
and forwards in a given time independently of the
length of the arc through which it swings, that is
to say of the amount by which it sways from side
to side, is only approximate, because in the proof
we assumed that the arc of swing and the line F B
were equal, which is not really and exactly true.
Galileo never got at the real solution, though he
tried hard. It was reserved for another than he
to find the true
path of an isochronous
pendulum
and
completely to
determine its
laws. Huygens, a Dutch mathematician, found that
the true path in which a pendulum ought to swing
if it is to be really isochronous is a curve called a
cycloid, that is to say the curve which is traced out
by a pencil fixed on the rim of a hoop when the
hoop is rolled along a straight ruler. It is the curve
which a nail sticking out of the rim of a waggon
wheel would scratch upon a wall. I will not go
into the mathematical proof of this. Clocks are
not made with cycloidal pendulums, because when
the arc of a pendulum is small the swing is so
very near a cycloid as to make no appreciable
difference in time-keeping.


I am now glad to be able to say that I have dealt
with all the mathematics that is necessary to enable
the mechanism of a clock to be understood. It all
leads up to this:—

(1) A harmonic motion is one in which the
accelerating force increases with the distance of
the body from some fixed point.

(2) Bodies moving harmonically make their
swings about this point in equal times.

(3) A spring of any sort or shape always has a
restitutional force proportional to the displacement.

(4) And therefore masses attached to springs
vibrate in equal times however large the vibration
may be.

(5) The bob of a pendulum, oscillating backwards
and forwards, acts like a weight under the
influence of a spring, and is therefore isochronous.

(6) The time of vibration of a pendulum is
uninfluenced by changes in the weight of the bob,
but is influenced by changes in the length of the
pendulum rod. The time of vibration of a mass
attached to a spring is influenced by changes in
the mass.

We have now to deal with the application of
these principles to clocks and watches.

Clocks had been known before the time of
Galileo, and before the invention of the pendulum.
They had what is known as balance, or verge
escapements. Strictly in order of time I ought to
explain them here. But I will not do so. I will go
on to describe the pendulum clock, and then I will
go back and explain the verge escapement, which,
we shall see, is really a sort of huge watch of a
very imperfect character.

As soon as Galileo had discovered that pendulums
were isochronous, that is, equi-time-swinging, he
set to work to see whether he could not contrive
to make a timepiece by means of them. This
would be easy if only he could keep a pendulum
swinging. When a pendulum is set swinging, it
soon comes to rest. What brings it to rest? The
resistance of the air and the friction of the pivots.
Therefore what is obviously wanted is something
to give it a kick now and then, but the thing
must kick with discretion. If it kicked at the
wrong time, it might actually stop the pendulum
instead of keeping it going. You want something
that, just as the pendulum is at one end and has
begun to move, will give it a further push. Suppose
that I have a swing and that I put a boy in it,
and I swing him to and fro. I time my pushes.
As he comes back against my hand I let him
push it back, and then just as the swing turns I
give it a further push. But I cannot stand doing
that all day. I must make a machine to do it.
Now what sort of a machine?

First, the machine must have a reservoir of
force. I can’t get a machine to do work unless I
wind it up, nor a man to do work unless I feed
him, which is his way of being wound up. But
then what do I want him to do? I want him,
when I give him a push, to push me back harder.
I want a reservoir of force such that when a
pendulum comes back and touches it, the touch,
like the pressure of the trigger of a gun, shall
allow some pent-up power to escape and to drive
the pendulum forward.

This is the case in a swing. Each time that the
swing returns to my hands I give it a push, which
serves to sustain the motion that would otherwise
be destroyed by friction and the resistance of
the air.

Such an arrangement, if it can be contrived
mechanically, is called an “escapement.”

An arrangement of this kind was contrived by
Galileo. He provided a wheel, as is here shown,
with a number of pins round it. The pendulum
A B has an arm A H attached to it, and there is a
ratchet C D which engages with the pins. The
ratchet has a projecting arm E F.
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When the pendulum comes back towards the
end of its beat, the arm A H strikes the arm E F,
and raises the ratchet C D. This releases the
wheel, which has a weight wound up upon it, and
therefore at once tries to go round. The consequence
is, that the pin G strikes upon the arm
A H, and thus on its return stroke gives an impetus
to the pendulum. As the pin G moves forward it
slides on the arm A H till it slips over the point H.
The wheel now being free, would fly round were
it not that when the pendulum returned, and the
arm A H was lowered, the ratchet had got into
position again and its point D was ready to meet
and stop the next pin that was coming on against
it. At each blow of the pins against the pendulum
a “tick” is made, at each blow of a pin against
the ratchet a “tock” is sounded, so that as it
moves the pendulum makes the “tick-tock” sound
with which we are all familiar.

Hence then a clock consists of a wheel, or train
of wheels, urged by a weight or spring, which
strives continually to spin round, but its rotation
is controlled by an escapement and pendulum, so
contrived as only to allow it to go a step forward
at regular equal intervals of time.

But this would make only a poor sort of escapement.
For the mode of driving the pendulum
adds a complication to the swing of the pendulum.
Instead of the pendulum being simply under the
accelerative force of gravity, it is also subjected to
the acceleration of the pin G. This acceleration is
not of the “harmonic” order. Hence so far as it
goes it does not tend to assist in giving a harmonic
motion to the pendulum, but, on the contrary, disturbs
that harmonic motion. Besides this, the
impulse of the pin is in practice not always uniform.
For if the wheel is at the end of a train of wheels
driven by a weight, though the force acting on it
is constant, yet, as that force is transmitted through
a train of wheels, it is much affected by the friction
of the oil. And on colder days the oil becomes more
coagulated, and offers greater resistance. Moreover,
as will be explained more in detail afterwards, the
fact that the impulse is administered by G at the end
of the stroke of the pendulum is disadvantageous,
as it interferes with the free play of the pendulum.


From all these causes the above escapement is
imperfect in character, and would not do where
precision was required.
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It is now time to return to the old-fashioned
escapements which were in use before the time of
Galileo. These consisted of a wheel called a crown
wheel, with triangular teeth. On one side of this
wheel a vertical axis was fitted, with projecting
“pallets” e f. Across the axis a verge or rod e f
was placed, fitted with
a ball at each end.
When the crown wheel
attempted to move on,
one of its teeth came
in contact with a pallet.
This urged the pallet
forward, and thereby
caused an impulse to
be given to the axis, on which was mounted the
verge, carrying the balls. These of course began
to move under the acceleration of the force thus
impressed upon the pallet. Meantime, however,
the other pallet was moving in the opposite direction,
and by the time the first pallet had been
pushed so far that it escaped or slid past the tooth
of the crown wheel, which was pressing upon it,
the other pallet had come into contact with the
tooth on the other side of the crown wheel. This
tended to arrest the motion of the verge, to bring
the balls to a standstill, and ultimately to impart a
motion in a contrary direction to them.

Thus then the arrangement was that of a
pendulum not acted on by gravity, for the balls
neutralised one another. The pendulum was,
however, not subjected to a harmonic acceleration,
but alternately to a nearly uniform acceleration
from A to B and B to A. As a result, therefore,
the time of oscillation was
not independent of the arc
of swing, but varied according
to it, as also according
to the driving power of the
crown wheel. At each stroke
there was a considerable
“recoil.” For as each tooth
of the wheel came into play
it was unable at first to
overcome and drive back the
pallet against which it was
pressing, but, on the contrary, was for a time itself
driven back by the pallet.
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Of course, so long as the motions of the wheel
and verge were exactly uniform, fair time was kept.
But the least inequality of manufacture produced
differences.

Nevertheless it was on this principle that clocks
were made during the thirteenth, fourteenth and
fifteenth centuries. They were mostly made for
cathedrals and monasteries. One was put up at
Westminster, erected out of money paid as a fine
upon one of the few English judges who have been
convicted of taking bribes.

The time of swing of these clocks depended
entirely upon the ratio of the mass of the balls at
the end of the verge as compared with the strength
of the driving force by which the acceleration on
the pallets was produced. They were very commonly
driven by a spring instead of a weight. The
spring consisted of a long strip of rather poor
quality steel coiled up on a drum. As it unwound
it became weaker, and thus the acceleration on the
verge became weaker, and the clock went slower.

In order, therefore, to keep the time true, it
became necessary to devise some arrangement by
which the driving force on the crown wheel should
be kept more constant.

This gave rise to the invention of the fusee.
The spring was put inside a drum or cylindrical
box. One end of the spring was fastened to an
axis, which was kept fixed while the clock was
going; the other was fastened to the inside of the
drum. Round the drum a cord was wound, which,
as the drum was moved by the spring, tended to
be wound up on the surface of the drum. Owing
to the unequal pull of the spring, this cord was
pulled by the drum strongly at first, and afterwards
more feebly. To compensate its action a conical
wheel was provided, with a spiral path cut in it
in such a way and of such a size and proportion
that as the wheel was turned round by the pull
of the drum the cord was on different parts of it,
so that the leverage or turning power on it varied,
becoming greater as the pull of the cord became
weaker, and in such a ratio that one just compensated
the other, and the
turning power of the
axle was kept uniform.

In this manner small
table clocks were made
which kept very tolerable
time.
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Huygens converted
these clocks into pendulum
clocks in a very
simple manner. He removed
one of the balls,
lengthened the verge,
and slightly increased
the weight of the other
ball. By this means, while the crown wheel still
continued to drive the verge and remaining ball, the
acceleration on that ball now no longer depended
entirely on the force of the crown wheel. The
acceleration and retardation were now almost entirely
governed by the force of gravity on the
remaining ball, and this acceleration was harmonic.


The clock, therefore, was immensely improved
as a time-keeper. Still, however, the acceleration
remained partly due to the driving power, and this
was partly non-harmonic and introduced errors.

Most of the old clocks were converted shortly
after the time of Huygens. As there was in
general no room for the pendulum inside the
clock-case, they usually brought the axle on which
the pallets were mounted outside the clock and
made it vibrate in front of the face.

Many old clocks exist, of which the engraving in
the frontispiece is an example, that have been thus
converted. A true old verge escapement clock is
now a rarity.

The type of escapement invented by Galileo
never came into vogue for clocks, on account of its
imperfections, except till after a long interval, when,
with certain modifications, it became the basis of a
new improvement at the hands of Sir George Airey.

The crown wheel fell into disuse and was replaced
by the anchor escapement, which was employed in
that popular and excellent timepiece used throughout
the eighteenth and the early part of the nineteenth
century, and is now known as “The Grandfather’s
Clock.” It was after all the crown wheel
in another shape. The wheel, however, was flattened
out, the teeth being put in the same plane.
This made it much easier to construct. The pallets
were fixed on an axis, and were a little altered so
as to suit the changed arrangement of the teeth.
The pendulum was no longer hung on the axis
which carried the pallets. A cause of a good deal
of friction and loss of power was thus removed.
The pendulum was hung from a strip of thin steel
spring, which allowed it to oscillate, and which
supported it without friction. This excellent
manner of suspending pendulums is now universal.
It enabled the pendulum to be made very heavy.
The bob was usually some eight or nine pounds
weight. By this means the acceleration on the
pendulum was due almost entirely to gravity acting
on the bob, and thus the motion of the pendulum
became almost wholly harmonic. Whence it followed
that variations in the pendulum swing
became of secondary importance, and did not
greatly alter the going of the clock.
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Therefore when the wheels became worn, and the
pivots choked with old oil and dust, the old clock
still went on. If it showed a tendency to stop for
want of power, a little more was added to the driving
weight, and the clock kept as good time as ever.

The swing of the pendulum was by this escapement
enabled to be made small, so that the arc
of swing of the bob differed but little from a
cycloid.

The secret of the time-keeping qualities of these
old “Grandfather” clocks is the length of pendulum.
This renders it possible to have but a small arc of
oscillation, and therefore the motion is kept very
nearly harmonic. For practical purposes nothing
will even now beat these old clocks, of which one
should be in every house. At present the tendency
is to abolish them and to substitute American clocks
with very short pendulums, which never can keep
good time. They are made of stamped metal.
When they get out of order no one thinks of having
them mended. They are thrown into the ash-pit
and a new one bought. In reality this is not
economy.

Good “Grandfather” clocks are not now often
made. The last place I remember to have seen them
being manufactured is at Morez, in the district of
the Jura. An excellent clock, enclosed in a dust-tight
iron case, with a tall painted case of quaint old
design, can be bought for about 55s. The wheels
are well cut, and the internal mechanism very
good.

I visited the town of Morez in the year 1893.
The clock industry was declining. The farmers of
France seemed to prefer small clocks of hideous
appearance, made in Germany and in America, to
the excellent work of their own country. Probably
by now the old clockmaking industry is extinct.
One I purchased at that time has gone well ever
since.









CHAPTER IV.

It is now time to give a description of the various
parts of an ordinary pendulum clock. We will take
the “Grandfather”
clock as an example.
We shall want an
hour hand and a
minute hand in the
centre of the face,
and a seconds hand
to show seconds a
little above them.
There will be a
seconds pendulum
39·14 inches long,
and the centre of
the face of the
clock will be about
seven feet above the
ground, so as to give
practically about five
feet of fall for the
weight.
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In the first place, we have to consider the axle
which carries the minute hand, and which turns
round once in each hour. This is usually made of
a piece of steel about one-sixth of an inch in diameter.
Clockmakers usually call an axle an “arbor,”
or “tree,” whence our word axletree.

This “arbor” is turned in the lathe, so as to
have pivots on each end, fitted into holes in the
clock plates, that is to say, the flat pieces of brass
that serve as the body of the clock. The adjoining
diagram shows S T the clock faces, and C, the arbor
of the minute hand.

Inasmuch as the seconds hand is to turn round
sixty times while
the minute hand
turns round once,
it is obvious that
the arbor of the
minute hand must be connected to the arbor of the
seconds hand by a train of cogwheels so arranged
as to multiply by sixty. This of course involves us
in having large and small cogwheels.
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The small cogwheels usually have eight teeth,
and are for convenience of manufacture, as also to
stand prolonged wear, cut out of the solid steel of
the arbor. They are nicely polished.

The easiest pair of wheels to use will be two
pinions of eight teeth, or “leaves,” as they are
called, and two cogwheels, one of sixty-four teeth,
the other of sixty teeth.

It is then clear that if the arbor A turns round
once in an hour, the arbor B will turn round
eight times in an hour, and C will turn round
(60 × 64)/(8 × 8) = 60 times in an hour, or once in each
minute.

By having 480 teeth on the cogwheel on A, you
could, of course, make C go round once in a minute
without the use of any intermediate arbor such as B.
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But this would not be a very convenient plan.
For as the wheel on A is usually about two and
a quarter inches in diameter, to cut 480 teeth
on so small a wheel would involve us in cutting
about sixty teeth to the inch. The teeth would
thus be microscopically small, and would have to
be set so fine that the least dirt would clog them.
Moreover, the pinion of eight leaves would have to
be microscopic. For these reasons, therefore, it is
usual in clocks not to use wheels with teeth more
than sixty or sixty-four in number, and to diminish
the motion gradually by means, where needful, of
intermediate arbors. We have next to
consider how the weight is to be arranged
so as to turn the arbor A once round in
an hour. We know that we have five feet
of space for the weights to fall in. If we
arrange to have what is called a double
fall, as shown in the sketch, then, allowing
room for pulley wheels, we shall find that
our string may be practically about nine
feet in length.
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The clock will be wanted to go for a
week without winding, and as people may
forget to wind it at the proper hour of the day, we
will give it a day extra, and make an “eight-day”
clock of it. Hence then, while nine feet of cord is
being pulled out by a weight which falls four and
a half feet, the minute hand is to be turned round
as many times as there are hours in eight days,
viz., 192 times. This could be accomplished, of
course, by winding the cord round the arbor of the
minute hand. But this would require 192 turns.
If our cord is to be ordinary whipcord, or catgut,
say one-twelfth of an inch in diameter, in order
that the cord could be wound upon it, the arbor
would have to be 192/12 inches long = 14⅓ inches
long. This would make the clock case unnecessarily
deep. We must
therefore again
have recourse to an
intermediate wheel.
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If we put a pinion
of eight leaves on
the minute hand
arbor c, and engage
it with a wheel of
sixty-four teeth on
another arbor b,
then b will obviously
turn round
once in eight hours,
that is to say,
twenty-four times
in the period of
eight days. And, if
we fix on b a
“drum” or cylinder two inches long, the twenty-four
turns of our cord will just fit upon it, since,
as has been said, our cord is to be one-twelfth of
an inch in diameter. The diameter of the drum
must be such that a cord nine feet long can be
wound twenty-four times round it. That is to say,
each lap must take (9 × 12)/24 = 4½ inches of cord.
From this it is easy to calculate that the diameter
of the drum must be rather less than one and a
half inches. From this then it results that we
want for a “Grandfather’s” clock a drum two
inches long and one and a half inches diameter,
on this a cogwheel of sixty-four teeth working
into a minute hand arbor, with a pinion wheel
with eight leaves, and a cogwheel of sixty-four
teeth, an intermediate or idle wheel with an
eight-leaved pinion, and a cogwheel of sixty teeth,
engaging with a seconds hand arbor with a pinion
of eight leaves. This is called the “train of
wheels.” With it a weight such as can be arranged
in an ordinary “Grandfather’s” clock case will cause
by its fall during eight days the second hand
arbor to turn round once in each minute during
the whole time, and the minute hand arbor to
turn round once in each hour.
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We must next provide an arrangement for winding
the clock up. It is obvious that we cannot do so
by twisting the hands back. It is true that this
could be done, but it would take about five minutes
to do each time and be wearisome. In order to
save this trouble, an arrangement called a ratchet
wheel and pall must be provided. A ratchet wheel
consists of a wheel with a series of notches cut in
it, as shown in the figure A. A pall is a piece of
metal, mounted on a pin, and kept pressed up
against the ratchet wheel by a spring C. It is
obvious that if I turn the wheel A round, and
thus wind up a weight, fastened to a cord wound
round the drum D, that
the pall B will go click-click-click
as the ratchet
wheel goes round, but
that the pall will hold it
from slipping back again.
When, however, I take
my hands away, and let
the ratchet wheel alone,
then the weight E will
pull on the drum D, and
try and turn the ratchet
wheel back the opposite
way to that in which I
twisted it at first. If
the pall B is held fast,
it is impossible to move
it, but if the pall is fixed
to a cogwheel F, which rides loose on the arbor
of the drum D, then the pull of the weight E
will tend to twist the cogwheel F round, and this,
if engaged with a pinion wheel on the minute
hand arbor, will therefore drive the clock. As
the clock arbors move, of course the weight E
gradually runs down, and, at last all the string
is unwound from the drum D. The clock is said
then to have “run down,” but if I take a clock
key, and by means of it wind the string up upon
the drum D, then the pall lets the drum and
ratchet slip; the
clock hands are not
affected. When I
have given twenty-four
turns to the
arbor, the nine feet
of cord will then
be wound upon the
drum again, and the
clock will be ready
to go for eight more
days, and will begin
to move as soon as
I cease to press upon
the clock key.
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I have thus described
the winding
mechanism. It now
remains to describe the escapement.

It is of course obvious that, if the weight and
train of wheels were simply let go, the weight
would rush down, and the seconds-hand wheel
would fly round at a tremendous pace; but we
want it to be so restrained as only to be allowed
to go one-sixtieth part of its journey round in each
second. In fact, we need an “escapement” and a
pendulum.

The escapement usually employed in “Grandfather”
clocks is the anchor escapement above described.
It is not by any means the best sort of
escapement, but it is the easiest to make; and
hence its popularity in the days sometimes called
the “dear, good old days,” when people had to file
everything out by hand, and had to take a day
to do badly what can now be done well in five
minutes.

The escape wheel of an anchor escapement has
thirty sharp angular teeth on its rim. The wheel
is made as light as possible, so that the shock of
stoppage at each tick of the clock may be as slight
as possible, for a heavy blow of course wastes
power and gradually wears out the clock. The
anchor consists of two arms of the shape shown in
the illustration (Fig. 44). As the escape wheel goes
round in the direction of the arrow, the anchor,
mounted on its arbor, rocks to and fro. The wheel
cannot run away, because the act of pushing one
arm or “pallet,” as it is called, outwards, and thus
freeing the tooth pulls the other pallet in, and this
stops the motion of the tooth opposite to it, but
when the anchor rocks back again, so as to disengage
the pallet from the tooth that holds it, then
the opposite tooth is free to fly forward against the
other pallet. This tends to rock the anchor the
other way, but at that instant the pallet just
engages the next tooth of the wheel, and so the
action goes on. The anchor rocks from side to
side; the pallets alternately engage the teeth of
the wheel, making at each rock of the anchor
the tick-tock sound with which we are so familiar.
If the anchor were free to rock at any speed
it could, the ticking of the clock would be very
quick; so, to restrain the vivacity of the anchor,
we have a pendulum. The pendulum might be
simply hung on to the anchor. But the disadvantage
of doing this would be that the heavy bob of
the pendulum would cause such a pressure on the
arbor of the anchor that there would be great
friction, and the arbor would soon be worn out,
and the accurate going of the clock disturbed. The
pendulum therefore is hung on a piece of steel
spring on a separate hook, which lets it go backwards
and forwards and carries the weight easily,
while a rod projecting from the anchor has a pin,
which works in a slot on the pendulum. The
pendulum is therefore able to control and regulate
the movements of the escapement, and thus the
time of the clock.

Of course it is clear that the heavier the driving
weight put on the drum of the clock, and the better
the cut and finish of the wheels, and the greater
the cleanliness and oil, the more will be the
pressure tending to drive round the escape wheel,
and the harder the pressure on the pallets, and
hence the bigger the impulses on the pendulum,
and therefore the larger the amplitude of its swing.

If the amplitude of the pendulum’s swing affected
the time of its swing, then the time kept by the
clock would vary with the weight, and the dirt and
friction, and the drying up of the oil. But here
precisely is where the value of the beautiful law
governing the harmonic motion of the pendulum
comes in. The time of the pendulum is (for small
arcs) independent of the length of swing, and
therefore of the driving force of the clock, and
hence within limits the clock, even though roughly
made and foul with the dirt of years, continues to
keep good time. But the anchor escapement has
imperfections. The only way in which a pendulum
can be relied on to keep accurate time is by leaving
it unimpeded. But the pressure of the teeth on
the pallets in an anchor escapement constantly
interferes with this.
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A little consideration will easily show that there
are some times during the swing of a pendulum at
which interference is far more fatal to its time-keeping
than at others. Thus the bob of a
pendulum may be regarded as a weight shot
outwards from its position of rest against the
influence of a retarding force varying as its distance
from rest—in fact, shot out against a spring. The
time of going out and coming in again will be quite
independent of the force exerted to throw it out,
quite independent of its original velocity. Therefore
a variation in the impulse given to the bob is
of no consequence, provided that impulse is given
when the bob is near the position of rest. This
follows from the nature of the motion. If a ball
be attached to a piece of elastic thread, and thrown
from the hand, so that it flies out, and then stops
and is brought back by the elastic force of the
thread, the time of the outward motion and the
return is the same whatever be the force of
the throw. And so if a pendulum be impelled
outwards from a position of rest, the time of the
swing out and back is the same, however big (within
limits) is the impelling force and the consequent
length of the swing. The use of a pendulum as
a measure of time is to impel it outwards, and then
let it fly freely out and back. But if its motion is
not free, if forces other than gravity act upon it
while on its path, then its time of swing will be
disturbed. It does not matter with what force you
originally impel it, but what does matter is, that
when it once starts it should be allowed to travel
unimpeded and uninfluenced. Now that is what
an anchor escapement does not do. The impulse
is given the whole way out on one of the pallets,
and then when it is at its extreme of swing, and
ought to be left tranquil, the other pallet fastens
on it. But a perfect escapement ought to give its
impulse at the middle point of the swing, when the
pendulum is at the lowest, and then cease, and
allow the pendulum to adapt its swing to the
impulse it has received, and
thus therefore to keep its time
constant. This is done by an
escapement called the dead
beat escapement, which,
though in an imperfect way,
realises these conditions.

The alteration is made in
the shape of the pallets of
the anchor. The wheel is much the same. Each
pallet consists of two faces: a driving face a b
and a sliding face b c.




When the tooth b has done its work by pressing
on the driving face, and thus driving the
anchor over, say, to the left, then the tooth on
the opposite side falls on the sliding face of the
other pallet. This being an arc of a circle, has
no effect in driving the anchor one way or the
other; hence the pendulum is free to swing to
the left as far as it likes and return when it feels
inclined, always with the exception of a little
friction of the tooth on the faces of the pallets,
but when it returns and begins to move towards
the right, the tooth slides back along the face
of the pallet till the pendulum is almost at the
middle of its swing; then an impulse is given
by the pressure of the tooth upon the inclined
plane a´ b´. As soon, however, as the tooth leaves
b´, another tooth on the other side at once engages
the sliding face b c of the other pallet, and so the
motion goes on.

This beautiful escapement is at present used
for astronomical clocks; the pallets are made
of agate or sapphire, and therefore do not grind
away the teeth of the wheel perceptibly, and the
loss by friction on the sliding surfaces is exceedingly
small.

There are several other ways even better than
this for securing a free pendulum movement. We
have now to return to our clock.

The centre arbor moves round once in an hour,
and carries the minute hand. In order to provide an
hour hand, which shall turn round once in twelve
hours, we fasten a cogwheel and tube N on to
the minute hand arbor by means of a small spring,
which keeps it rather tight, but allows it to slip if
turned round hard (see Fig. 45). This spring is a
little bent plate slipped in behind the cogwheel on
which its ends rest; its centre presses on a shoulder
on the minute hand arbor; it is a sort of small
carriage spring. The cogwheel n has thirty teeth.
This cogwheel engages another cogwheel o with thirty
teeth, on a separate arbor, which carries a third
cogwheel, p, with six teeth, and this again engages a
fourth cogwheel, q, with seventy-two teeth, mounted
on a tube which slips over the tube to which the
cogwheel a is attached. It is now easy to see that
for each turn of the minute hand arbor the
arbor p makes one turn, and for each turn of the
arbor p the cogwheel d, makes one-twelfth of a turn.
From which it follows that for each turn of the
minute hand arbor the cogwheel d with its tube,
or, as it is sometimes called, its “slieve,” makes one-twelfth
of a turn, and thus makes a hand fastened
to it show one hour for every complete turn of the
minute hand.

The minute hand is attached to the tube or slieve
which carries the cogwheel N. The hour hand is
attached to the tube or slieve which carries the
cogwheel Q, and one goes twelve times as slowly
as the other.

But if you want to set the clock it is easy to do
so by reason of the fact that the minute hand is not
fixed to the arbor, but only to the slieve on the
cogwheel that fits on the arbor, and is held somewhat
tight to the arbor by means of the spring.
The hands can thus be turned, but they are a little
stiff. A washer on the minute hand arbor keeps
the slieve on the cogwheel pressed tight against the
spring, being secured in its turn by a very small
lynch-pin driven through a hole in the minute
hand arbor.

It remains to explain a few subsidiary arrangements,
not always found upon all clocks, but which
are useful.

In order to prevent the overwinding of the clock
(see Fig. 43), which would cause the cord to overrun
the drum, an arm is provided, fitted with a
spring. As the weight is wound up the free part
of the cord travels along the drum or the fusee;
and the cord, when it is near the end of the
winding, comes up against the arm and pushes
it a little aside. This causes the end of the arm
to be pushed against a stop on the axis of the
fusee, and thus prevents the clock being further
wound up. The stop, being ratchet-shaped, does
not prevent the weight from pulling the ratchet
wheel round the other way, and thus driving the
clock; it only prevents the rotation of that wheel
when the string is near it, and the winding is
finished.

Another arrangement is the “maintaining spring.”

It will be remembered that during the process of
winding the clock the hand twisting the key takes
the pressure of the ratchet wheel off the pall, so
that during that operation no force is at work to
drive the clock. In consequence the pendulum
receives no impulse, but swings simply by virtue of
its former motion. If the process of winding were
done slowly enough the clock might even stop. To
avoid this, a very ingenious arrangement is made to
keep the cogwheel mounted on the winding shaft
going during the winding-up process. This is called
a maintaining spring.

The arrangement shown in Fig. 53 will explain it.
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The cogwheel a and the ratchet wheel are both
mounted loosely on the arbor carrying the drum.
a is linked to b by a spring c. The ratchet wheel
b is engaged by a pall fixed to some convenient place
on the body of the clock frame. When the weight
pulls on the drum the pull is communicated to the
ratchet wheel b, and this acts on the spring c and
pulls it out a little. As soon as the spring c is
pulled out as far as its elasticity permits, a pull is
communicated to the cogwheel a, and the clock is
driven round. When the clock is wound the
pressure of the weight is removed, and therefore
the ratchet wheel e no longer presses on the pall,
and thus no pressure is communicated to the ratchet
wheel b, or through it to the clock. But here the
spring c comes into play. For since the ratchet
wheel b is held fast by the pall d, the spring c
pulls at the wheel a, and thus for a minute or so
will continue to drive the clock. This driving force,
it is true, is less than that caused by the weight, but
it is just enough to keep the pendulum going for a
short time, so that the going of the clock is not
interfered with.

If the reader can get possession of a clock, preferably
one that does not strike, and, with the aid of a
small pair of pincers and one or two screwdrivers,
will take it to pieces and put it together again, the
mechanism above described will soon become familiar
to him. Not every clock is provided with
maintaining spring and overwinding preventer.

The cause of stoppage of a clock generally is dirt.
Where possible, clocks should always be put under
glass cases. “Grandfather” clocks will go much
better if brown paper covers are fitted over the works
under the cases. In this way a quantity of dust may
be avoided. To get a good oil is very important.
It will be noticed that pivot-holes in clocks are
usually provided with little cup-like depressions.
This is to aid in keeping in the oil. The best clock
oil is that which does not easily solidify or evaporate.
Ordinary machine oil, such as used for
sewing machines, is good as a lubricant, but rapidly
evaporates. Olive oil corrodes the brass.

It is best to procure a little clock oil, or else the
oil used for gun locks, sold by the gunsmiths. The
holes should be cleaned out with the end of a
wooden lucifer match, cut to a tapering point. The
pivots should be well rubbed with a rag dipped in
spirits of wine. If the pivots are worn they should
be repolished in the lathe. If the cogs of the
wheels are worn, there is no remedy but to get new
ones. Old clocks sometimes want a little addition
to the driving weight to make them go.

The weight necessary to drive the clock depends
on its goodness of construction, and on the weight
of the pendulum. If the clock is driven for eight
days with a cord of nine feet in length with a double
fall, then during each beat of the pendulum that
weight will descend by an amount =

9/(2 × 24 × 60 × 60 × 8) feet or 1/12800th inch.

Whence, if the clock weight is 10 lbs., the impulse
received by the clock at each beat is equivalent
to a weight of 10 lbs. falling through 1/12800th of
an inch, or to the fall of six grains through an inch.


The power thus expended goes in friction of the
wheels and hands, and in maintaining the pendulum
in spite of the friction of the air.

The work therefore that is put into the clock by
the operation of winding is gradually expended
during the week in movement against friction.
The work is indestructible. The friction of the
parts of the clock develops heat, which is dissipated
over the room and gradually absorbed in nature.
But this heat is only another form of work.
Amounts of work are estimated in pressures acting
through distances. Thus, if I draw up a weight of
1 lb. against the accelerative force of gravity
through a distance of one foot, I am said to do a
foot-pound of work.

One pound of coal consumed in a perfect engine
would do eight millions foot-pounds of work. Hence,
if the energy in a pound of coal could be utilized,
it would keep about 100,000 grandfather’s clocks
going for a week. As it is consumed in an ordinary
steam engine it will do about half a million foot-pounds
of work. One pound of bread contains
about three million foot-pounds of energy. A man
can eat about three pounds of bread in a day, and,
as he is a very good engine, he can turn this into
about three-quarters of a million foot-pounds of
work. The rest of the work contained in the bread
goes off in the form of heat.
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As has been previously said, the power of the
action of gravity in drawing back a pendulum that
has been pushed aside from its position of rest
becomes less in proportion as the pendulum is longer,
and hence as the pendulum is longer the time of
vibrations increases. In the appendix to this chapter
a short proof will be given showing that the length
of a pendulum varies as the square of the time
of its vibration. A
pendulum which is
39·14 inches in
length vibrates at
London once in each
second. Of course
at other parts of
the earth, where
the force of gravity
is slightly different,
the time of vibration
will be different, but,
since the earth is
nearly a globe in
shape, the force of gravity at different parts of
it does not vary much, and therefore the time of
vibration of the same pendulum in different parts
of the earth does not vary very much. The length
of a pendulum is measured from its point of suspension
down to a point in the bob or weight. At first
sight one would be inclined to think that the centre
of gravity of the pendulum would be the point to
which you must measure in order to get its length.
So that if B were a circular bob, and the rod of the
pendulum were very light, the distance A B to the
centre of the bob would be the length of the pendulum.
But if we were to fly to this conclusion, we
should be making the same error that Galileo made
when he allowed a ball to roll down an inclined
plane. He forgot that the
motion was not a simple
one of a body down a
plane, but was also a
rolling motion. The pendulum
does not vibrate
so as always to keep the
bob immovable with the
top side C always uppermost.
On the contrary,
at each beat the bob
rotates on its centre and
makes, as it were, some
swings of its own. Therefore in the total motions
of the pendulum this rotation of the bob has to
be taken into account. Of course, if the pendulum
were so arranged that the bob did not rotate, and
the point C were always uppermost, as, for instance,
if the pendulum consisted of two parallel rods, A B
and C D, suspended from A and C, then we might
consider the bob as that of a pendulum suspended
from E, and the pendulum would swing once in a
second if A B = C D = E F were equal to 39·14
inches, for by this arrangement there would be no
rotation of the bob. But as pendulums are generally
made with the bob rigidly fixed to the rod E F, the
rotation must be taken into account.
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It wants some rather advanced mathematical
knowledge to do this. But in practice clockmakers
take no account of it. The
correction is not a large one,
so they make the rod as nearly
true as they can, arrange a
screw on the bob to allow of
adjustment, and then screw
the bob up and down until in
practice the time of oscillation
is found to be correct.
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The mode of suspension of
a pendulum of the best class
is that shown in Fig. 56,
which allows the pendulum
to fall into its true position without strain. A is
a tempered steel spring, which bends to and fro at
each oscillation. It is wonderful how long these
springs can be bent to and fro without breaking.
Inasmuch as lengthening the pendulum increases
the time, so that the time of vibration t varies as
the square of the length of the pendulum, a very
small lengthening of the pendulum causes a difference
in the time. In practice, for each thousandth
of an inch that we lengthen the pendulum we make
a difference of about one second a day in the going
of the clock. If we cut a screw with eighteen threads
to the inch on the bottom of the pendulum rod, and
put a circular nut on it, with the rim divided into
sixty parts, then each turn through one division
will raise or lower the bob by 1/1080th of an inch, and
this first causes an alteration of time of the clock
by one second in the day. This is a convenient
arrangement in practice, for it affords an easy
means of adjusting the pendulum. We need only
observe how many seconds the clock loses or gains
in the day, and then turn the nut through a corresponding
number of divisions in order to rectify
the pendulum.
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Another needful correction of the pendulum is
that due to changes in temperature. If the rod
of the pendulum be made of thoroughly dried
mahogany, soaked in a weak solution of shellac
in spirits of wine, and then dried, there will not
be much variation either from heat or moisture.
But for clocks required to have great precision the
pendulum rod is usually made of metal. A rod of
iron expands about 1/160000th of its length for each
degree Fahrenheit; and therefore for each degree
Fahrenheit a pendulum rod of 39·14 inches will
expand about 1/4000 thousandths of an inch, and
thus make a difference in the going of the clock
of about one-fourth
of a second per day.
The expansion will,
of course, make the
clock go slower. It
would be possible
to correct this expansion
if some
arrangement could
be made, whenever
it occurred, to lift
up the bob of the
pendulum by an
amount corresponding to it, as, for instance, to
make the bob of some material which expanded
very much more by heat than the material of which
the pendulum rod was made.
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Thus if we hang on to the end of a pendulum
of iron a bottle of iron about seven inches long,
and almost fill it with mercury, then, as soon as
the heat increases, the iron of the rod and of the
bottle expands, and the centre of oscillation of the
pendulum is lowered. But as the linear expansion
of mercury contained in a bottle is about five times
that of iron, the mercury rises in the bottle, and thus
the expansion downwards of the pendulum rod is
compensated by the expansion upwards of the
mercury in the bottle. The rod may be fastened to
the mouth of the bottle by a screw, so that as the
bottle is turned round it may be raised or lowered
on the rod, and thus the length of the pendulum
may be adjusted. The bottle is made of steel tube,
screwed into a thin turned iron top and bottom. Of
course no solder must be used to unite the iron, for
mercury dissolves solder. A little oil and white-lead
will make the screwed joints tight. This is an
excellent form of pendulum. Another plan is to
use zinc as the metal which is to counteract the
expansion of the iron. The expansion of zinc is
about three times that of iron.
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Hence a zinc tube, about twenty inches long
(shown shaded in Fig. 59), is made to rest upon
a disc fastened to the lower part of the iron
pendulum rod. On the top of the zinc rests a
flat ring A, from which is suspended an iron
tube A, which carries the bob B. The expansion
of the zinc tube is large enough to compensate
the expansion both of the rod and the tube, and
the bob consequently remains at the same depth
below the point of suspension, whatever be the
temperature.


There is, however, a new method which is far
superior to all these, and this is due to the discovery
by M. Guilliaume, of Paris, of a compound
of nickel and steel which expands so little that it
can be compensated by a bob of lead
instead of by a bob of mercury. This
material is sold in England under the
name of “invar.” An invar rod with a
properly proportioned lead bob makes
an almost perfect pendulum, the expansion
of the invar and the lead going
on together. The exact expansion of
the invar is given by the makers, who
also supply information as to the size
and suspension of the bob proper to
use with it.

It has been already shown that the
uniformity of time of swing of a pendulum
is only true when the arc
through which it swings is very small.
If the total swing from one side to
another is not more than about two
inches very little difference in time-keeping
is made by putting a little more driving
weight on the clock, and thus increasing its arc
of swing; but when the arc of swing becomes say
three inches, or one and a half inches on each
side of the pendulum, then the time of vibration
is affected. At this distance each tenth of an inch
increase of swing makes the pendulum go slower
by about a second a day.

The resistance of the air, of course, has a great
influence on a pendulum, and is one of the chief
causes that bring it ultimately to rest. Even the
variations of pressure of the atmosphere which the
barometer shows as the weather varies have an effect
on the going of a clock. Attempts have been made
by fixing barometers on to pendulums with an ingenious
system of counter balancing to counteract
this, but these refinements are not in common use,
and are too complicated to be susceptible of effective
regulation.

Appendix to Chapter IV.

It may be useful to give a simple form of proof
of the law which governs the time of oscillation of
a pendulum whose length is given.

Unfortunately, it is impossible to give one so
simple as to be comprehended by those who know
nothing whatever of mathematics. It is, however,
possible to give a proof that requires very little
mathematical knowledge.

We know that when a mass of matter is whirled
round at the end of a string it tends to fly outwards
and puts a strain on the string. The faster the
speed at which the mass is whirled, the stronger
will be the strain on the string. Suppose that the
length of the string equals R, the velocity of the mass
as it flies round equals V. Let a be the body whirled
round by a string o a from a centre at O. The
body always, of course, tends to fly on in a straight
line from the point at which it is at any instant.
But that tendency is frustrated by the pull of the
string which constrains it to take a circular path.
It is, of course, all one whether the force that
tends to pull the body inwards towards O is a
string or an attractive force
of any kind acting through
a distance without any
string at all. Evidently if
the body keeps its place
in the circle it must be
because the centrifugal
force tending to whirl it
out is equal to the centripetal
or attractive force
tending to pull it in.
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The strain on the body, due to the force tending
to pull it inwards, we shall designate by F, meaning
by F the number of feet of velocity that would in one
second be imparted to the body by the attractive force.

Suppose that at some given instant of time the
body is at a point a. At that instant its direction
will be along a b, tangential to the circle at a, and
that is the path it would take if the centripetal or
attractive force ceased to act just as the body got
to a. In that case the body would be whirled off
like a stone from a sling along the line a b, and would
at the end of a given time, let us suppose a second,
arrive at b. But it is not so whirled off; it is attracted
towards O and pulled inwards, and comes to c. Hence,
then, the attractive force acting during one second
must have been sufficient to pull the mass in from
b to c. But we know that if an accelerating force (F)
acts on a body for a second it produces a final
velocity equal to F at the end of the second, and an
average velocity half F during the second.

Hence, then, the space b c, by which the body
has been pulled in, is represented by half F, but
a b, the space which the body would have travelled
forwards, will be represented by V, the velocity of
the body in a second; but if the motion be such
that the distance b c travelled in a second is very
small, then the triangles a b d and a b c are approximately
similar, and the smaller a b is the more
nearly similar they are. Whence then (a b)/(b c) = (a d)/(a b),
that is to say (a b)² = a d × b c.

But a b represents the space which would have
been traversed by the body in one second at the
rate it was going, and hence is equal to V; a d is
the diameter of the circle, and hence equals 2 R;
b c is the space through which the body has been
drawn in the second by the attractive force F, and
therefore equals half F.

Whence then V² = 2 R × half F = R F.


We took a second as the limit of time during
which the motion was to be considered. Of course
any other time could have been taken. Now what
is true of the motion of a body during a very short
time is also true of the body during the whole of
its path, assuming that the path is a circle, and
that F remains constant, as it obviously will if
the path is a circle, and the velocity is uniform.
Whence then we may generally say that if a body
is being whirled round at the end of a string
the strain F on the string is directly proportional
to the square of the velocity, and is inversely
proportional to the length of the string.

The time of rotation, is of course = length of the
path ÷ velocity

= (2πR)/V = (2πR)/√(R F) = 2π√(R/F).

Whence then we see that for motion in a circle of
a mass under the attraction of a centripetal force,
or pull of a string, the time of rotation will be
uniform, provided that the centripetal force always
varies as the radius of the path. From this it is
evident that a body fixed on to an elastic thread
where the pull varies as the extension would make
its rotations always in equal times. If your sling
consists of elastic, whirl as you will, you can only
whirl the body round so many times in a second, and
no more. Any increase in your efforts only makes
the string stretch, and the circle get bigger. The
velocity of the body in its path of course increases,
but the time it takes to go once round is invariable.

It also follows that if a body hung by a string
of length l, under the action of gravity, be travelling
in a circle round and round, then, if the circle is a
small one compared with the length of the string, the
inward acceleration f towards the centre will be
approximately proportional to the radius r of the
circle, and the time of rotation will be

t = 2π√(r/f).

But in this case f, the inward acceleration, is to
g the acceleration downwards of gravity as A B:A P
or

f/g = (A B)/(A P) = (A P)/(O P) = r/l.
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Whence then the time of rotation of this body
would be if the circle of rotation was small



= 2π√(l/g).

And if you try you will find that this is so. For
instance, take a thread 39-1/7 inches long, that is
3·25 feet. Hang anything heavy from one end of
it, and cause it to swing round and round in a
small circle. Now g the acceleration of gravity
= 32·2 feet per second. π the ratio of the circumference
of a circle to its diameter = 3·14.
From which it follows that the time of rotation
= 2 × 3·14√(3·25/32·2) seconds = 2 seconds. But if
we look at the rotating body sideways, it appears
to act as a pendulum; it matters nothing whether
we swing it round and round or to and fro. For
in any case the accelerative force tending to bring
it back to a position of rest is always proportional
to the distance of displacement, and, therefore, its
time of motion must always be 2π√(l/g) and its
motion harmonic.

The length of a seconds pendulum, that is a
pendulum that makes its double swing in two
seconds, will therefore be

l = 4/((2π)²) × g feet

= (g × 12)/π² inches

 = 39·14 inches.









CHAPTER V.

I have thus described the principal features of
ordinary clocks. For the details many treatises
must be studied, and knowledge acquired which is
not in any books at all.

I now, however, pass to watches. It will be
remembered that a verge escapement consists of
a crown wheel with teeth, engaging two pallets
fixed upon a verge, furnished with balls at its
extremities.

As the crown wheel was urged forwards each
pallet in succession was pushed till it slipped over
the tooth which was engaging it. Then a tooth on
the other side came into sharp collision with the
other pallet, and drove the verge the other way, and
so on.

Now here we have a driving force, and a sort of
pendulum. But how did the verge act as a
pendulum to measure time? It is not a body
rocking under the action of gravity, nor under the
acceleration of a spring. How then can it act as
a regulator of time, and what is the period of its
swing?

The answer to this is, that it is under the
acceleration of gravity, but that gravity does
not act freely on the bobs or weights, but only
through the driving weight and teeth. The
impulse that drives the verge is really also the
accelerating force upon it, and the only accelerating
force upon it.

And the worst feature about the movement is,
that as the teeth and pallets move, the leverage
of the teeth on the pallets alters, and thus the
bobs on the verge are under the influence not
of a uniform or duly regulated force, but of a constantly
varying one, and one that varies in a very
complicated and erratic way. It would be hopeless
to expect much time-keeping from such a
contrivance. The most that could be expected
would be by putting on a very big weight to
reduce to comparative insignificance the friction,
and then hope that the swings would be uniform,
so that whatever went on in one swing would
go on in the next, and thus the time-keeping be
regular.

But any course tending to diminish the driving
force, such as the thickening of the oil, would greatly
affect the going. It was for this reason that Huygens
turned the verge into a pendulum by removing one
of the bobs, and letting gravity thus act on the
other.

For watches, however, a different plan was contrived.
One end of a slender spiral spring was
affixed to the verge. The other end of the spring
was made fast to the clock frame. The verge was
now, therefore, chiefly under the action of the
acceleration of the spring. To make the acceleration
of the teeth of the ’scape wheel less embarrassing,
the teeth were so shaped as only to give a
short push at stated intervals, and not interfere
with the free swing of the verge under the alternate
to-and-fro accelerations and retardations of the
spring. By this means the verge became in
every way an excellent pendulum, not dependent
on gravity, and permitting the watch to be held in
any position.

The verge thus fitted was turned into a wheel,
and became a “balance wheel.” It was compensated
for heat expansion by a cunning use
of the unequal expansion of brass and steel, in
a manner analogous to the way this unequal
expansion of metals had been employed to
compensate the pendulum, and became the
beautiful and accurate time-measurer that we
see to-day, with its pivots mounted in jewels to
diminish friction, and with screws round the
rims of the balance wheel to enable the centre
of gravity to be exactly adjusted to its centre
of rotation, and with a delicate hair-spring of
tempered steel that is a marvel of microscopic
work.

But the escapement of the early watches left
much to be desired. In order to make it clear
how imperfect that early escapement was, we have
to turn back and remember what has been said
about the dead beat escapement.

It will then be remembered that it was shown
that for small arcs the pendulum would keep
good time provided you let it have as much
swing as it wanted to use up the force which
the escapement had applied to it, but not otherwise,
so the pendulums only acted really well
when the impulse was given about the middle
of the swing, and they were free to go on and
stop when they pleased, and turn back at the end
of it.

This essential condition was fairly approximated
to in the dead beat escapement of clocks
which left them at the end of their swing with
only a very slight friction to impede their free
motion.

But when you come to deal with a watch
the case is quite different. Here the escapement
is of a great size compared with the balance
wheel, and the friction even of the most dead
beat watch escapement that could be contrived
was so big compared with the forces acting
on the balance wheel as seriously to derange
its motion, and render it far from a perfect
time-keeper.

Now about this time—I am speaking of the
early part of the eighteenth century—a demand
of a very exceptional character arose for a really
perfect watch. The demand did not arise from
gentlemen who wanted to keep appointments to
play at ombre at their clubs, or even from merchants
to time their counting house hours. For
these the old-fashioned watch did very well. The
demand came from mariners. But the seamen
did not want to know the time merely to arrange
the hours for meals on the ship or to determine
when the watch was to be relieved, but for a far
more important purpose, namely, to find out by
observation of the heavens their place upon the
ocean when far out of sight of the land. It will
be very interesting to see how this problem arose,
and how the patient industry and ingenuity of man
has solved it.

The ancient navigators never went very far
from the shore, for, once out of sight of land, a
ship was out of all means of knowing where she
was. On clear days and nights the compass, and
the sun and stars would tell the mariner the
direction he was sailing in, but it was quite a
problem to determine where he was on the surface
of the earth.
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Let us consider the problem. Suppose for convenience
that the earth is divided up into “squares,”
as nearly, at least, as you can consider a globe to
be so marked out. Let us suppose that it has been
agreed to draw on it from pole to pole 360 lines of
longitude, commencing with one through say
Greenwich Observatory as a starting-point, and
going right round the earth till you come back to
Greenwich again. Also suppose that there have
been drawn a series of circles parallel to the
equator, but going up at equal distances apart
towards the poles. Let us have 179 of these circles,
so as to leave 180 spaces, a to b, b to c, etc., from
pole to pole. This will divide the earth up like a
bird-cage into squares, as if we had robed it in a
well-fitting Scotch plaid. The length measured
along the equator of the side p q of each square at
the equator is taken as exactly sixty nautical miles
(apart from a small error of measurement, which
makes it in actual practice 59·96). This is equal
to sixty-nine and a quarter English statute miles.
The side of the square leading towards the poles q s
would also be sixty nautical miles were it not
that the earth is not truly spherical, which introduces
a slight error. We may, however, roughly
say that at the equator each square
measures sixty nautical miles each
way.
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As we get towards the poles
the squares become rectangular
figures, with the heights of latitude
still sixty nautical miles, but the
widths becoming smaller. Thus
in England our squares measure
p q = 37 nautical miles and q s = 60 nautical
miles.

Now of course we can see at once that it is easy
at any place on the earth’s surface to find your
latitude by a simple observation of the sun at noon,
if you know the day of the year, and have got a
nautical almanac. For by an instrument called a
sextant you can measure the angle he appears to
be above the horizon, and then, as you know from a
nautical almanac the angle he is above the equator,
you can soon determine your place A on the globe.
Or at night, if you measure the angular distance
that the polar star P is from the zenith, or point
exactly over your head—that is, the angle P O Z—you
can subtract it from a right angle and get your
latitude, A O E, at once.
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But how are you to determine your longitude?
The pole-star, or sun, or any other star won’t help
you, for as the earth is moving they keep shifting,
and at one time or another appear exactly in the
same position to everyone on the same parallel of
latitude, as it is easy to see. The fact is that you
are on a ball turning round. You know easily what
latitude you are on, but you cannot tell your longitude
unless you can tell how many hours and minutes
you get to a position before Greenwich gets to the
same position. If when a particular star got to
Greenwich a gong were sounded which could be
heard all over the earth, then of course, by seeing
what stars were overhead, everyone would know
their longitude at once. Perhaps by means of the
new electric waves this will before long be done, and
the Greenwich hours will be sounded all over the
world for the use of mariners. But till this is
accomplished all that can be done is to keep an
accurate clock on board, so as always to give you
Greenwich time.

Early attempts were made to take a pendulum
clock to sea, suspending it so as to avoid disturbance
to its motion by the rocking of the ship.
These proved vain.

It therefore became desirable that a watch with
a balance wheel should be contrived to go with a
degree of accuracy in some respects comparable
with the accuracy of a pendulum clock. To
encourage inventors an Act of Parliament was
passed in the thirteenth year of Queen Anne’s
reign (chapter xv.) (1713) promising a reward of
£20,000 to anyone who would invent a method of
finding the longitude at sea true to half a degree—that
is, true to thirty geographical miles.

If the finding of the longitude were to be accomplished
by the invention of an accurate watch, then
this involved the use of a watch that should not,
in several months’ going, have an error of more
than two minutes, which is the time which the
earth takes to turn through half a degree of
longitude.

This was the problem which John Harrison, a
carpenter, of Yorkshire, made it his life business
to solve. His efforts lasted over forty years, but at
the end he succeeded in winning the prize.

These instruments have been much improved by
subsequent inventors, and have resulted in the
construction of the modern ship’s chronometer, a
large watch about six inches in diameter, mounted
on axles, in a mahogany box. Several of these are
taken to sea by every ship.

The peculiarity of the chronometer is its escapement.

Let A B be the scape wheel, and C D a small
lever attached to C, the pivot on which the balance
wheel and spring is fastened. Let E G be a lever,
with a tooth F which engages the teeth of the
scape wheel and prevents it moving round. Let
H be a spring holding the lever E G up to its
work.
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The lever has a spring K E fastened to it at
the point K. This spring is very delicate. If the
lever C D is turned so that the little projection
M on it strikes the spring E from left to right,
then, as the spring rests on the lever, the whole
lever is pushed over, and the teeth of the scape
wheel set free. At that instant, however, the
escapement is so arranged that the arm C D is
just opposite the tooth D of the scape wheel, so
that the scape wheel, instead of running away,
leaps with its tooth D on to the lever C D and
swings the balance wheel round. The balance
wheel is free to twist as much as it pleases, but the
moment it has twisted so much that the projection
M passes the spring E, then the lever G E flies
back to its place, and the scape wheel is again
checked. Meanwhile the balance wheel flies round
till at last it is brought to rest by the balance spring.
It then recoils and sets out on its return path.
This time, however, the projection M merely flips
aside the spring E and the balance wheel goes
back, till again it is brought to rest and returns.
As soon as the lever comes opposite D the projection
M then again hits the spring E, and releases
the catch at F, and another tooth of the scape
wheel goes by.

There then you have a completely free escapement,
and consequently an accurate one. Many
watches are made with these escapements, but they
are more expensive than those in common use.

There is but little remaining in a watch that is
not in a clock, for the wheel-trains and general
arrangements are very similar.

It is possible to apply the chronometer’s detached
escapement to a clock. This was done by several clock-makers
in the eighteenth and early part of the nineteenth
century. One method of doing it is as follows:

A is a block of metal fitted to the bottom of the
pendulum, B a light lever pivoted on it. C is the
scape wheel, with four teeth; D a tooth of the
scape wheel, which hops on to the projection of
the pendulum the moment that the impact of the
point E of the lever B E has pushed aside the
lever G F, and thus released the scape wheel. The
advantage is that it is a very easy escapement to
make. But it is in reality a detached (that is to
say, a completely
free) chronometer
escapement,
as can
easily be seen.
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Turret-clocks
are open to considerable
disadvantages,
for the
wind blowing on
the hands gives
rise to considerable
pressure, so
that the clocks
are sometimes urging the hands against the wind,
sometimes are being helped by the wind. And this
inequality of driving force makes the pendulum at
some times make a bigger arc of swing than at others.

But we saw above that though difference of arc
of swing ought to make no difference in the time
of swing of the pendulum, yet this was only strictly
true if the arc of swing were a cycloid.


But as for practical convenience we are obliged
to make it a circle, it follows, as we saw, that for
every tenth of an inch of increase of swing of an
ordinary seconds pendulum about a second a day
of error is introduced. To remove this difficulty a
gravity escapement was invented by Mudge in the
eighteenth century, improved by Bloxam, a barrister,
and perfected by the late Lord Grimthorpe. The
idea was to make the scape wheel, instead of directly
driving the pendulum, lift a weight, which, being
subsequently released, drove the pendulum. The
consequence was, that inequalities in wind pressure,
which affected the driving force of the scape wheel,
would not act on the pendulum, which would be
always driven by the uniform fall of a fixed and
definite weight. A movement of this kind has
been fixed in the great clock at Westminster, and
has gone admirably. A description of its details
will be found in the Encyclopædia Britannica,
written by Lord Grimthorpe himself.

All sorts of eccentric clocks and watches have
been proposed. For instance, it seems wonderful
to see a pair of hands fitted to the centre of a
transparent sheet of glass go round and keep time
with apparently nothing to drive them.

But the mystery is simple. The seeming sheet
of glass is not one sheet, but four. The two centre
sheets move round invisibly, carrying the hour
hand and minute hand with them, being urged by
little rollers below on which they rest. When you
touch the glass the outside sheets appear at rest,
and you do not suspect that it is other than a
single sheet. But beware of dust, for if dust gets
on the inner plate you detect the trick. In this
way a mechanical hand was made that wrote down
answers to questions. This plan can be applied to
all sorts of tricks.

Sir William Congreve, an ingenious inventor,
proposed to make a clock that measured time by
letting a ball roll down an incline. When it got
to the bottom it hit a lever, which released a spring
and tipped the plane up again, so that the ball now
ran down the other way. It is a poor time-keeper,
and the idea was not original, for a ball had been
previously designed for the same purpose.

Sometimes clocks are constructed by attaching
pendulums to bronze figures, which have so small
a movement that the eye is unable to detect it.
The figure appears to be at rest, but is in reality
slowly rocking to and fro. It is necessary to make
the movement as small as about one four hundredth
of an inch in half a second, if the movement is to
escape human observation. For a movement of one
two hundredth of an inch per second is about the
largest that will certainly remain unperceived.

In mediæval times clocks were constructed with
all sorts of queer devices. The people of the upper
town at Basle having quarrelled with those of the
lower town, fought and beat them. To commemorate
this victory they put on the old bridge at the
upper town a clock provided with an iron head,
that slowly put out and drew in a long tongue of
derision. This clock may still be seen in the
museum. It is as though the council of the city
of London put a clock of derision at Temple Bar to
put out its tongue at the County Council.

I do not propose here to describe the striking
mechanism of clocks. There are several different
ways of arranging it. They are rather complicated
to follow out, but they all resolve themselves into
a few simple principles. As the hour hand revolves
it carries a cam so arranged as to be deeper cut
away for the twelfth hour, less for the eleventh,
and so on. When the minute hand comes to the
hour it releases the striking mechanism, which,
urged by a weight, begins to revolve, and, driving
an arm carrying a pin, raises a hammer, which
goes on striking away as the arm revolves. This
would continue for ever if it were not that at the
same moment an arm is liberated which falls
against the cam. At each stroke the arm is (by
the striking apparatus) raised a bit back into
position. When it comes back into position it stops
the striking. It thus acts as a counter, or reckoner
of the blows given, stopping the movement when
the clock has struck sufficiently. If the counting
mechanism fails to act, we have the phenomenon
which occasionally occurs of a “Grandfather” clock
striking the whole of the hours for the week
without stopping.

A chiming clock is simpler still. For here we
have a barrel covered with pins, like the barrel in
a musical box. As the pins go round they raise
hammers which fall against bells. The barrel is
wound up and driven by a spring or weight. When
the clock comes to the hour, the barrel is released,
and rotating, plays the tune.

If you want to make a clock wake you up in the
morning it can be done by making the striking
arrangement hammer away with no counting
mechanism to stop it until the weight has run
down. If, not content with that, you want the
sheets pulled off the bed or the bed tilted up, or a
can of water emptied over the person who will not
rise, a mechanical device known as a relay must
be used. It is very simple. What is wanted is
that, after the lapse of a time which a clock must
measure, a considerable force must be exerted to
pull off the bedclothes. It would be absurd to
make the clock exercise this pull. It is obviously
better to attach the clothes by a hook to a rope
which passes over a pulley, and from which hangs
a weight. A pin secures the weight from falling,
the pin being withdrawn by the clock. The work
is thus done by the weight when released by the
clock.


In like manner, if you have a telegraph designed
to print messages at a distance, you do not send
along the wires the whole force necessary for doing
the printing. You only send impulses, which, like
triggers, release the
forces by which the
letters are to be
stamped.

Electric clocks of
many kinds have
been invented. The
principle of an electric
escapement is
similar to that of
an ordinary escapement.
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The reader no
doubt knows that,
when a circuit of
wire is joined or
completed leading
to a source of electricity, electricity flows through
the wire.

If the wire is wound round a piece of iron, then,
whenever the circuit is joined, a current is set in
motion, and the iron becomes an electro-magnet.
When the circuit is severed the iron ceases to be
a magnet.

If put at a proper position it would at each time
an iron pendulum approached give it a small
impulse provided that at that instant the current
is turned on. This can easily be made to be done
by the pendulum itself. For just as the pendulum
is coming back to the central position a flipper P
attached to the rod can be caused to make contact
with a piece of metal fixed on its path. Then the
electro-magnet, becoming magnetised, exerts a pull
on the iron pendulum. On the return beat of the
pendulum the other side of the flipper R strikes
the obstruction. But if that side R is covered with
ebonite or some non-conducting material no current
will be set in motion, and the electro-magnet will
not (as it would otherwise do) retard the pendulum.
Such a pendulum has therefore an impulse given
to it every second beat.

Such pendulums do not act very well, because it
is difficult to keep metallic surfaces like Q clean,
and therefore misses often occur. Besides, the
strength of the current varies with the goodness
of the contact and with other things.

What is now preferred is to make an arrangement
by which an electric current winds the clock
up every minute or so. By this means the impulse
which drives the clock is not a varying electric one,
but is a steady weight. The most successful clocks
have been made on these principles.

The advantage of electricity is, that by means of
the current that actuates the clock, or winds it up,
you can at regular intervals set the hands in motion
of a great number of clocks.

So that only one going clock with a pendulum is
needed. The other clocks distributed over the
building have only faces and hands, and a very
few simple wheels, to which a slight push is given
by an electro-magnet, say, every minute or so.
The system is therefore well adapted for offices and
hotels.

In America, by means of electric contacts, clocks
have been arranged to put gramophones into
action. You will remember that it was pointed
out that if a wire were dragged over a file a sound
would be produced due to the little taps made as
the wire clicked against the rough cuts on the file,
and that the tone of the note depended on the fineness
of the cuts, and hence the rapidity of the little
taps. You can imagine that, if the roughnesses were
properly arranged, we might get the tones to vary,
and thus imitate speech. This is the principle of
the gramophone. The roughnesses are produced
by a tool, which, vibrating under the influence of
human speech, makes small cuts in a soft material.
This is hardened, and then, when another wire is
dragged over the cuts, the voice is reproduced.

In this way clocks are made to speak and tell
the children when dinner is ready and when to go
to bed. On this simple plan, too, dolls can be made
to speak.


The modern methods of clock and watch-making
are very different from those in use in olden days.
In former times the pivots were turned up by
hand on small lathes, and even the teeth of the
wheels were filed out. Each hole in the clock or
watch frame was drilled out separately, and each
wheel separately fitted in, so that the watch was
gradually built up as one would build a house.
Each wheel, of course, only fitted its own watch,
and the parts of watches were not interchangeable.

This has now all been altered. By means of
elaborate machinery the whole of the work of
cutting out every wheel and the making of every
single part is done by tools moved independently
of the will of the workman, whose only duty is to
sit still and see the things made. He is, as it were,
the slave of the machine, watching it and answering
to its calls. Or shall we rather say that he is the
machine’s employer and master? He has here a
servant who never tires nor ever disobeys him. All
the machine requires is that its cutting edges
should be exactly true and sharp and microscopically
perfect; then it will cut away and make wheel
after wheel. It oils itself. It only wants the
man to act as superintendent, and stop it if any
cutting edge gets unduly worn. For this purpose
he measures the work it is doing from time to time
with a microscope to see that it is good and true
and exact.


When all the parts have thus been made you have
perhaps a hundred boxes, each with a thousand
watch parts in it, each part exactly like its fellows.
You take one wheel or bit from each box indiscriminately,
and you then have the materials for a watch,
screws, fittings, pins, and all. All you have now
got to do is simply to screw them all together, like
putting together a puzzle. Everything fits; there
is no snipping or filing.

In such a watch if a bit gets broken you simply
send for another bit of the same kind and fit it into
its place.

Motor cars, bicycles, and many other machines are,
or ought to be, made in this manner, so that if a
driver at York breaks a part of the car he simply
sends to London for another. It comes and fits
into its place at once. But for this sort of plan you
must do work true to much less than a thousandth
of an inch, and, of course, no one must want to
indulge his individual fancy as to the shape or
appearance of the watch. The whole advantage consists
in dead uniformity. But the cheapness is surprising.
You can have a better watch now for 30s.
than could have been got for £30 twenty years ago.

Artistic people are in the habit of condemning
this uniformity as though it were inartistic and
degrading. In truth, it is not degrading to get a
machine to do what you want at the expense of as
little labour as possible. You pay 30s. for the
watch, but you have £28 10s. left to spend on
pictures.

Only one ought not to confuse industry with art.
Watches made in this way have no pretence to be
artistic products. They are simply useful. To
rule them all over with machine lines or to put
hideous machine ornament on them is purely and
simply base and degrading. Let your ornament be
hand work, your utility machine work.

Thus then I have endeavoured to give a
very brief sketch of the modes of measuring
time, and incidentally to introduce my readers to
those laws of motion which are the foundation of
so large a part of modern science.

It only remains that I should shortly describe
modern apparatus by means of which it is possible
to measure with accuracy periods of time so short
as to appear impossible. But when you see how it
is done the method seems easy enough. It is still
by means of a pendulum, only a pendulum beating
time not once, but hundreds and even thousands of
times in a second.

And such pendulums, instead of being difficult
to make, are remarkably simple, and present
no difficulty whatever. For we have only to
use the tuning fork which has been previously
described.

The tuning fork consists of a piece of steel bent
into a U shape. The arms are set vibrating so as
alternately to approach and recede from one
another.

The reason why there are two arms is that, if
they come together and recede, they balance, and
hence the instrument as a whole does not shake
on its base. This balance of moving parts of a
rapidly moving machine is very important. Some
motor cars are arranged so that the engines are
“balanced,” and the moving parts come in and out
simultaneously, leaving the centre of gravity unchanged
whatever be the position of the motion.
This makes the vibration of the car very small.

The tuning fork is therefore balanced. Being
elastic, it obeys Hook’s law, “As the force, so the
deflection.” And therefore, as we have seen, the
vibrations of the fork are isochronous.

A fork with arms about six or seven inches long
will make about fifty or sixty vibrations in a second.
How are we to record those vibrations, and how
keep the tuning fork vibrating?
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A train of wheels is almost an impossibility,
not perhaps so impossible as might be supposed,
but still very difficult. So a different method is
adopted. A little wire projects from one tuning
fork arm. A piece of glazed paper is gently smoked
by means of a wax taper, and is stretched round a
well-made brass drum. The tuning fork is then
put so that the little wire just touches the paper.
The tuning fork is then made to vibrate by a blow,
and while it is vibrating the drum is revolved.
Thus a wavy line is formed on the drum by the
wire on the tuning fork. If the tuning fork made
fifty complete vibrations to and fro in a second
there would be one hundred such indentations, fifty
to the right and fifty to the left, and by these the
time can be measured as you would measure a
length upon a rule.
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If an arm a b be fitted to move sideways when
a little string c d is pulled, and be also provided
with a small wire, so as to touch the drum, then it
also will trace a straight line on the drum as the
wire lightly scratches away the thin coating of
smoke. Now, if it is suddenly jerked and flips back,
then a little indentation will be made
in the line, and if when we are to
measure a rapid lapse of time a jerk
is given at the beginning, and another
jerk at the end of it, we should get
a diagram like that in the adjoining
figure, where a is the trace of the tuning
fork, b that of the indicating arm. The
time which has elapsed between the
jerk which produced the indentation c
and that which produced the indentation
d will be about three and three-quarter
double indentations of the
tuning fork line, thus indicating three
and three-quarter fiftieths of a second.
It is easy to see how delicate this means of measurement
can be made. With small tuning forks we can
easily measure times to a thousandth part of a
second, and much less if desired.

The jerk may be given by electricity if it is
wished. When the current is joined a little electro-magnet
pulls a bit of iron and gives a pull to the
string. So extremely rapid is the flight of electricity
that no appreciable time is lost in its transit through
the wires, so that the impulse may be given from a
distance. Thus we may arrange that when a
cannon ball leaves a gun an electric impulse shall
be given. When it reaches and hits a target another
electric impulse is given. These make nicks in the
tracing line on the drum from which we can easily
compute the time that has elapsed between the
leaving of the mouth of the gun and the arrival
of the shot at its destination.
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Such an apparatus is used in modern gunnery
experiments. It is an elaborate one, but is based
on the principle above described.

Drums are sometimes driven by clockwork, and
tuning forks are also often kept vibrating by electricity,
thus constituting very rapidly moving electric
clocks. The arrangement is simple. An electro-magnet
E is put in the vicinity of the arm of the
tuning fork. A small piece of wire from the arm
is in contact with a piece of metal Q, from which a
wire runs to the electro-magnet, thence to a battery,
and from the battery to the tuning fork, through
which the current runs to the wire R. When the
fork vibrates the arm, being bent outwards, makes
the wire R touch Q. This at once causes the electro-magnet
to give a small pull to the steel arm of the
tuning fork, and thus assists the swing of the arm.
The whole arrangement is exactly analogous to an
electric clock, as may be seen by comparing Fig. 71
with Fig. 68.

There is another method of measuring rapid
intervals of time which also merits attention. It is
to let a body drop at the commencement of the
period of time to be measured, and mark how far it
falls in the time, and then find the time from the
equation given previously,

S = 1/2 g t².

It is practically done by letting a piece of smoked
glass fall and making a small pointer make two dots
upon it, one at the beginning, another at the end,
of the time to be measured.

An interesting adaptation of this method can
serve as a basis of a curious toy.

Take a crossbow, with a bolt with a spike on it;
fix it firmly in a vice so that the barrel points at a
spot a on a wooden wall. On the spot a hang a
cardboard figure of a cat on to a nail so contrived
that when an electro-magnet acts the nail is pulled
aside, and the cat drops. Thus let a be the cat,
b the loop by which it is hung over the nail c, that is
fixed to another piece of iron furnished with a hinge
at c, so that when the electric current is turned on
the nail c is withdrawn and the cat drops. Carry
the wires from the electro-magnet and battery to
the crossbow, and so arrange them that when the
bolt leaves the muzzle one is pressed against the
other, and contact made.

Now here you have an apparatus such that exactly
as the bolt leaves the crossbow, the cat drops. Now
what will happen?
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When the bolt leaves the bow it is subject to two
motions, one a motion of projection at a uniform
pace in the direction of b a from the bow to the
target.

But it is also subject to another force, namely
that of gravity, which acts on it vertically, and
deflects it in a vertical direction exactly as much and
as fast as a body would do if dropped from rest at
the same instant as the bolt leaves the bow. But
the cat is such a body. Hence, then, since by the
electric arrangement they are both let go together,
they will both drop simultaneously, and thus will
always be on the same level, and when the bolt
reaches the wooden wall and has fallen vertically
from a to c, the cat will also have fallen vertically
from a to c, and the bolt will pin him to the wall.
It does not matter how far you
take the bow from the wall, nor
how strong the bow is, nor how
heavy the bolt is, nor how heavy
the cat is, nor whether a b is
horizontal or pointing upwards
or downwards.
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In every case, if only the
barrel is pointed directly at the
cat, then the bolt and cat fall
simultaneously and at the same
rate, and the bolt will pin
the cat to the wall.

In trying the experiment the bolt should be pretty
heavy, say half a pound, and have a good spike; but
if carefully done the experiment will succeed every
time. It enables you also to measure the speed of
flight of the bolt. For if the distance of the bow
from the wall be thirty feet, and the cat have fallen
three feet when it is struck, then the time of fall is
T² = √((2S)/g) = √(6/g) = ·43 seconds. But the bolt in
this time went thirty feet; hence its velocity was
thirty feet in ·43 seconds, or seventy feet per second.

Of course if you make the bolt heavier the velocity
of projection will become slower, the time longer,
and hence the cat will fall further before it is transfixed
by the bolt.

My task is now at a close. I have endeavoured
not merely to give a description of clocks and various
apparatus for measuring time, but to explain the
fundamental principles of mechanics which lie at the
root of the subject.

May I end with a word of advice to parents?

There is a certain number of boys, but only a
certain number, who have a real love for mechanical
science. Such boys should be encouraged in every
way by the possession of tools and apparatus, but
in the selection of this apparatus the following
principles should be borne in mind:—

First, that almost everything a boy wants can be
made with wood, and metal, and wire, and string,
if he has someone to give him a little instruction
how to do it. A bent bit of steel jammed in a
vice makes an excellent tuning fork.

Second, that he wants not toy tools, but good
tools. If an expert wants a good tool, how much
more a beginner.

Third, that he ought to have a reasonably dry
and comfortable place to work in, and the help and
advice of the village carpenter or blacksmith.


Fourth, that he ought not to be allowed to potter
with his tools, but to make something really sensible
and useful, and not begin a dozen things and
finish none.

Fifth, that the making of apparatus to show
scientific facts is more useful than making bootjacks
for his father or workboxes for his mother.

And, lastly, that a little money spent in this way
will keep many a young rascal from worrying his
sisters and stoning the cat; and when the inevitable
time comes at which he must face the young man’s
first trial, The Examiner, he will often thank his
stars that he learned in play the fundamental
formula S = 1/2 g t², and that he knows the nature of
“harmonic motion,” the two most important principles
in the measurement of time.

THE END.







Appendix on the Shape of the Teeth of Wheels.



Fig. 74.


The teeth of wheels for watches and clocks need
particular care in shaping, and it may be of interest
if I describe briefly the principles upon which these
wheels are made. What is required is that the
motion shall not be communicated by jerks as the
teeth successively engage one another, but that the
motion shall be perfectly smooth. The problem
therefore becomes this: How are we to arrange the
teeth of the wheels so that as one of them turns
and drives the other round the leverage or turning
power exercised by the driving wheel on the driven
wheel shall always be uniform? Now if the teeth
were simple spikes one can easily see that this
would not be the case. For instance, as the arm a c
turned round, driving before it the arm b d, the
point c would scrape along, and the leverage between
the two teeth would constantly alter. Evidently
some other construction must be adopted. Before
we can determine what it is to be, we must inquire
what the leverage would be between two rods, a c
and d b, mounted on pivots at a and d. The answer
to this question is, that when a lever such as a c
presses with its end against another, d b, the power
is exercised in a direction c e at right angles to d b.
Hence the leverage between the two arms is in the
ratio of a e to d c. The system is just as if we had
a lever a e united to a lever d c by a rigid rod e c at
right angles to both of them.
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Whence then the ratio of the power is as a e is to d c.
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But since the triangles a e f, d c f, are similar,
a e is to d c as a f to f d. Whence then we get this
general proposition: If one body mounted on an
axis is pressing upon another body mounted on an
axis, the pressure exerted between them is always
exercised in a direction, shown by the dotted line,
at right angles to the two surfaces in contact; and
the ratio of the leverage is found by drawing a line
from one axis to the other, so as to cut the line of
direction of pressure in f. The leverage of one on
the other is then as a f to f d. Our problem has
now become the following: Given a rod b d, suppose
that it is pressed upon by a curved surface mounted
on an axis at a. Then the direction of the pressure
that the curved surface (called in engineering language
a cam) will exercise on the rod b d is shown by
the dotted line; and the ratio of the driving power to
the driven power is as d f to a f. Now how can we
shape the cam so that as it moves round, and different
parts of its surface come successively into contact
with b c, the ratio of the leverage is always the
same; that is to say, the ratio of a f to f d shall always
be constant; that is to say, the line drawn through
the point of contact perpendicular to the curve at
that point, shall always pass through the point f?
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Evidently, if this is to be so, the point d must be
on a semicircle, whose diameter is f b, for in that
case the angle f d b will always be a right angle.
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The surface must then be so arranged that, whatever
be the position of the cam and of the rod b d,
the point of contact between them must always be
on the semicircle f c d; that is to say, as the cam
moves round the axis a its shape must be such that
a line drawn from f to the point where it cuts the
circle f d b is always perpendicular to the curve.

Now suppose that we move a circle whose centre
is at a, and radius a f, so as to roll the circle f d b by
simple surface friction round its centre o, then any
point d on it would mark out a curve on a piece of
paper attached to
the moving circle
whose centre is at
a, and the direction
of motion of the
curve would always
be such that the
point d on it would
at any instant be
describing a circle round f, and the direction of the
curve would thus at any point always be at right
angles to the line d f for the time being.
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This curve, caused by the rolling of one circle on
another, is called an epicycloid. Hence, then, for
a clock, if we make the pinion wheel with straight
spokes and the driving wheel with its teeth cut in
the form of epicycloids, caused by rolling a circle
with a diameter equal to the radius of the pinion
upon the driving wheel, we shall get a uniform
ratio of leverage one upon the other.


The circles with radii a f, b f, are called the “pitch
circles,” and these radii are in the ratio of the
movement that is required for the wheels, usually
six to one or eight to one, as the case may be. The
sides of the teeth of the pinion wheels are straight
lines radiating from the centre, and rounded off at
the ends so as to avoid accidental jambing. The
teeth of the cogwheel have
epicycloidal sides. The
tips are cut off so as to
be out of the way, and
spaces are left between
them for the width of the
leaves of the pinion wheel.
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Both pinion wheels and
cogwheels are cut by
cutters rotating at a high
speed, about 3,500 times
in a minute, the cutters
being carefully shaped for the pinion wheels with
straight edges, for the cogwheel in epicycloids.
It is a pretty thing to see a wheel-cutting engine
at work, the cutter flying round with a hum,
cutting the rim of a brass wheel into teeth, the
brass coming off in flakes thinner than fine hairs
and falling in fine dust. When a tooth is cut,
the wheel is moved round one division of an apparatus
called a “dividing plate,” so as to present
a new part of the wheel to the cutter. Of course,
the cutter and wheels must all be properly proportioned.
Cutters are sold in sets duly shaped
for the work they have to do. Wheel-cutting is a
special branch of the clockmaking industry. The
reason the speed of cutting is so high is because it
is desired to take off small portions of metal at a
time, and thus not strain the wheel and the cutting
machinery. If bigger cuts were made, then the
machine would have to go slower, for it is a
principle in the construction of cutting machinery
that the speed of the cut must always be proportioned
to the depth of it. If you want to take deep
cuts you must move the cutting edge slowly, and
vice versâ. The most modern method of making
cogwheels of brass, and the best, is to stamp them
out of solid sheet metal at a single punch of a
punching machine, and cheap watches are always
made in this way. In fact, the whole method of
watch and clock-making is undergoing a transformation.

Before the time of the great engineering development
which took place towards the end of the
eighteenth century, the making of machines was
a sort of fine art. Cogwheels were cut by hand.
The circumference was marked out by means of
compasses. Then holes were drilled round the
rim, and teeth cut out leading into them, and
shaped by means of special files constructed for the
purpose (Fig. 82). Big machinery was all shaped out
at the forge and by the file. The engineers complained
that you could not get big work made true
even to the eighth of an inch. But watches and
clocks were beautifully made, though only at the
cost of hours of patient measuring and filing. The
taste for ornament still existed. The wheels and
backs of watches were chased over with the most
beautiful patterns; the frames of the clocks were
wrought into beautiful figures and forms. Even
astronomical instruments were embellished.
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Then came the era of severe accuracy. Men of
science took the government
of machine-making whose
feelings were repugnant to
art in any form. They hated
to see any effort expended in
ornament. With severely utilitarian aims, they
banished all appearance of beauty from instruments
and tools of all sorts, so that our modern machines,
from a steam engine down to a watch, are now
models of precise but perfectly unornamented workmanship.
They are the fitting implements of a nation
that wears trousers and tall hats. One has only to
compare an old vessel of war, with its sculptured
prow and streamers, with a modern ironclad to take
note of the difference. The art of ornamentation
is now little more than a spasmodic imitation of
the past, with a historical interest only. As a
living entity it has almost ceased to exist.


But in precision of manufacture the present age
is without a rival in the history of the world.
People believe no longer in the old methods of
scraping and filing, and hand-work directly exercised
on metal is rapidly falling into desuetude. It is
possible, of course, with a file and scraper and
days of labour to get two flat surfaces of metal so
perfect that when put together one will lift the
other like a sucker on a stone, but it is waste labour.
A small machine will do it as well in a few minutes.
No longer is a watch built up as one would build a
house, fitting part to part. By expensive machines
thousands of watch parts are stamped and cut out
to pattern, and then a watch is made by taking one
of each indiscriminately and just putting them into
their places. Comparatively unskilled workmen
can do this. Where the skill is wanted is to design
and make the machinery and watch the cutters,
measuring them with microscopic gauges from time
to time, and at once remedying them if an edge is
found to be a ten-thousandth part of an inch out of
place. So that the labour of man is becoming
more and more a labour of design and of supervision.
Machines are the slaves that do the work,
for in a good machine we have an eye and an arm
that never tires, and only needs to be kept in
working order. But machines are not artistic, and
thus art is lost while precision is gained. At
present a desperate attempt is being made to
supply by means of machinery the craving of the
human mind for art. But it is destined to failure.
Art of this kind is generally produced by the
same brain that designs machines, and therefore
presents an appearance of rigid accuracy and
uniformity, which, while essential to an engine, is
out of place in an artistic product.

The great manufacturers of our Midlands do not
seem to understand that there is no object in
making a towel-horse as geometrically accurate as
a turning lathe. It will apparently be years before
they learn to put art and precision each in the
place where it is wanted—precision in the works of
the watch, art in the face and the case of it;
machine work in the inside of a watch, hand work
on the outside. When the public taste is educated
so as to see the odious character of the jumble of
Gothic, Egyptian, and meaningless ornament on
such an article as the case of an American organ,
one step will have been made towards the revival
of artistic taste.

But to propose as a means of reviving art that
we should discontinue the use of machinery or
abandon our modern cutters of precision to go back
to a hack-saw and file is ridiculous, and could only
be suggested by men quite destitute of scientific
ideas. Art and precision each has its place: there
is room for both; let neither intrude on the domain
of the other.









INDEX.


	Acceleration, 73, 77

	Almagest, 53

	Anchor escapement, 120

	Ancient science, 50

	Aristotle’s ideas, 23, 52

	Attwood’s machine, 83

	Babylon, temple of, 24

	Balance wheel, 159

	Candles to measure time, 46

	Chaldean day, 15

	Chaucer, 56

	Chronographs, 179

	Chronometer, 165

	Chronometer escapement, 166

	Clock movement, 123

	Copernicus, 56

	Crossbow experiment, 183

	Crown wheel, 115

	Cycloid, the, 109

	Dante’s Inferno, 54

	Day, length of, 29

	Dead beat escapement, 135

	Density, 12

	Driving weight, 127, 141

	Earth, a sphere, 21

	Earth’s motion, 57, 69

	Earth not at rest, 67

	Egg-boiler, 43

	Electric clocks, 179

	Epicycloidal wheels, 191

	Escapements, anchor, 120

	crown, 115

	chronometer, 166

	dead beat, 135

	gravity, 169

	Falling bodies, laws of, 62

	Force, 76

	Forces, revolution of, 89

	Fusee, the, 117

	Galileo’s “Dialogues,” 58

	clock, 111

	Grandfather’s clock, 119

	Gravity, action of, 13, 65

	Gravity escapement, 169

	Greek day, 16

	Harmonic motion, 97

	Hooke’s law, 71

	Isochronism of springs, 93

	Lamps to measure time, 46

	Latitude and longitude, 161

	finding, 163

	Mass, nature of, 10

	Mercury clock, 45

	Modern methods, 177, 197

	Moments, 101

	Moon’s appearance, 17

	Motion, reliability of, 57

	Musical notes, 95

	North pole, days at, 33

	Oscillations, law of, 151

	Parabola, the, 87

	Pendulum, the, 103, 145

	suspension, 145

	mercury, 147

	gridiron, 149

	theory of, 155

	free, 133

	Pisa, leaning tower of, 61

	Planets, names of, 11

	Pulse measurer, 99

	Ratchet wheels, 129

	Roman clocks, 40

	Sand-glasses, 41

	Space, nature of, 8

	Speed of falling bodies, 79

	Spring balance, 107

	Stevinus’ theory, 81

	Style of sun-dials, 35

	Sun-dials, 27

	to make, 48

	Synchronous clocks, 175

	Time, 13

	Toothed wheels, 125, 137

	Tuning fork, 94, 181

	Velocities, composition of, 85

	Water pressure, 37

	Water clocks, 39

	Watches, 156

	Week days, names of, 24

	Wheels, shape of teeth, 190

	Wheel-cutting machines, 193

	Winding drum, 131

	Winter sun, 31

	Zodiac, 18





BRADBURY, AGNEW, & CO. LD., PRINTERS, LONDON AND TONBRIDGE.





Transcriber’s Note

Punctuation, hyphenation, and spelling were made consistent when a predominant
preference was found in this book; otherwise they were not changed.

Simple typographical errors were corrected; occasional unpaired
quotation marks were retained.

Ambiguous hyphens at the ends of lines were retained.

Square roots are represented as √(values).

Index not checked for proper alphabetization or correct page references.

Page 16: “six o’clock” was printed as “six clock”; changed here.






 

 




*** END OF THE PROJECT GUTENBERG EBOOK TIME AND CLOCKS: A DESCRIPTION OF ANCIENT AND MODERN METHODS OF MEASURING TIME ***



    

Updated editions will replace the previous one—the old editions will
be renamed.


Creating the works from print editions not protected by U.S. copyright
law means that no one owns a United States copyright in these works,
so the Foundation (and you!) can copy and distribute it in the United
States without permission and without paying copyright
royalties. Special rules, set forth in the General Terms of Use part
of this license, apply to copying and distributing Project
Gutenberg™ electronic works to protect the PROJECT GUTENBERG™
concept and trademark. Project Gutenberg is a registered trademark,
and may not be used if you charge for an eBook, except by following
the terms of the trademark license, including paying royalties for use
of the Project Gutenberg trademark. If you do not charge anything for
copies of this eBook, complying with the trademark license is very
easy. You may use this eBook for nearly any purpose such as creation
of derivative works, reports, performances and research. Project
Gutenberg eBooks may be modified and printed and given away—you may
do practically ANYTHING in the United States with eBooks not protected
by U.S. copyright law. Redistribution is subject to the trademark
license, especially commercial redistribution.



START: FULL LICENSE


THE FULL PROJECT GUTENBERG LICENSE


PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK


To protect the Project Gutenberg™ mission of promoting the free
distribution of electronic works, by using or distributing this work
(or any other work associated in any way with the phrase “Project
Gutenberg”), you agree to comply with all the terms of the Full
Project Gutenberg™ License available with this file or online at
www.gutenberg.org/license.


Section 1. General Terms of Use and Redistributing Project Gutenberg™
electronic works


1.A. By reading or using any part of this Project Gutenberg™
electronic work, you indicate that you have read, understand, agree to
and accept all the terms of this license and intellectual property
(trademark/copyright) agreement. If you do not agree to abide by all
the terms of this agreement, you must cease using and return or
destroy all copies of Project Gutenberg™ electronic works in your
possession. If you paid a fee for obtaining a copy of or access to a
Project Gutenberg™ electronic work and you do not agree to be bound
by the terms of this agreement, you may obtain a refund from the person
or entity to whom you paid the fee as set forth in paragraph 1.E.8.


1.B. “Project Gutenberg” is a registered trademark. It may only be
used on or associated in any way with an electronic work by people who
agree to be bound by the terms of this agreement. There are a few
things that you can do with most Project Gutenberg™ electronic works
even without complying with the full terms of this agreement. See
paragraph 1.C below. There are a lot of things you can do with Project
Gutenberg™ electronic works if you follow the terms of this
agreement and help preserve free future access to Project Gutenberg™
electronic works. See paragraph 1.E below.


1.C. The Project Gutenberg Literary Archive Foundation (“the
Foundation” or PGLAF), owns a compilation copyright in the collection
of Project Gutenberg™ electronic works. Nearly all the individual
works in the collection are in the public domain in the United
States. If an individual work is unprotected by copyright law in the
United States and you are located in the United States, we do not
claim a right to prevent you from copying, distributing, performing,
displaying or creating derivative works based on the work as long as
all references to Project Gutenberg are removed. Of course, we hope
that you will support the Project Gutenberg™ mission of promoting
free access to electronic works by freely sharing Project Gutenberg™
works in compliance with the terms of this agreement for keeping the
Project Gutenberg™ name associated with the work. You can easily
comply with the terms of this agreement by keeping this work in the
same format with its attached full Project Gutenberg™ License when
you share it without charge with others.


1.D. The copyright laws of the place where you are located also govern
what you can do with this work. Copyright laws in most countries are
in a constant state of change. If you are outside the United States,
check the laws of your country in addition to the terms of this
agreement before downloading, copying, displaying, performing,
distributing or creating derivative works based on this work or any
other Project Gutenberg™ work. The Foundation makes no
representations concerning the copyright status of any work in any
country other than the United States.


1.E. Unless you have removed all references to Project Gutenberg:


1.E.1. The following sentence, with active links to, or other
immediate access to, the full Project Gutenberg™ License must appear
prominently whenever any copy of a Project Gutenberg™ work (any work
on which the phrase “Project Gutenberg” appears, or with which the
phrase “Project Gutenberg” is associated) is accessed, displayed,
performed, viewed, copied or distributed:


    This eBook is for the use of anyone anywhere in the United States and most
    other parts of the world at no cost and with almost no restrictions
    whatsoever. You may copy it, give it away or re-use it under the terms
    of the Project Gutenberg License included with this eBook or online
    at www.gutenberg.org. If you
    are not located in the United States, you will have to check the laws
    of the country where you are located before using this eBook.
  


1.E.2. If an individual Project Gutenberg™ electronic work is
derived from texts not protected by U.S. copyright law (does not
contain a notice indicating that it is posted with permission of the
copyright holder), the work can be copied and distributed to anyone in
the United States without paying any fees or charges. If you are
redistributing or providing access to a work with the phrase “Project
Gutenberg” associated with or appearing on the work, you must comply
either with the requirements of paragraphs 1.E.1 through 1.E.7 or
obtain permission for the use of the work and the Project Gutenberg™
trademark as set forth in paragraphs 1.E.8 or 1.E.9.


1.E.3. If an individual Project Gutenberg™ electronic work is posted
with the permission of the copyright holder, your use and distribution
must comply with both paragraphs 1.E.1 through 1.E.7 and any
additional terms imposed by the copyright holder. Additional terms
will be linked to the Project Gutenberg™ License for all works
posted with the permission of the copyright holder found at the
beginning of this work.


1.E.4. Do not unlink or detach or remove the full Project Gutenberg™
License terms from this work, or any files containing a part of this
work or any other work associated with Project Gutenberg™.


1.E.5. Do not copy, display, perform, distribute or redistribute this
electronic work, or any part of this electronic work, without
prominently displaying the sentence set forth in paragraph 1.E.1 with
active links or immediate access to the full terms of the Project
Gutenberg™ License.


1.E.6. You may convert to and distribute this work in any binary,
compressed, marked up, nonproprietary or proprietary form, including
any word processing or hypertext form. However, if you provide access
to or distribute copies of a Project Gutenberg™ work in a format
other than “Plain Vanilla ASCII” or other format used in the official
version posted on the official Project Gutenberg™ website
(www.gutenberg.org), you must, at no additional cost, fee or expense
to the user, provide a copy, a means of exporting a copy, or a means
of obtaining a copy upon request, of the work in its original “Plain
Vanilla ASCII” or other form. Any alternate format must include the
full Project Gutenberg™ License as specified in paragraph 1.E.1.


1.E.7. Do not charge a fee for access to, viewing, displaying,
performing, copying or distributing any Project Gutenberg™ works
unless you comply with paragraph 1.E.8 or 1.E.9.


1.E.8. You may charge a reasonable fee for copies of or providing
access to or distributing Project Gutenberg™ electronic works
provided that:


    	• You pay a royalty fee of 20% of the gross profits you derive from
        the use of Project Gutenberg™ works calculated using the method
        you already use to calculate your applicable taxes. The fee is owed
        to the owner of the Project Gutenberg™ trademark, but he has
        agreed to donate royalties under this paragraph to the Project
        Gutenberg Literary Archive Foundation. Royalty payments must be paid
        within 60 days following each date on which you prepare (or are
        legally required to prepare) your periodic tax returns. Royalty
        payments should be clearly marked as such and sent to the Project
        Gutenberg Literary Archive Foundation at the address specified in
        Section 4, “Information about donations to the Project Gutenberg
        Literary Archive Foundation.”
    

    	• You provide a full refund of any money paid by a user who notifies
        you in writing (or by e-mail) within 30 days of receipt that s/he
        does not agree to the terms of the full Project Gutenberg™
        License. You must require such a user to return or destroy all
        copies of the works possessed in a physical medium and discontinue
        all use of and all access to other copies of Project Gutenberg™
        works.
    

    	• You provide, in accordance with paragraph 1.F.3, a full refund of
        any money paid for a work or a replacement copy, if a defect in the
        electronic work is discovered and reported to you within 90 days of
        receipt of the work.
    

    	• You comply with all other terms of this agreement for free
        distribution of Project Gutenberg™ works.
    



1.E.9. If you wish to charge a fee or distribute a Project
Gutenberg™ electronic work or group of works on different terms than
are set forth in this agreement, you must obtain permission in writing
from the Project Gutenberg Literary Archive Foundation, the manager of
the Project Gutenberg™ trademark. Contact the Foundation as set
forth in Section 3 below.


1.F.


1.F.1. Project Gutenberg volunteers and employees expend considerable
effort to identify, do copyright research on, transcribe and proofread
works not protected by U.S. copyright law in creating the Project
Gutenberg™ collection. Despite these efforts, Project Gutenberg™
electronic works, and the medium on which they may be stored, may
contain “Defects,” such as, but not limited to, incomplete, inaccurate
or corrupt data, transcription errors, a copyright or other
intellectual property infringement, a defective or damaged disk or
other medium, a computer virus, or computer codes that damage or
cannot be read by your equipment.


1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the “Right
of Replacement or Refund” described in paragraph 1.F.3, the Project
Gutenberg Literary Archive Foundation, the owner of the Project
Gutenberg™ trademark, and any other party distributing a Project
Gutenberg™ electronic work under this agreement, disclaim all
liability to you for damages, costs and expenses, including legal
fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE
TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGE.


1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
defect in this electronic work within 90 days of receiving it, you can
receive a refund of the money (if any) you paid for it by sending a
written explanation to the person you received the work from. If you
received the work on a physical medium, you must return the medium
with your written explanation. The person or entity that provided you
with the defective work may elect to provide a replacement copy in
lieu of a refund. If you received the work electronically, the person
or entity providing it to you may choose to give you a second
opportunity to receive the work electronically in lieu of a refund. If
the second copy is also defective, you may demand a refund in writing
without further opportunities to fix the problem.


1.F.4. Except for the limited right of replacement or refund set forth
in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO
OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.


1.F.5. Some states do not allow disclaimers of certain implied
warranties or the exclusion or limitation of certain types of
damages. If any disclaimer or limitation set forth in this agreement
violates the law of the state applicable to this agreement, the
agreement shall be interpreted to make the maximum disclaimer or
limitation permitted by the applicable state law. The invalidity or
unenforceability of any provision of this agreement shall not void the
remaining provisions.


1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
trademark owner, any agent or employee of the Foundation, anyone
providing copies of Project Gutenberg™ electronic works in
accordance with this agreement, and any volunteers associated with the
production, promotion and distribution of Project Gutenberg™
electronic works, harmless from all liability, costs and expenses,
including legal fees, that arise directly or indirectly from any of
the following which you do or cause to occur: (a) distribution of this
or any Project Gutenberg™ work, (b) alteration, modification, or
additions or deletions to any Project Gutenberg™ work, and (c) any
Defect you cause.


Section 2. Information about the Mission of Project Gutenberg™


Project Gutenberg™ is synonymous with the free distribution of
electronic works in formats readable by the widest variety of
computers including obsolete, old, middle-aged and new computers. It
exists because of the efforts of hundreds of volunteers and donations
from people in all walks of life.


Volunteers and financial support to provide volunteers with the
assistance they need are critical to reaching Project Gutenberg™’s
goals and ensuring that the Project Gutenberg™ collection will
remain freely available for generations to come. In 2001, the Project
Gutenberg Literary Archive Foundation was created to provide a secure
and permanent future for Project Gutenberg™ and future
generations. To learn more about the Project Gutenberg Literary
Archive Foundation and how your efforts and donations can help, see
Sections 3 and 4 and the Foundation information page at www.gutenberg.org.


Section 3. Information about the Project Gutenberg Literary Archive Foundation


The Project Gutenberg Literary Archive Foundation is a non-profit
501(c)(3) educational corporation organized under the laws of the
state of Mississippi and granted tax exempt status by the Internal
Revenue Service. The Foundation’s EIN or federal tax identification
number is 64-6221541. Contributions to the Project Gutenberg Literary
Archive Foundation are tax deductible to the full extent permitted by
U.S. federal laws and your state’s laws.


The Foundation’s business office is located at 809 North 1500 West,
Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up
to date contact information can be found at the Foundation’s website
and official page at www.gutenberg.org/contact


Section 4. Information about Donations to the Project Gutenberg
Literary Archive Foundation


Project Gutenberg™ depends upon and cannot survive without widespread
public support and donations to carry out its mission of
increasing the number of public domain and licensed works that can be
freely distributed in machine-readable form accessible by the widest
array of equipment including outdated equipment. Many small donations
($1 to $5,000) are particularly important to maintaining tax exempt
status with the IRS.


The Foundation is committed to complying with the laws regulating
charities and charitable donations in all 50 states of the United
States. Compliance requirements are not uniform and it takes a
considerable effort, much paperwork and many fees to meet and keep up
with these requirements. We do not solicit donations in locations
where we have not received written confirmation of compliance. To SEND
DONATIONS or determine the status of compliance for any particular state
visit www.gutenberg.org/donate.


While we cannot and do not solicit contributions from states where we
have not met the solicitation requirements, we know of no prohibition
against accepting unsolicited donations from donors in such states who
approach us with offers to donate.


International donations are gratefully accepted, but we cannot make
any statements concerning tax treatment of donations received from
outside the United States. U.S. laws alone swamp our small staff.


Please check the Project Gutenberg web pages for current donation
methods and addresses. Donations are accepted in a number of other
ways including checks, online payments and credit card donations. To
donate, please visit: www.gutenberg.org/donate.


Section 5. General Information About Project Gutenberg™ electronic works


Professor Michael S. Hart was the originator of the Project
Gutenberg™ concept of a library of electronic works that could be
freely shared with anyone. For forty years, he produced and
distributed Project Gutenberg™ eBooks with only a loose network of
volunteer support.


Project Gutenberg™ eBooks are often created from several printed
editions, all of which are confirmed as not protected by copyright in
the U.S. unless a copyright notice is included. Thus, we do not
necessarily keep eBooks in compliance with any particular paper
edition.


Most people start at our website which has the main PG search
facility: www.gutenberg.org.


This website includes information about Project Gutenberg™,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.




OEBPS/4802576565626382088_cover.jpg
TIME & CLOCKS

A -DESCRIPTION - OF - ANCIENT
AND - MODERN-METHODS - OF
MEASURING - TIM E

H-H: CUNYNGHAME






