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PREFACE.

The pleasure and profit which the translator
has received from the great work here presented,
have induced him to lay it before his fellow-teachers
and students of Mathematics in a more accessible
form than that in which it has hitherto appeared.
The want of a comprehensive map of the
wide region of mathematical science—a bird's-eye
view of its leading features, and of the true bearings
and relations of all its parts—is felt by every
thoughtful student. He is like the visitor to a
great city, who gets no just idea of its extent and
situation till he has seen it from some commanding
eminence. To have a panoramic view of the
whole district—presenting at one glance all the
parts in due co-ordination, and the darkest nooks
clearly shown—is invaluable to either traveller or
student. It is this which has been most perfectly
accomplished for mathematical science by the
author whose work is here presented.

Clearness and depth, comprehensiveness and
precision, have never, perhaps, been so remarkably
united as in Auguste Comte. He views his subject
from an elevation which gives to each part of
the complex whole its true position and value,
while his telescopic glance loses none of the needful
details, and not only itself pierces to the heart
of the matter, but converts its opaqueness into
such transparent crystal, that other eyes are enabled
to see as deeply into it as his own.

Any mathematician who peruses this volume
will need no other justification of the high opinion
here expressed; but others may appreciate the
following endorsements of well-known authorities.
Mill, in his "Logic," calls the work of M. Comte
"by far the greatest yet produced on the Philosophy
of the sciences;" and adds, "of this admirable
work, one of the most admirable portions is that
in which he may truly be said to have created the
Philosophy of the higher Mathematics:" Morell,
in his "Speculative Philosophy of Europe," says,
"The classification given of the sciences at large,
and their regular order of development, is unquestionably
a master-piece of scientific thinking, as
simple as it is comprehensive;" and Lewes, in
his "Biographical History of Philosophy," names
Comte "the Bacon of the nineteenth century,"
and says, "I unhesitatingly record my conviction
that this is the greatest work of our age."

The complete work of M. Comte—his "Cours
de Philosophie Positive"—fills six large octavo volumes,
of six or seven hundred pages each, two
thirds of the first volume comprising the purely
mathematical portion. The great bulk of the
"Course" is the probable cause of the fewness of
those to whom even this section of it is known.
Its presentation in its present form is therefore felt
by the translator to be a most useful contribution
to mathematical progress in this country.
The comprehensiveness of the style of the author—grasping
all possible forms of an idea in one
Briarean sentence, armed at all points against
leaving any opening for mistake or forgetfulness—occasionally
verges upon cumbersomeness and
formality. The translator has, therefore, sometimes
taken the liberty of breaking up or condensing
a long sentence, and omitting a few passages
not absolutely necessary, or referring to the peculiar
"Positive philosophy" of the author; but he
has generally aimed at a conscientious fidelity to
the original. It has often been difficult to retain
its fine shades and subtile distinctions of meaning,
and, at the same time, replace the peculiarly
appropriate French idioms by corresponding English
ones. The attempt, however, has always
been made, though, when the best course has been
at all doubtful, the language of the original has
been followed as closely as possible, and, when
necessary, smoothness and grace have been unhesitatingly
sacrificed to the higher attributes of
clearness and precision.

Some forms of expression may strike the reader
as unusual, but they have been retained because
they were characteristic, not of the mere language
of the original, but of its spirit. When a great
thinker has clothed his conceptions in phrases
which are singular even in his own tongue, he who
professes to translate him is bound faithfully to
preserve such forms of speech, as far as is practicable;
and this has been here done with respect
to such peculiarities of expression as belong to the
author, not as a foreigner, but as an individual—not
because he writes in French, but because he
is Auguste Comte.

The young student of Mathematics should not
attempt to read the whole of this volume at once,
but should peruse each portion of it in connexion
with the temporary subject of his special study:
the first chapter of the first book, for example,
while he is studying Algebra; the first chapter of
the second book, when he has made some progress
in Geometry; and so with the rest. Passages
which are obscure at the first reading will brighten
up at the second; and as his own studies cover
a larger portion of the field of Mathematics, he
will see more and more clearly their relations to
one another, and to those which he is next to take
up. For this end he is urgently recommended to
obtain a perfect familiarity with the "Analytical
Table of Contents," which maps out the whole
subject, the grand divisions of which are also indicated
in the Tabular View facing the title-page.
Corresponding heads will be found in the body of
the work, the principal divisions being in small
capitals, and the subdivisions in Italics. For
these details the translator alone is responsible.
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THE

PHILOSOPHY OF MATHEMATICS.

INTRODUCTION.

GENERAL CONSIDERATIONS.

Although Mathematical Science is the most ancient
and the most perfect of all, yet the general idea which
we ought to form of it has not yet been clearly determined.
Its definition and its principal divisions have
remained till now vague and uncertain. Indeed the
plural name—"The Mathematics"—by which we commonly
designate it, would alone suffice to indicate the
want of unity in the common conception of it.

In truth, it was not till the commencement of the last
century that the different fundamental conceptions which
constitute this great science were each of them sufficiently
developed to permit the true spirit of the whole
to manifest itself with clearness. Since that epoch the
attention of geometers has been too exclusively absorbed
by the special perfecting of the different branches, and
by the application which they have made of them to the
most important laws of the universe, to allow them to
give due attention to the general system of the science.

But at the present time the progress of the special
departments is no longer so rapid as to forbid the contemplation
of the whole. The science of mathematics
is now sufficiently developed, both in itself and as to its
most essential application, to have arrived at that state
of consistency in which we ought to strive to arrange its
different parts in a single system, in order to prepare for
new advances. We may even observe that the last important
improvements of the science have directly paved
the way for this important philosophical operation, by impressing
on its principal parts a character of unity which
did not previously exist.

To form a just idea of the object of mathematical science,
we may start from the indefinite and meaningless
definition of it usually given, in calling it "The science
of magnitudes," or, which is more definite, "The science
which has for its object the measurement of magnitudes."
Let us see how we can rise from this rough
sketch (which is singularly deficient in precision and
depth, though, at bottom, just) to a veritable definition,
worthy of the importance, the extent, and the difficulty
of the science.

THE OBJECT OF MATHEMATICS.

Measuring Magnitudes. The question of measuring
a magnitude in itself presents to the mind no other
idea than that of the simple direct comparison of this
magnitude with another similar magnitude, supposed to
be known, which it takes for the unit of comparison
among all others of the same kind. According to this
definition, then, the science of mathematics—vast and
profound as it is with reason reputed to be—instead of
being an immense concatenation of prolonged mental labours,
which offer inexhaustible occupation to our intellectual
activity, would seem to consist of a simple
series of mechanical processes for obtaining directly the
ratios of the quantities to be measured to those by which
we wish to measure them, by the aid of operations of
similar character to the superposition of lines, as practiced
by the carpenter with his rule.

The error of this definition consists in presenting as
direct an object which is almost always, on the contrary,
very indirect. The direct measurement of a magnitude,
by superposition or any similar process, is most frequently
an operation quite impossible for us to perform; so
that if we had no other means for determining magnitudes
than direct comparisons, we should be obliged to renounce
the knowledge of most of those which interest us.

Difficulties. The force of this general observation
will be understood if we limit ourselves to consider specially
the particular case which evidently offers the most
facility—that of the measurement of one straight line
by another. This comparison, which is certainly the
most simple which we can conceive, can nevertheless
scarcely ever be effected directly. In reflecting on the
whole of the conditions necessary to render a line susceptible
of a direct measurement, we see that most frequently
they cannot be all fulfilled at the same time.
The first and the most palpable of these conditions—that
of being able to pass over the line from one end of
it to the other, in order to apply the unit of measurement
to its whole length—evidently excludes at once by far the
greater part of the distances which interest us the most;
in the first place, all the distances between the celestial
bodies, or from any one of them to the earth; and then,
too, even the greater number of terrestrial distances, which
are so frequently inaccessible. But even if this first condition
be found to be fulfilled, it is still farther necessary
that the length be neither too great nor too small, which
would render a direct measurement equally impossible.
The line must also be suitably situated; for let it be one
which we could measure with the greatest facility, if it
were horizontal, but conceive it to be turned up vertically,
and it becomes impossible to measure it.

The difficulties which we have indicated in reference
to measuring lines, exist in a very much greater degree
in the measurement of surfaces, volumes, velocities, times,
forces, &c. It is this fact which makes necessary the
formation of mathematical science, as we are going to
see; for the human mind has been compelled to renounce,
in almost all cases, the direct measurement of
magnitudes, and to seek to determine them indirectly,
and it is thus that it has been led to the creation of
mathematics.

General Method. The general method which is constantly
employed, and evidently the only one conceivable,
to ascertain magnitudes which do not admit of a direct
measurement, consists in connecting them with others
which are susceptible of being determined immediately,
and by means of which we succeed in discovering
the first through the relations which subsist between
the two. Such is the precise object of mathematical
science viewed as a whole. In order to form a sufficiently
extended idea of it, we must consider that this
indirect determination of magnitudes may be indirect in
very different degrees. In a great number of cases,
which are often the most important, the magnitudes, by
means of which the principal magnitudes sought are to
be determined, cannot themselves be measured directly,
and must therefore, in their turn, become the subject of a
similar question, and so on; so that on many occasions
the human mind is obliged to establish a long series of
intermediates between the system of unknown magnitudes
which are the final objects of its researches, and
the system of magnitudes susceptible of direct measurement,
by whose means we finally determine the first,
with which at first they appear to have no connexion.

Illustrations. Some examples will make clear any
thing which may seem too abstract in the preceding
generalities.

1. Falling Bodies. Let us consider, in the first place,
a natural phenomenon, very simple, indeed, but which
may nevertheless give rise to a mathematical question,
really existing, and susceptible of actual applications—the
phenomenon of the vertical fall of heavy bodies.

The mind the most unused to mathematical conceptions,
in observing this phenomenon, perceives at once
that the two quantities which it presents—namely, the
height from which a body has fallen, and the time of its
fall—are necessarily connected with each other, since they
vary together, and simultaneously remain fixed; or, in
the language of geometers, that they are "functions" of
each other. The phenomenon, considered under this
point of view, gives rise then to a mathematical question,
which consists in substituting for the direct measurement
of one of these two magnitudes, when it is impossible,
the measurement of the other. It is thus, for
example, that we may determine indirectly the depth of
a precipice, by merely measuring the time that a heavy
body would occupy in falling to its bottom, and by suitable
procedures this inaccessible depth will be known
with as much precision as if it was a horizontal line
placed in the most favourable circumstances for easy and
exact measurement. On other occasions it is the height
from which a body has fallen which it will be easy to ascertain,
while the time of the fall could not be observed
directly; then the same phenomenon would give rise to
the inverse question, namely, to determine the time from
the height; as, for example, if we wished to ascertain
what would be the duration of the vertical fall of a body
falling from the moon to the earth.

In this example the mathematical question is very simple,
at least when we do not pay attention to the variation
in the intensity of gravity, or the resistance of the fluid
which the body passes through in its fall. But, to extend
the question, we have only to consider the same
phenomenon in its greatest generality, in supposing the
fall oblique, and in taking into the account all the principal
circumstances. Then, instead of offering simply
two variable quantities connected with each other by a
relation easy to follow, the phenomenon will present a
much greater number; namely, the space traversed,
whether in a vertical or horizontal direction; the time
employed in traversing it; the velocity of the body at
each point of its course; even the intensity and the
direction of its primitive impulse, which may also be
viewed as variables; and finally, in certain cases (to
take every thing into the account), the resistance of the
medium and the intensity of gravity. All these different
quantities will be connected with one another, in such a
way that each in its turn may be indirectly determined
by means of the others; and this will present as many
distinct mathematical questions as there may be co-existing
magnitudes in the phenomenon under consideration.
Such a very slight change in the physical conditions of
a problem may cause (as in the above example) a mathematical
research, at first very elementary, to be placed at
once in the rank of the most difficult questions, whose
complete and rigorous solution surpasses as yet the utmost
power of the human intellect.

2. Inaccessible Distances. Let us take a second example
from geometrical phenomena. Let it be proposed
to determine a distance which is not susceptible of direct
measurement; it will be generally conceived as making
part of a figure, or certain system of lines, chosen in
such a way that all its other parts may be observed directly;
thus, in the case which is most simple, and to
which all the others may be finally reduced, the proposed
distance will be considered as belonging to a triangle,
in which we can determine directly either another
side and two angles, or two sides and one angle. Thence-forward,
the knowledge of the desired distance, instead
of being obtained directly, will be the result of a mathematical
calculation, which will consist in deducing it
from the observed elements by means of the relation
which connects it with them. This calculation will become
successively more and more complicated, if the parts
which we have supposed to be known cannot themselves
be determined (as is most frequently the case) except in
an indirect manner, by the aid of new auxiliary systems,
the number of which, in great operations of this kind,
finally becomes very considerable. The distance being
once determined, the knowledge of it will frequently be
sufficient for obtaining new quantities, which will become
the subject of new mathematical questions. Thus, when
we know at what distance any object is situated, the
simple observation of its apparent diameter will evidently
permit us to determine indirectly its real dimensions,
however inaccessible it may be, and, by a series of analogous
investigations, its surface, its volume, even its
weight, and a number of other properties, a knowledge
of which seemed forbidden to us.

3. Astronomical Facts. It is by such calculations
that man has been able to ascertain, not only the distances
from the planets to the earth, and, consequently,
from each other, but their actual magnitude, their true
figure, even to the inequalities of their surface; and, what
seemed still more completely hidden from us, their respective
masses, their mean densities, the principal circumstances
of the fall of heavy bodies on the surface of
each of them, &c.

By the power of mathematical theories, all these different
results, and many others relative to the different
classes of mathematical phenomena, have required no
other direct measurements than those of a very small
number of straight lines, suitably chosen, and of a greater
number of angles. We may even say, with perfect
truth, so as to indicate in a word the general range of
the science, that if we did not fear to multiply calculations
unnecessarily, and if we had not, in consequence,
to reserve them for the determination of the quantities
which could not be measured directly, the determination
of all the magnitudes susceptible of precise estimation,
which the various orders of phenomena can offer us,
could be finally reduced to the direct measurement of a
single straight line and of a suitable number of angles.


TRUE DEFINITION OF MATHEMATICS.

We are now able to define mathematical science with
precision, by assigning to it as its object the indirect
measurement of magnitudes, and by saying it constantly
proposes to determine certain magnitudes from others
by means of the precise relations existing between them.

This enunciation, instead of giving the idea of only an
art, as do all the ordinary definitions, characterizes immediately
a true science, and shows it at once to be composed
of an immense chain of intellectual operations,
which may evidently become very complicated, because
of the series of intermediate links which it will be necessary
to establish between the unknown quantities and
those which admit of a direct measurement; of the number
of variables coexistent in the proposed question; and
of the nature of the relations between all these different
magnitudes furnished by the phenomena under consideration.
According to such a definition, the spirit of
mathematics consists in always regarding all the quantities
which any phenomenon can present, as connected
and interwoven with one another, with the view of deducing
them from one another. Now there is evidently
no phenomenon which cannot give rise to considerations
of this kind; whence results the naturally indefinite extent
and even the rigorous logical universality of mathematical
science. We shall seek farther on to circumscribe
as exactly as possible its real extension.

The preceding explanations establish clearly the propriety
of the name employed to designate the science
which we are considering. This denomination, which
has taken to-day so definite a meaning by itself signifies
simply science in general. Such a designation, rigorously
exact for the Greeks, who had no other real science,
could be retained by the moderns only to indicate
the mathematics as the science, beyond all others—the
science of sciences.

Indeed, every true science has for its object the determination
of certain phenomena by means of others, in
accordance with the relations which exist between them.
Every science consists in the co-ordination of facts; if
the different observations were entirely isolated, there
would be no science. We may even say, in general terms,
that science is essentially destined to dispense, so far as
the different phenomena permit it, with all direct observation,
by enabling us to deduce from the smallest
possible number of immediate data the greatest possible
number of results. Is not this the real use, whether in
speculation or in action, of the laws which we succeed
in discovering among natural phenomena? Mathematical
science, in this point of view, merely pushes to the
highest possible degree the same kind of researches which
are pursued, in degrees more or less inferior, by every
real science in its respective sphere.

ITS TWO FUNDAMENTAL DIVISIONS.

We have thus far viewed mathematical science only
as a whole, without paying any regard to its divisions.
We must now, in order to complete this general view,
and to form a just idea of the philosophical character of
the science, consider its fundamental division. The secondary
divisions will be examined in the following chapters.

This principal division, which we are about to investigate,
can be truly rational, and derived from the real nature
of the subject, only so far as it spontaneously presents
itself to us, in making the exact analysis of a complete
mathematical question. We will, therefore, having
determined above what is the general object of mathematical
labours, now characterize with precision the
principal different orders of inquiries, of which they are
constantly composed.

Their different Objects. The complete solution of
every mathematical question divides itself necessarily
into two parts, of natures essentially distinct, and with
relations invariably determinate. We have seen that
every mathematical inquiry has for its object to determine
unknown magnitudes, according to the relations between
them and known magnitudes. Now for this object,
it is evidently necessary, in the first place, to ascertain
with precision the relations which exist between
the quantities which we are considering. This first
branch of inquiries constitutes that which I call the concrete
part of the solution. When it is finished, the question
changes; it is now reduced to a pure question of
numbers, consisting simply in determining unknown
numbers, when we know what precise relations connect
them with known numbers. This second branch of inquiries
is what I call the abstract part of the solution.
Hence follows the fundamental division of general mathematical
science into two great sciences—ABSTRACT MATHEMATICS,
and CONCRETE MATHEMATICS.

This analysis may be observed in every complete
mathematical question, however simple or complicated
it may be. A single example will suffice to make it
intelligible.


Taking up again the phenomenon of the vertical fall
of a heavy body, and considering the simplest case, we
see that in order to succeed in determining, by means of
one another, the height whence the body has fallen, and
the duration of its fall, we must commence by discovering
the exact relation of these two quantities, or, to use the
language of geometers, the equation which exists between
them. Before this first research is completed,
every attempt to determine numerically the value of one
of these two magnitudes from the other would evidently
be premature, for it would have no basis. It is not enough
to know vaguely that they depend on one another—which
every one at once perceives—but it is necessary to determine
in what this dependence consists. This inquiry
may be very difficult, and in fact, in the present case,
constitutes incomparably the greater part of the problem.
The true scientific spirit is so modern, that no one, perhaps,
before Galileo, had ever remarked the increase of
velocity which a body experiences in its fall: a circumstance
which excludes the hypothesis, towards which our
mind (always involuntarily inclined to suppose in every
phenomenon the most simple functions, without any other
motive than its greater facility in conceiving them)
would be naturally led, that the height was proportional
to the time. In a word, this first inquiry terminated
in the discovery of the law of Galileo.

When this concrete part is completed, the inquiry becomes
one of quite another nature. Knowing that the
spaces passed through by the body in each successive second
of its fall increase as the series of odd numbers, we
have then a problem purely numerical and abstract; to
deduce the height from the time, or the time from the
height; and this consists in finding that the first of these
two quantities, according to the law which has been established,
is a known multiple of the second power of the
other; from which, finally, we have to calculate the value
of the one when that of the other is given.

In this example the concrete question is more difficult
than the abstract one. The reverse would be the case
if we considered the same phenomenon in its greatest
generality, as I have done above for another object.
According to the circumstances, sometimes the first,
sometimes the second, of these two parts will constitute
the principal difficulty of the whole question; for the
mathematical law of the phenomenon may be very simple,
but very difficult to obtain, or it may be easy to discover,
but very complicated; so that the two great sections
of mathematical science, when we compare them
as wholes, must be regarded as exactly equivalent in extent
and in difficulty, as well as in importance, as we
shall show farther on, in considering each of them separately.

Their different Natures. These two parts, essentially
distinct in their object, as we have just seen, are no less
so with regard to the nature of the inquiries of which
they are composed.

The first should be called concrete, since it evidently
depends on the character of the phenomena considered,
and must necessarily vary when we examine new phenomena;
while the second is completely independent of
the nature of the objects examined, and is concerned with
only the numerical relations which they present, for which
reason it should be called abstract. The same relations
may exist in a great number of different phenomena,
which, in spite of their extreme diversity, will be viewed
by the geometer as offering an analytical question susceptible,
when studied by itself, of being resolved once
for all. Thus, for instance, the same law which exists
between the space and the time of the vertical fall of a
body in a vacuum, is found again in many other phenomena
which offer no analogy with the first nor with
each other; for it expresses the relation between the surface
of a spherical body and the length of its diameter;
it determines, in like manner, the decrease of the intensity
of light or of heat in relation to the distance of the objects
lighted or heated, &c. The abstract part, common
to these different mathematical questions, having
been treated in reference to one of these, will thus have
been treated for all; while the concrete part will have
necessarily to be again taken up for each question separately,
without the solution of any one of them being
able to give any direct aid, in that connexion, for the solution
of the rest.

The abstract part of mathematics is, then, general in
its nature; the concrete part, special.

To present this comparison under a new point of view,
we may say concrete mathematics has a philosophical
character, which is essentially experimental, physical,
phenomenal; while that of abstract mathematics is purely
logical, rational. The concrete part of every mathematical
question is necessarily founded on the consideration
of the external world, and could never be resolved
by a simple series of intellectual combinations. The abstract
part, on the contrary, when it has been very completely
separated, can consist only of a series of logical
deductions, more or less prolonged; for if we have once
found the equations of a phenomenon, the determination
of the quantities therein considered, by means of one another,
is a matter for reasoning only, whatever the difficulties
may be. It belongs to the understanding alone
to deduce from these equations results which are evidently
contained in them, although perhaps in a very involved
manner, without there being occasion to consult
anew the external world; the consideration of which,
having become thenceforth foreign to the subject, ought
even to be carefully set aside in order to reduce the labour
to its true peculiar difficulty. The abstract part
of mathematics is then purely instrumental, and is only
an immense and admirable extension of natural logic to a
certain class of deductions. On the other hand, geometry
and mechanics, which, as we shall see presently, constitute
the concrete part, must be viewed as real natural
sciences, founded on observation, like all the rest,
although the extreme simplicity of their phenomena permits
an infinitely greater degree of systematization,
which has sometimes caused a misconception of the experimental
character of their first principles.

We see, by this brief general comparison, how natural
and profound is our fundamental division of mathematical
science.

We have now to circumscribe, as exactly as we can
in this first sketch, each of these two great sections.

CONCRETE MATHEMATICS.

Concrete Mathematics having for its object the discovery
of the equations of phenomena, it would seem at
first that it must be composed of as many distinct sciences
as we find really distinct categories among natural
phenomena. But we are yet very far from having discovered
mathematical laws in all kinds of phenomena;
we shall even see, presently, that the greater part will
very probably always hide themselves from our investigations.
In reality, in the present condition of the human
mind, there are directly but two great general classes of
phenomena, whose equations we constantly know; these
are, firstly, geometrical, and, secondly, mechanical phenomena.
Thus, then, the concrete part of mathematics
is composed of Geometry and Rational Mechanics.

This is sufficient, it is true, to give to it a complete
character of logical universality, when we consider all
phenomena from the most elevated point of view of natural
philosophy. In fact, if all the parts of the universe
were conceived as immovable, we should evidently have
only geometrical phenomena to observe, since all would
be reduced to relations of form, magnitude, and position;
then, having regard to the motions which take place in it,
we would have also to consider mechanical phenomena.
Hence the universe, in the statical point of view, presents
only geometrical phenomena; and, considered dynamically,
only mechanical phenomena. Thus geometry
and mechanics constitute the two fundamental natural
sciences, in this sense, that all natural effects may be conceived
as simple necessary results, either of the laws of
extension or of the laws of motion.

But although this conception is always logically possible,
the difficulty is to specialize it with the necessary
precision, and to follow it exactly in each of the general
cases offered to us by the study of nature; that is, to
effectually reduce each principal question of natural philosophy,
for a certain determinate order of phenomena, to
the question of geometry or mechanics, to which we might
rationally suppose it should be brought. This transformation,
which requires great progress to have been previously
made in the study of each class of phenomena, has thus
far been really executed only for those of astronomy, and
for a part of those considered by terrestrial physics, properly
so called. It is thus that astronomy, acoustics, optics,
&c., have finally become applications of mathematical
science to certain orders of observations.[1] But these
applications not being by their nature rigorously circumscribed,
to confound them with the science would be to
assign to it a vague and indefinite domain; and this is
done in the usual division, so faulty in so many other
respects, of the mathematics into "Pure" and "Applied."

ABSTRACT MATHEMATICS.

The nature of abstract mathematics (the general division
of which will be examined in the following chapter) is
clearly and exactly determined. It is composed of what is
called the Calculus,[2] taking this word in its greatest extent,
which reaches from the most simple numerical operations
to the most sublime combinations of transcendental
analysis. The Calculus has the solution of all questions
relating to numbers for its peculiar object. Its starting
point is, constantly and necessarily, the knowledge of the
precise relations, i.e., of the equations, between the different
magnitudes which are simultaneously considered;
that which is, on the contrary, the stopping point of concrete
mathematics. However complicated, or however indirect
these relations may be, the final object of the calculus
always is to obtain from them the values of the unknown
quantities by means of those which are known.
This science, although nearer perfection than any other,
is really little advanced as yet, so that this object is rarely
attained in a manner completely satisfactory.

Mathematical analysis is, then, the true rational basis
of the entire system of our actual knowledge. It constitutes
the first and the most perfect of all the fundamental
sciences. The ideas with which it occupies itself
are the most universal, the most abstract, and the
most simple which it is possible for us to conceive.

This peculiar nature of mathematical analysis enables
us easily to explain why, when it is properly employed,
it is such a powerful instrument, not only to give more
precision to our real knowledge, which is self-evident, but
especially to establish an infinitely more perfect co-ordination
in the study of the phenomena which admit of
that application; for, our conceptions having been so
generalized and simplified that a single analytical question,
abstractly resolved, contains the implicit solution
of a great number of diverse physical questions, the human
mind must necessarily acquire by these means a
greater facility in perceiving relations between phenomena
which at first appeared entirely distinct from one
another. We thus naturally see arise, through the medium
of analysis, the most frequent and the most unexpected
approximations between problems which at first
offered no apparent connection, and which we often end
in viewing as identical. Could we, for example, without
the aid of analysis, perceive the least resemblance
between the determination of the direction of a curve at
each of its points and that of the velocity acquired by a
body at every instant of its variable motion? and yet
these questions, however different they may be, compose
but one in the eyes of the geometer.

The high relative perfection of mathematical analysis
is as easily perceptible. This perfection is not due, as
some have thought, to the nature of the signs which are
employed as instruments of reasoning, eminently concise
and general as they are. In reality, all great analytical
ideas have been formed without the algebraic signs having
been of any essential aid, except for working them
out after the mind had conceived them. The superior
perfection of the science of the calculus is due principally
to the extreme simplicity of the ideas which it considers,
by whatever signs they may be expressed; so that
there is not the least hope, by any artifice of scientific
language, of perfecting to the same degree theories which
refer to more complex subjects, and which are necessarily
condemned by their nature to a greater or less logical inferiority.

THE EXTENT OF ITS FIELD.

Our examination of the philosophical character of mathematical
science would remain incomplete, if, after having
viewed its object and composition, we did not examine
the real extent of its domain.


Its Universality. For this purpose it is indispensable
to perceive, first of all, that, in the purely logical
point of view, this science is by itself necessarily and
rigorously universal; for there is no question whatever
which may not be finally conceived as consisting in determining
certain quantities from others by means of certain
relations, and consequently as admitting of reduction,
in final analysis, to a simple question of numbers.
In all our researches, indeed, on whatever subject, our
object is to arrive at numbers, at quantities, though often
in a very imperfect manner and by very uncertain methods.
Thus, taking an example in the class of subjects
the least accessible to mathematics, the phenomena of
living bodies, even when considered (to take the most
complicated case) in the state of disease, is it not manifest
that all the questions of therapeutics may be viewed
as consisting in determining the quantities of the different
agents which modify the organism, and which must
act upon it to bring it to its normal state, admitting, for
some of these quantities in certain cases, values which
are equal to zero, or negative, or even contradictory?

The fundamental idea of Descartes on the relation of
the concrete to the abstract in mathematics, has proven,
in opposition to the superficial distinction of metaphysics,
that all ideas of quality may be reduced to those of
quantity. This conception, established at first by its
immortal author in relation to geometrical phenomena
only, has since been effectually extended to mechanical
phenomena, and in our days to those of heat. As a result
of this gradual generalization, there are now no geometers
who do not consider it, in a purely theoretical
sense, as capable of being applied to all our real ideas of
every sort, so that every phenomenon is logically susceptible
of being represented by an equation; as much so,
indeed, as is a curve or a motion, excepting the difficulty
of discovering it, and then of resolving it, which
may be, and oftentimes are, superior to the greatest powers
of the human mind.

Its Limitations. Important as it is to comprehend
the rigorous universality, in a logical point of view, of
mathematical science, it is no less indispensable to consider
now the great real limitations, which, through the
feebleness of our intellect, narrow in a remarkable degree
its actual domain, in proportion as phenomena, in
becoming special, become complicated.

Every question may be conceived as capable of being
reduced to a pure question of numbers; but the difficulty
of effecting such a transformation increases so much
with the complication of the phenomena of natural philosophy,
that it soon becomes insurmountable.

This will be easily seen, if we consider that to bring
a question within the field of mathematical analysis, we
must first have discovered the precise relations which exist
between the quantities which are found in the phenomenon
under examination, the establishment of these
equations being the necessary starting point of all analytical
labours. This must evidently be so much the
more difficult as we have to do with phenomena which
are more special, and therefore more complicated. We
shall thus find that it is only in inorganic physics, at
the most, that we can justly hope ever to obtain that
high degree of scientific perfection.

The first condition which is necessary in order that
phenomena may admit of mathematical laws, susceptible
of being discovered, evidently is, that their different quantities
should admit of being expressed by fixed numbers.
We soon find that in this respect the whole of organic
physics, and probably also the most complicated parts of
inorganic physics, are necessarily inaccessible, by their
nature, to our mathematical analysis, by reason of the
extreme numerical variability of the corresponding phenomena.
Every precise idea of fixed numbers is truly
out of place in the phenomena of living bodies, when we
wish to employ it otherwise than as a means of relieving
the attention, and when we attach any importance to the
exact relations of the values assigned.

We ought not, however, on this account, to cease to
conceive all phenomena as being necessarily subject to
mathematical laws, which we are condemned to be ignorant
of, only because of the too great complication of the
phenomena. The most complex phenomena of living
bodies are doubtless essentially of no other special nature
than the simplest phenomena of unorganized matter. If
it were possible to isolate rigorously each of the simple
causes which concur in producing a single physiological
phenomenon, every thing leads us to believe that it would
show itself endowed, in determinate circumstances, with
a kind of influence and with a quantity of action as exactly
fixed as we see it in universal gravitation, a veritable
type of the fundamental laws of nature.

There is a second reason why we cannot bring complicated
phenomena under the dominion of mathematical
analysis. Even if we could ascertain the mathematical
law which governs each agent, taken by itself, the combination
of so great a number of conditions would render
the corresponding mathematical problem so far above our
feeble means, that the question would remain in most
cases incapable of solution.

To appreciate this difficulty, let us consider how complicated
mathematical questions become, even those relating
to the most simple phenomena of unorganized bodies,
when we desire to bring sufficiently near together the abstract
and the concrete state, having regard to all the
principal conditions which can exercise a real influence
over the effect produced. We know, for example, that
the very simple phenomenon of the flow of a fluid through
a given orifice, by virtue of its gravity alone, has not as
yet any complete mathematical solution, when we take
into the account all the essential circumstances. It is
the same even with the still more simple motion of a
solid projectile in a resisting medium.

Why has mathematical analysis been able to adapt itself
with such admirable success to the most profound study
of celestial phenomena? Because they are, in spite of
popular appearances, much more simple than any others.
The most complicated problem which they present, that
of the modification produced in the motions of two bodies
tending towards each other by virtue of their gravitation,
by the influence of a third body acting on both of them
in the same manner, is much less complex than the most
simple terrestrial problem. And, nevertheless, even it
presents difficulties so great that we yet possess only
approximate solutions of it. It is even easy to see that
the high perfection to which solar astronomy has been
able to elevate itself by the employment of mathematical
science is, besides, essentially due to our having skilfully
profited by all the particular, and, so to say, accidental
facilities presented by the peculiarly favourable constitution
of our planetary system. The planets which compose
it are quite few in number, and their masses are in
general very unequal, and much less than that of the
sun; they are, besides, very distant from one another;
they have forms almost spherical; their orbits are nearly
circular, and only slightly inclined to each other, and so
on. It results from all these circumstances that the perturbations
are generally inconsiderable, and that to calculate
them it is usually sufficient to take into the account,
in connexion with the action of the sun on each
particular planet, the influence of only one other planet,
capable, by its size and its proximity, of causing perceptible
derangements.

If, however, instead of such a state of things, our solar
system had been composed of a greater number of
planets concentrated into a less space, and nearly equal
in mass; if their orbits had presented very different inclinations,
and considerable eccentricities; if these bodies
had been of a more complicated form, such as very eccentric
ellipsoids, it is certain that, supposing the same
law of gravitation to exist, we should not yet have succeeded
in subjecting the study of the celestial phenomena
to our mathematical analysis, and probably we should
not even have been able to disentangle the present principal
law.

These hypothetical conditions would find themselves
exactly realized in the highest degree in chemical phenomena,
if we attempted to calculate them by the theory
of general gravitation.

On properly weighing the preceding considerations,
the reader will be convinced, I think, that in reducing
the future extension of the great applications of mathematical
analysis, which are really possible, to the field
comprised in the different departments of inorganic physics,
I have rather exaggerated than contracted the extent
of its actual domain. Important as it was to render
apparent the rigorous logical universality of mathematical
science, it was equally so to indicate the conditions
which limit for us its real extension, so as not to
contribute to lead the human mind astray from the true
scientific direction in the study of the most complicated
phenomena, by the chimerical search after an impossible
perfection.






Having thus exhibited the essential object and the
principal composition of mathematical science, as well as
its general relations with the whole body of natural philosophy,
we have now to pass to the special examination
of the great sciences of which it is composed.

Note.—Analysis and Geometry are the two great heads under which
the subject is about to be examined. To these M. Comte adds Rational
Mechanics; but as it is not comprised in the usual idea of Mathematics,
and as its discussion would be of but limited utility and interest, it is not
included in the present translation.
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CHAPTER I.

GENERAL VIEW OF MATHEMATICAL ANALYSIS.

In the historical development of mathematical science
since the time of Descartes, the advances of its abstract
portion have always been determined by those of its concrete
portion; but it is none the less necessary, in order
to conceive the science in a manner truly logical, to
consider the Calculus in all its principal branches before
proceeding to the philosophical study of Geometry and
Mechanics. Its analytical theories, more simple and
more general than those of concrete mathematics, are in
themselves essentially independent of the latter; while
these, on the contrary, have, by their nature, a continual
need of the former, without the aid of which they could
make scarcely any progress. Although the principal
conceptions of analysis retain at present some very perceptible
traces of their geometrical or mechanical origin,
they are now, however, mainly freed from that primitive
character, which no longer manifests itself except in some
secondary points; so that it is possible (especially since
the labours of Lagrange) to present them in a dogmatic
exposition, by a purely abstract method, in a single and
continuous system. It is this which will be undertaken
in the present and the five following chapters, limiting our
investigations to the most general considerations upon
each principal branch of the science of the calculus.

The definite object of our researches in concrete mathematics
being the discovery of the equations which express
the mathematical laws of the phenomenon under
consideration, and these equations constituting the true
starting point of the calculus, which has for its object
to obtain from them the determination of certain quantities
by means of others, I think it indispensable, before
proceeding any farther, to go more deeply than has
been customary into that fundamental idea of equation,
the continual subject, either as end or as beginning, of
all mathematical labours. Besides the advantage of circumscribing
more definitely the true field of analysis,
there will result from it the important consequence of
tracing in a more exact manner the real line of demarcation
between the concrete and the abstract part of
mathematics, which will complete the general exposition
of the fundamental division established in the introductory
chapter.

THE TRUE IDEA OF AN EQUATION.

We usually form much too vague an idea of what an
equation is, when we give that name to every kind of
relation of equality between any two functions of the
magnitudes which we are considering. For, though every
equation is evidently a relation of equality, it is far
from being true that, reciprocally, every relation of equality
is a veritable equation, of the kind of those to which,
by their nature, the methods of analysis are applicable.


This want of precision in the logical consideration of
an idea which is so fundamental in mathematics, brings
with it the serious inconvenience of rendering it almost
impossible to explain, in general terms, the great and
fundamental difficulty which we find in establishing the
relation between the concrete and the abstract, and which
stands out so prominently in each great mathematical
question taken by itself. If the meaning of the word
equation was truly as extended as we habitually suppose
it to be in our definition of it, it is not apparent what
great difficulty there could really be, in general, in establishing
the equations of any problem whatsoever; for the
whole would thus appear to consist in a simple question
of form, which ought never even to exact any great intellectual
efforts, seeing that we can hardly conceive of
any precise relation which is not immediately a certain
relation of equality, or which cannot be readily brought
thereto by some very easy transformations.

Thus, when we admit every species of functions into
the definition of equations, we do not at all account for
the extreme difficulty which we almost always experience
in putting a problem into an equation, and which
so often may be compared to the efforts required by the
analytical elaboration of the equation when once obtained.
In a word, the ordinary abstract and general idea
of an equation does not at all correspond to the real
meaning which geometers attach to that expression in
the actual development of the science. Here, then, is a
logical fault, a defect of correlation, which it is very important
to rectify.

Division of Functions into Abstract and Concrete.
To succeed in doing so, I begin by distinguishing two
sorts of functions, abstract or analytical functions, and
concrete functions. The first alone can enter into veritable
equations. We may, therefore, henceforth define
every equation, in an exact and sufficiently profound manner,
as a relation of equality between two abstract functions
of the magnitudes under consideration. In order not
to have to return again to this fundamental definition, I
must add here, as an indispensable complement, without
which the idea would not be sufficiently general, that
these abstract functions may refer not only to the magnitudes
which the problem presents of itself, but also to
all the other auxiliary magnitudes which are connected
with it, and which we will often be able to introduce,
simply as a mathematical artifice, with the sole object
of facilitating the discovery of the equations of the phenomena.
I here anticipate summarily the result of a
general discussion of the highest importance, which will
be found at the end of this chapter. We will now return
to the essential distinction of functions as abstract
and concrete.

This distinction may be established in two ways, essentially
different, but complementary of each other, à
priori and à posteriori; that is to say, by characterizing
in a general manner the peculiar nature of each species
of functions, and then by making the actual enumeration
of all the abstract functions at present known,
at least so far as relates to the elements of which they
are composed.

À priori, the functions which I call abstract are those
which express a manner of dependence between magnitudes,
which can be conceived between numbers alone,
without there being need of indicating any phenomenon
whatever in which it is realized. I name, on the other
hand, concrete functions, those for which the mode of dependence
expressed cannot be defined or conceived except
by assigning a determinate case of physics, geometry, mechanics,
&c., in which it actually exists.

Most functions in their origin, even those which are
at present the most purely abstract, have begun by being
concrete; so that it is easy to make the preceding
distinction understood, by citing only the successive different
points of view under which, in proportion as the
science has become formed, geometers have considered
the most simple analytical functions. I will indicate
powers, for example, which have in general become abstract
functions only since the labours of Vieta and Descartes.
The functions x2, x3, which in our present analysis
are so well conceived as simply abstract, were, for
the geometers of antiquity, perfectly concrete functions,
expressing the relation of the superficies of a square, or
the volume of a cube to the length of their side. These
had in their eyes such a character so exclusively, that
it was only by means of the geometrical definitions that
they discovered the elementary algebraic properties of
these functions, relating to the decomposition of the
variable into two parts, properties which were at that
epoch only real theorems of geometry, to which a numerical
meaning was not attached until long afterward.

I shall have occasion to cite presently, for another reason,
a new example, very suitable to make apparent the
fundamental distinction which I have just exhibited; it
is that of circular functions, both direct and inverse, which
at the present time are still sometimes concrete, sometimes
abstract, according to the point of view under which
they are regarded.

À posteriori, the general character which renders a
function abstract or concrete having been established, the
question as to whether a certain determinate function is
veritably abstract, and therefore susceptible of entering
into true analytical equations, becomes a simple question
of fact, inasmuch as we are going to enumerate all the
functions of this species.

Enumeration of Abstract Functions. At first view
this enumeration seems impossible, the distinct analytical
functions being infinite in number. But when we
divide them into simple and compound, the difficulty disappears;
for, though the number of the different functions
considered in mathematical analysis is really infinite,
they are, on the contrary, even at the present day,
composed of a very small number of elementary functions,
which can be easily assigned, and which are evidently
sufficient for deciding the abstract or concrete character
of any given function; which will be of the one or the
other nature, according as it shall be composed exclusively
of these simple abstract functions, or as it shall include
others.

We evidently have to consider, for this purpose, only
the functions of a single variable, since those relative
to several independent variables are constantly, by their
nature, more or less compound.

Let x be the independent variable, y the correlative
variable which depends upon it. The different simple
modes of abstract dependence, which we can now conceive
between y and x, are expressed by the ten following elementary
formulas, in which each function is coupled
with its inverse, that is, with that which would be obtained
from the direct function by referring x to y, instead
of referring y to x.



	 	FUNCTION.	ITS NAME.

	1st couple	1° y = a + x	Sum.

	2° y = a - x	Difference.

	2d couple	1° y = ax	Product.

	2° y = a/x	Quotient.

	3d couple	1° y = x^a	Power.

	2° y = [aroot]x	Root.

	4th couple	1° y = a^x	Exponential.

	2° y = [log a]x	Logarithmic.

	5th couple	1° y = sin. x	Direct Circular.

	2° y = arc(sin. = x).	Inverse Circular.[3]




Such are the elements, very few in number, which directly
compose all the abstract functions known at the
present day. Few as they are, they are evidently sufficient
to give rise to an infinite number of analytical
combinations.



No rational consideration rigorously circumscribes, à
priori, the preceding table, which is only the actual expression
of the present state of the science. Our analytical
elements are at the present day more numerous
than they were for Descartes, and even for Newton and
Leibnitz: it is only a century since the last two couples
have been introduced into analysis by the labours of John
Bernouilli and Euler. Doubtless new ones will be hereafter
admitted; but, as I shall show towards the end of
this chapter, we cannot hope that they will ever be greatly
multiplied, their real augmentation giving rise to very
great difficulties.

We can now form a definite, and, at the same time,
sufficiently extended idea of what geometers understand
by a veritable equation. This explanation is especially
suited to make us understand how difficult it must be
really to establish the equations of phenomena, since we
have effectually succeeded in so doing only when we
have been able to conceive the mathematical laws of
these phenomena by the aid of functions entirely composed
of only the mathematical elements which I have
just enumerated. It is clear, in fact, that it is then
only that the problem becomes truly abstract, and is reduced
to a pure question of numbers, these functions
being the only simple relations which we can conceive
between numbers, considered by themselves. Up to this
period of the solution, whatever the appearances may be,
the question is still essentially concrete, and does not come
within the domain of the calculus. Now the fundamental
difficulty of this passage from the concrete to the abstract
in general consists especially in the insufficiency
of this very small number of analytical elements which
we possess, and by means of which, nevertheless, in spite
of the little real variety which they offer us, we must
succeed in representing all the precise relations which
all the different natural phenomena can manifest to us.
Considering the infinite diversity which must necessarily
exist in this respect in the external world, we easily
understand how far below the true difficulty our conceptions
must frequently be found, especially if we add
that as these elements of our analysis have been in the
first place furnished to us by the mathematical consideration
of the simplest phenomena, we have, à priori, no
rational guarantee of their necessary suitableness to represent
the mathematical law of every other class of phenomena.
I will explain presently the general artifice, so
profoundly ingenious, by which the human mind has succeeded
in diminishing, in a remarkable degree, this fundamental
difficulty which is presented by the relation of
the concrete to the abstract in mathematics, without,
however, its having been necessary to multiply the number
of these analytical elements.

THE TWO PRINCIPAL DIVISIONS OF THE CALCULUS.

The preceding explanations determine with precision
the true object and the real field of abstract mathematics.
I must now pass to the examination of its principal
divisions, for thus far we have considered the calculus
as a whole.

The first direct consideration to be presented on the
composition of the science of the calculus consists in dividing
it, in the first place, into two principal branches,
to which, for want of more suitable denominations, I will
give the names of Algebraic calculus, or Algebra, and of
Arithmetical calculus, or Arithmetic; but with the caution
to take these two expressions in their most extended
logical acceptation, in the place of the by far too restricted
meaning which is usually attached to them.

The complete solution of every question of the calculus,
from the most elementary up to the most transcendental,
is necessarily composed of two successive parts,
whose nature is essentially distinct. In the first, the object
is to transform the proposed equations, so as to make
apparent the manner in which the unknown quantities
are formed by the known ones: it is this which constitutes
the algebraic question. In the second, our object
is to find the values of the formulas thus obtained; that
is, to determine directly the values of the numbers sought,
which are already represented by certain explicit functions
of given numbers: this is the arithmetical question.[4]
It is apparent that, in every solution which is
truly rational, it necessarily follows the algebraical question,
of which it forms the indispensable complement,
since it is evidently necessary to know the mode of generation
of the numbers sought for before determining their
actual values for each particular case. Thus the stopping-place
of the algebraic part of the solution becomes
the starting point of the arithmetical part.

We thus see that the algebraic calculus and the arithmetical
calculus differ essentially in their object. They
differ no less in the point of view under which they regard
quantities; which are considered in the first as to their
relations, and in the second as to their values. The
true spirit of the calculus, in general, requires this distinction
to be maintained with the most severe exactitude,
and the line of demarcation between the two periods
of the solution to be rendered as clear and distinct
as the proposed question permits. The attentive observation
of this precept, which is too much neglected, may
be of much assistance, in each particular question, in directing
the efforts of our mind, at any moment of the
solution, towards the real corresponding difficulty. In
truth, the imperfection of the science of the calculus
obliges us very often (as will be explained in the next
chapter) to intermingle algebraic and arithmetical considerations
in the solution of the same question. But, however
impossible it may be to separate clearly the two parts
of the labour, yet the preceding indications will always
enable us to avoid confounding them.

In endeavouring to sum up as succinctly as possible
the distinction just established, we see that Algebra
may be defined, in general, as having for its object the
resolution of equations; taking this expression in its
full logical meaning, which signifies the transformation
of implicit functions into equivalent explicit ones. In
the same way, Arithmetic may be defined as destined
to the determination of the values of functions. Henceforth,
therefore, we will briefly say that Algebra is the
Calculus of Functions, and Arithmetic the Calculus of
Values.

We can now perceive how insufficient and even erroneous
are the ordinary definitions. Most generally, the
exaggerated importance attributed to Signs has led to the
distinguishing the two fundamental branches of the science
of the Calculus by the manner of designating in
each the subjects of discussion, an idea which is evidently
absurd in principle and false in fact. Even the celebrated
definition given by Newton, characterizing Algebra
as Universal Arithmetic, gives certainly a very false
idea of the nature of algebra and of that of arithmetic.[5]

Having thus established the fundamental division of
the calculus into two principal branches, I have now to
compare in general terms the extent, the importance, and
the difficulty of these two sorts of calculus, so as to have
hereafter to consider only the Calculus of Functions,
which is to be the principal subject of our study.



THE CALCULUS OF VALUES, OR ARITHMETIC.

Its Extent. The Calculus of Values, or Arithmetic,
would appear, at first view, to present a field as vast as
that of algebra, since it would seem to admit as many
distinct questions as we can conceive different algebraic
formulas whose values are to be determined. But a very
simple reflection will show the difference. Dividing functions
into simple and compound, it is evident that when
we know how to determine the value of simple functions,
the consideration of compound functions will no longer
present any difficulty. In the algebraic point of view,
a compound function plays a very different part from that
of the elementary functions of which it consists, and from
this, indeed, proceed all the principal difficulties of analysis.
But it is very different with the Arithmetical Calculus.
Thus the number of truly distinct arithmetical
operations is only that determined by the number of the
elementary abstract functions, the very limited list of
which has been given above. The determination of the values
of these ten functions necessarily gives that of all
the functions, infinite in number, which are considered
in the whole of mathematical analysis, such at least as
it exists at present. There can be no new arithmetical
operations without the creation of really new analytical
elements, the number of which must always be extremely
small. The field of arithmetic is, then, by its nature,
exceedingly restricted, while that of algebra is rigorously
indefinite.

It is, however, important to remark, that the domain
of the calculus of values is, in reality, much more extensive
than it is commonly represented; for several questions
truly arithmetical, since they consist of determinations
of values, are not ordinarily classed as such, because
we are accustomed to treat them only as incidental
in the midst of a body of analytical researches
more or less elevated, the too high opinion commonly
formed of the influence of signs being again the principal
cause of this confusion of ideas. Thus not only the
construction of a table of logarithms, but also the calculation
of trigonometrical tables, are true arithmetical operations
of a higher kind. We may also cite as being
in the same class, although in a very distinct and more
elevated order, all the methods by which we determine
directly the value of any function for each particular system
of values attributed to the quantities on which it depends,
when we cannot express in general terms the explicit
form of that function. In this point of view the
numerical solution of questions which we cannot resolve
algebraically, and even the calculation of "Definite Integrals,"
whose general integrals we do not know, really
make a part, in spite of all appearances, of the domain
of arithmetic, in which we must necessarily comprise all
that which has for its object the determination of the
values of functions. The considerations relative to this
object are, in fact, constantly homogeneous, whatever the
determinations in question, and are always very distinct
from truly algebraic considerations.

To complete a just idea of the real extent of the calculus
of values, we must include in it likewise that part
of the general science of the calculus which now bears
the name of the Theory of Numbers, and which is yet
so little advanced. This branch, very extensive by its
nature, but whose importance in the general system of
science is not very great, has for its object the discovery
of the properties inherent in different numbers by virtue
of their values, and independent of any particular system
of numeration. It forms, then, a sort of transcendental
arithmetic; and to it would really apply the definition
proposed by Newton for algebra.

The entire domain of arithmetic is, then, much more
extended than is commonly supposed; but this calculus
of values will still never be more than a point, so to
speak, in comparison with the calculus of functions, of
which mathematical science essentially consists. This
comparative estimate will be still more apparent from
some considerations which I have now to indicate respecting
the true nature of arithmetical questions in general,
when they are more profoundly examined.

Its true Nature. In seeking to determine with precision
in what determinations of values properly consist,
we easily recognize that they are nothing else but veritable
transformations of the functions to be valued;
transformations which, in spite of their special end, are
none the less essentially of the same nature as all those
taught by analysis. In this point of view, the calculus
of values might be simply conceived as an appendix, and
a particular application of the calculus of functions, so
that arithmetic would disappear, so to say, as a distinct
section in the whole body of abstract mathematics.

In order thoroughly to comprehend this consideration,
we must observe that, when we propose to determine the
value of an unknown number whose mode of formation is
given, it is, by the mere enunciation of the arithmetical
question, already defined and expressed under a certain
form; and that in determining its value we only put its
expression under another determinate form, to which we
are accustomed to refer the exact notion of each particular
number by making it re-enter into the regular system
of numeration. The determination of values consists
so completely of a simple transformation, that when the
primitive expression of the number is found to be already
conformed to the regular system of numeration, there
is no longer any determination of value, properly speaking,
or, rather, the question is answered by the question
itself. Let the question be to add the two numbers one
and twenty, we answer it by merely repeating the enunciation
of the question,[6] and nevertheless we think that
we have determined the value of the sum. This signifies
that in this case the first expression of the function
had no need of being transformed, while it would not be
thus in adding twenty-three and fourteen, for then the
sum would not be immediately expressed in a manner
conformed to the rank which it occupies in the fixed and
general scale of numeration.

To sum up as comprehensively as possible the preceding
views, we may say, that to determine the value of
a number is nothing else than putting its primitive expression
under the form


a + bz + cz2 + dz3 + ez4 . . . . . + pzm,



z being generally equal to 10, and the coefficients a, b,
c, d, &c., being subjected to the conditions of being whole
numbers less than z; capable of becoming equal to zero;
but never negative. Every arithmetical question may
thus be stated as consisting in putting under such a form
any abstract function whatever of different quantities,
which are supposed to have themselves a similar form
already. We might then see in the different operations
of arithmetic only simple particular cases of certain algebraic
transformations, excepting the special difficulties
belonging to conditions relating to the nature of the coefficients.

It clearly follows that abstract mathematics is essentially
composed of the Calculus of Functions, which had
been already seen to be its most important, most extended,
and most difficult part. It will henceforth be the exclusive
subject of our analytical investigations. I will
therefore no longer delay on the Calculus of Values, but
pass immediately to the examination of the fundamental
division of the Calculus of Functions.

THE CALCULUS OF FUNCTIONS, OR ALGEBRA.

Principle of its Fundamental Division. We have
determined, at the beginning of this chapter, wherein
properly consists the difficulty which we experience in
putting mathematical questions into equations. It is essentially
because of the insufficiency of the very small
number of analytical elements which we possess, that
the relation of the concrete to the abstract is usually so
difficult to establish. Let us endeavour now to appreciate
in a philosophical manner the general process by
which the human mind has succeeded, in so great a number
of important cases, in overcoming this fundamental
obstacle to The establishment of Equations.

1. By the Creation of new Functions. In looking at
this important question from the most general point of
view, we are led at once to the conception of one means of
facilitating the establishment of the equations of phenomena.
Since the principal obstacle in this matter comes
from the too small number of our analytical elements, the
whole question would seem to be reduced to creating
new ones. But this means, though natural, is really
illusory; and though it might be useful, it is certainly
insufficient.

In fact, the creation of an elementary abstract function,
which shall be veritably new, presents in itself the
greatest difficulties. There is even something contradictory
in such an idea; for a new analytical element
would evidently not fulfil its essential and appropriate
conditions, if we could not immediately determine its
value. Now, on the other hand, how are we to determine
the value of a new function which is truly simple,
that is, which is not formed by a combination of those
already known? That appears almost impossible. The
introduction into analysis of another elementary abstract
function, or rather of another couple of functions (for each
would be always accompanied by its inverse), supposes
then, of necessity, the simultaneous creation of a new
arithmetical operation, which is certainly very difficult.

If we endeavour to obtain an idea of the means which
the human mind employs for inventing new analytical
elements, by the examination of the procedures by the
aid of which it has actually conceived those which we
already possess, our observations leave us in that respect
in an entire uncertainty, for the artifices which it has
already made use of for that purpose are evidently exhausted.
To convince ourselves of it, let us consider
the last couple of simple functions which has been introduced
into analysis, and at the formation of which we
have been present, so to speak, namely, the fourth couple;
for, as I have explained, the fifth couple does not strictly
give veritable new analytical elements. The function
ax, and, consequently, its inverse, have been formed by
conceiving, under a new point of view, a function which
had been a long time known, namely, powers—when the
idea of them had become sufficiently generalized. The
consideration of a power relatively to the variation of its
exponent, instead of to the variation of its base, was sufficient
to give rise to a truly novel simple function, the
variation following then an entirely different route. But
this artifice, as simple as ingenious, can furnish nothing
more; for, in turning over in the same manner all our
present analytical elements, we end in only making them
return into one another.

We have, then, no idea as to how we could proceed to
the creation of new elementary abstract functions which
would properly satisfy all the necessary conditions. This
is not to say, however, that we have at present attained
the effectual limit established in that respect by the
bounds of our intelligence. It is even certain that the
last special improvements in mathematical analysis have
contributed to extend our resources in that respect, by
introducing within the domain of the calculus certain definite
integrals, which in some respects supply the place
of new simple functions, although they are far from fulfilling
all the necessary conditions, which has prevented
me from inserting them in the table of true analytical
elements. But, on the whole, I think it unquestionable
that the number of these elements cannot increase except
with extreme slowness. It is therefore not from
these sources that the human mind has drawn its most
powerful means of facilitating, as much as is possible,
the establishment of equations.

2. By the Conception of Equations between certain
auxiliary Quantities. This first method being set aside,
there remains evidently but one other: it is, seeing the
impossibility of finding directly the equations between
the quantities under consideration, to seek for corresponding
ones between other auxiliary quantities, connected
with the first according to a certain determinate law,
and from the relation between which we may return to
that between the primitive magnitudes. Such is, in
substance, the eminently fruitful conception, which the
human mind has succeeded in establishing, and which
constitutes its most admirable instrument for the mathematical
explanation of natural phenomena; the analysis,
called transcendental.

As a general philosophical principle, the auxiliary
quantities, which are introduced in the place of the primitive
magnitudes, or concurrently with them, in order to
facilitate the establishment of equations, might be derived
according to any law whatever from the immediate
elements of the question. This conception has thus a
much more extensive reach than has been commonly attributed
to it by even the most profound geometers. It
is extremely important for us to view it in its whole logical
extent, for it will perhaps be by establishing a general
mode of derivation different from that to which we
have thus far confined ourselves (although it is evidently
very far from being the only possible one) that we shall
one day succeed in essentially perfecting mathematical
analysis as a whole, and consequently in establishing
more powerful means of investigating the laws of nature
than our present processes, which are unquestionably susceptible
of becoming exhausted.

But, regarding merely the present constitution of the
science, the only auxiliary quantities habitually introduced
in the place of the primitive quantities in the
Transcendental Analysis are what are called, 1o, infinitely
small elements, the differentials (of different orders)
of those quantities, if we regard this analysis in the
manner of Leibnitz; or, 2o, the fluxions, the limits of
the ratios of the simultaneous increments of the primitive
quantities compared with one another, or, more
briefly, the prime and ultimate ratios of these increments,
if we adopt the conception of Newton; or, 3o,
the derivatives, properly so called, of those quantities,
that is, the coefficients of the different terms of their respective
increments, according to the conception of Lagrange.

These three principal methods of viewing our present
transcendental analysis, and all the other less distinctly
characterized ones which have been successively proposed,
are, by their nature, necessarily identical, whether
in the calculation or in the application, as will be explained
in a general manner in the third chapter. As to
their relative value, we shall there see that the conception
of Leibnitz has thus far, in practice, an incontestable
superiority, but that its logical character is exceedingly
vicious; while that the conception of Lagrange,
admirable by its simplicity, by its logical perfection, by
the philosophical unity which it has established in mathematical
analysis (till then separated into two almost entirely
independent worlds), presents, as yet, serious inconveniences
in the applications, by retarding the progress
of the mind. The conception of Newton occupies nearly
middle ground in these various relations, being less rapid,
but more rational than that of Leibnitz; less philosophical,
but more applicable than that of Lagrange.

This is not the place to explain the advantages of the
introduction of this kind of auxiliary quantities in the
place of the primitive magnitudes. The third chapter
is devoted to this subject. At present I limit myself to
consider this conception in the most general manner, in
order to deduce therefrom the fundamental division of
the calculus of functions into two systems essentially
distinct, whose dependence, for the complete solution of
any one mathematical question, is invariably determinate.

In this connexion, and in the logical order of ideas,
the transcendental analysis presents itself as being necessarily
the first, since its general object is to facilitate
the establishment of equations, an operation which must
evidently precede the resolution of those equations, which
is the object of the ordinary analysis. But though it is
exceedingly important to conceive in this way the true
relations of these two systems of analysis, it is none the
less proper, in conformity with the regular usage, to
study the transcendental analysis after ordinary analysis;
for though the former is, at bottom, by itself logically
independent of the latter, or, at least, may be essentially
disengaged from it, yet it is clear that, since
its employment in the solution of questions has always
more or less need of being completed by the use of the
ordinary analysis, we would be constrained to leave the
questions in suspense if this latter had not been previously
studied.


Corresponding Divisions of the Calculus of Functions.
It follows from the preceding considerations that
the Calculus of Functions, or Algebra (taking this word
in its most extended meaning), is composed of two distinct
fundamental branches, one of which has for its immediate
object the resolution of equations, when they
are directly established between the magnitudes themselves
which are under consideration; and the other,
starting from equations (generally much easier to form)
between quantities indirectly connected with those of
the problem, has for its peculiar and constant destination
the deduction, by invariable analytical methods, of
the corresponding equations between the direct magnitudes
which we are considering; which brings the question
within the domain of the preceding calculus.

The former calculus bears most frequently the name
of Ordinary Analysis, or of Algebra, properly so called.
The second constitutes what is called the Transcendental
Analysis, which has been designated by the different
denominations of Infinitesimal Calculus, Calculus of
Fluxions and of Fluents, Calculus of Vanishing Quantities,
the Differential and Integral Calculus, &c., according
to the point of view in which it has been conceived.

In order to remove every foreign consideration, I will
propose to name it Calculus of Indirect Functions, giving
to ordinary analysis the title of Calculus of Direct
Functions. These expressions, which I form essentially
by generalizing and epitomizing the ideas of Lagrange,
are simply intended to indicate with precision the true
general character belonging to each of these two forms
of analysis.


Having now established the fundamental division of
mathematical analysis, I have next to consider separately
each of its two parts, commencing with the Calculus
of Direct Functions, and reserving more extended developments
for the different branches of the Calculus of
Indirect Functions.



CHAPTER II.

ORDINARY ANALYSIS, OR ALGEBRA.

The Calculus of direct Functions, or Algebra, is (as
was shown at the end of the preceding chapter) entirely
sufficient for the solution of mathematical questions, when
they are so simple that we can form directly the equations
between the magnitudes themselves which we are
considering, without its being necessary to introduce in
their place, or conjointly with them, any system of auxiliary
quantities derived from the first. It is true that
in the greatest number of important cases its use requires
to be preceded and prepared by that of the Calculus
of indirect Functions, which is intended to facilitate
the establishment of equations. But, although algebra
has then only a secondary office to perform, it has
none the less a necessary part in the complete solution
of the question, so that the Calculus of direct Functions
must continue to be, by its nature, the fundamental base
of all mathematical analysis. We must therefore, before
going any further, consider in a general manner the logical
composition of this calculus, and the degree of development
to which it has at the present day arrived.

Its Object. The final object of this calculus being the
resolution (properly so called) of equations, that is, the
discovery of the manner in which the unknown quantities
are formed from the known quantities, in accordance
with the equations which exist between them, it
naturally presents as many different departments as we
can conceive truly distinct classes of equations. Its appropriate
extent is consequently rigorously indefinite, the
number of analytical functions susceptible of entering
into equations being in itself quite unlimited, although
they are composed of only a very small number of primitive
elements.

Classification of Equations. The rational classification
of equations must evidently be determined by the
nature of the analytical elements of which their numbers
are composed; every other classification would be essentially
arbitrary. Accordingly, analysts begin by dividing
equations with one or more variables into two principal
classes, according as they contain functions of only
the first three couples (see the table in chapter i., page
51), or as they include also exponential or circular functions.
The names of Algebraic functions and Transcendental
functions, commonly given to these two principal
groups of analytical elements, are undoubtedly very inappropriate.
But the universally established division between
the corresponding equations is none the less very
real in this sense, that the resolution of equations containing
the functions called transcendental necessarily
presents more difficulties than those of the equations
called algebraic. Hence the study of the former is as
yet exceedingly imperfect, so that frequently the resolution
of the most simple of them is still unknown to us,[7]
and our analytical methods have almost exclusive reference
to the elaboration of the latter.



ALGEBRAIC EQUATIONS.

Considering now only these Algebraic equations, we
must observe, in the first place, that although they may
often contain irrational functions of the unknown quantities
as well as rational functions, we can always, by
more or less easy transformations, make the first case
come under the second, so that it is with this last that
analysts have had to occupy themselves exclusively in
order to resolve all sorts of algebraic equations.

Their Classification. In the infancy of algebra, these
equations were classed according to the number of their
terms. But this classification was evidently faulty, since
it separated cases which were really similar, and brought
together others which had nothing in common besides this
unimportant characteristic.[8] It has been retained only
for equations with two terms, which are, in fact, capable
of being resolved in a manner peculiar to themselves.

The classification of equations by what is called their
degrees, is, on the other hand, eminently natural, for this
distinction rigorously determines the greater or less difficulty
of their resolution. This gradation is apparent
in the cases of all the equations which can be resolved;
but it may be indicated in a general manner independently
of the fact of the resolution. We need only consider
that the most general equation of each degree necessarily
comprehends all those of the different inferior degrees,
as must also the formula which determines the unknown
quantity. Consequently, however slight we may
suppose the difficulty peculiar to the degree which we
are considering, since it is inevitably complicated in the
execution with those presented by all the preceding degrees,
the resolution really offers more and more obstacles,
in proportion as the degree of the equation is elevated.

ALGEBRAIC RESOLUTION OF EQUATIONS.

Its Limits. The resolution of algebraic equations is
as yet known to us only in the four first degrees, such
is the increase of difficulty noticed above. In this respect,
algebra has made no considerable progress since
the labours of Descartes and the Italian analysts of the
sixteenth century, although in the last two centuries
there has been perhaps scarcely a single geometer who
has not busied himself in trying to advance the resolution
of equations. The general equation of the fifth degree
itself has thus far resisted all attacks.

The constantly increasing complication which the
formulas for resolving equations must necessarily present,
in proportion as the degree increases (the difficulty
of using the formula of the fourth degree rendering it almost
inapplicable), has determined analysts to renounce,
by a tacit agreement, the pursuit of such researches, although
they are far from regarding it as impossible to
obtain the resolution of equations of the fifth degree, and
of several other higher ones.

General Solution. The only question of this kind
which would be really of great importance, at least in
its logical relations, would be the general resolution of
algebraic equations of any degree whatsoever. Now,
the more we meditate on this subject, the more we are
led to think, with Lagrange, that it really surpasses the
scope of our intelligence. We must besides observe that
the formula which would express the root of an equation
of the mth degree would necessarily include radicals of
the mth order (or functions of an equivalent multiplicity),
because of the m determinations which it must admit.
Since we have seen, besides, that this formula
must also embrace, as a particular case, that formula
which corresponds to every lower degree, it follows that
it would inevitably also contain radicals of the next
lower degree, the next lower to that, &c., so that, even
if it were possible to discover it, it would almost always
present too great a complication to be capable of being
usefully employed, unless we could succeed in simplifying
it, at the same time retaining all its generality, by
the introduction of a new class of analytical elements of
which we yet have no idea. We have, then, reason to
believe that, without having already here arrived at the
limits imposed by the feeble extent of our intelligence,
we should not be long in reaching them if we actively
and earnestly prolonged this series of investigations.

It is, besides, important to observe that, even supposing
we had obtained the resolution of algebraic equations
of any degree whatever, we would still have treated
only a very small part of algebra, properly so called,
that is, of the calculus of direct functions, including the
resolution of all the equations which can be formed by
the known analytical functions.

Finally, we must remember that, by an undeniable
law of human nature, our means for conceiving new
questions being much more powerful than our resources
for resolving them, or, in other words, the human mind
being much more ready to inquire than to reason, we
shall necessarily always remain below the difficulty, no
matter to what degree of development our intellectual
labour may arrive. Thus, even though we should some
day discover the complete resolution of all the analytical
equations at present known, chimerical as the supposition
is, there can be no doubt that, before attaining this
end, and probably even as a subsidiary means, we would
have already overcome the difficulty (a much smaller one,
though still very great) of conceiving new analytical elements,
the introduction of which would give rise to classes
of equations of which, at present, we are completely
ignorant; so that a similar imperfection in algebraic science
would be continually reproduced, in spite of the real
and very important increase of the absolute mass of our
knowledge.

What we know in Algebra. In the present condition
of algebra, the complete resolution of the equations
of the first four degrees, of any binomial equations, of
certain particular equations of the higher degrees, and of
a very small number of exponential, logarithmic, or circular
equations, constitute the fundamental methods
which are presented by the calculus of direct functions
for the solution of mathematical problems. But, limited
as these elements are, geometers have nevertheless succeeded
in treating, in a truly admirable manner, a very
great number of important questions, as we shall find in
the course of the volume. The general improvements
introduced within a century into the total system of
mathematical analysis, have had for their principal object
to make immeasurably useful this little knowledge
which we have, instead of tending to increase it. This
result has been so fully obtained, that most frequently
this calculus has no real share in the complete solution
of the question, except by its most simple parts; those
which have reference to equations of the two first degrees,
with one or more variables.

NUMERICAL RESOLUTION OF EQUATIONS.

The extreme imperfection of algebra, with respect to
the resolution of equations, has led analysts to occupy
themselves with a new class of questions, whose true
character should be here noted. They have busied themselves
in filling up the immense gap in the resolution of
algebraic equations of the higher degrees, by what they
have named the numerical resolution of equations. Not
being able to obtain, in general, the formula which expresses
what explicit function of the given quantities the
unknown one is, they have sought (in the absence of this
kind of resolution, the only one really algebraic) to determine,
independently of that formula, at least the value
of each unknown quantity, for various designated systems
of particular values attributed to the given quantities.
By the successive labours of analysts, this incomplete
and illegitimate operation, which presents an
intimate mixture of truly algebraic questions with others
which are purely arithmetical, has been rendered possible
in all cases for equations of any degree and even of
any form. The methods for this which we now possess
are sufficiently general, although the calculations to which
they lead are often so complicated as to render it almost
impossible to execute them. We have nothing else to
do, then, in this part of algebra, but to simplify the methods
sufficiently to render them regularly applicable, which
we may hope hereafter to effect. In this condition of
the calculus of direct functions, we endeavour, in its application,
so to dispose the proposed questions as finally to
require only this numerical resolution of the equations.

Its limited Usefulness. Valuable as is such a resource
in the absence of the veritable solution, it is essential
not to misconceive the true character of these
methods, which analysts rightly regard as a very imperfect
algebra. In fact, we are far from being always able
to reduce our mathematical questions to depend finally
upon only the numerical resolution of equations; that
can be done only for questions quite isolated or truly
final, that is, for the smallest number. Most questions,
in fact, are only preparatory, and intended to serve as an
indispensable preparation for the solution of other questions.
Now, for such an object, it is evident that it is
not the actual value of the unknown quantity which it
is important to discover, but the formula, which shows
how it is derived from the other quantities under consideration.
It is this which happens, for example, in a
very extensive class of cases, whenever a certain question
includes at the same time several unknown quantities.
We have then, first of all, to separate them. By
suitably employing the simple and general method so
happily invented by analysts, and which consists in referring
all the other unknown quantities to one of them,
the difficulty would always disappear if we knew how to
obtain the algebraic resolution of the equations under
consideration, while the numerical solution would then
be perfectly useless. It is only for want of knowing the
algebraic resolution of equations with a single unknown
quantity, that we are obliged to treat Elimination as a
distinct question, which forms one of the greatest special
difficulties of common algebra. Laborious as are the
methods by the aid of which we overcome this difficulty,
they are not even applicable, in an entirely general manner,
to the elimination of one unknown quantity between
two equations of any form whatever.

In the most simple questions, and when we have really
to resolve only a single equation with a single unknown
quantity, this numerical resolution is none the less a
very imperfect method, even when it is strictly sufficient.
It presents, in fact, this serious inconvenience of obliging
us to repeat the whole series of operations for the slightest
change which may take place in a single one of the
quantities considered, although their relations to one another
remain unchanged; the calculations made for one
case not enabling us to dispense with any of those which
relate to a case very slightly different. This happens because
of our inability to abstract and treat separately
that purely algebraic part of the question which is common
to all the cases which result from the mere variation
of the given numbers.

According to the preceding considerations, the calculus
of direct functions, viewed in its present state, divides
into two very distinct branches, according as its
subject is the algebraic resolution of equations or their
numerical resolution. The first department, the only
one truly satisfactory, is unhappily very limited, and will
probably always remain so; the second, too often insufficient,
has, at least, the advantage of a much greater
generality. The necessity of clearly distinguishing these
two parts is evident, because of the essentially different
object proposed in each, and consequently the peculiar
point of view under which quantities are therein considered.


Different Divisions of the two Methods of Resolution.
If, moreover, we consider these parts with reference
to the different methods of which each is composed,
we find in their logical distribution an entirely different
arrangement. In fact, the first part must be divided
according to the nature of the equations which we are
able to resolve, and independently of every consideration
relative to the values of the unknown quantities. In
the second part, on the contrary, it is not according to
the degrees of the equations that the methods are naturally
distinguished, since they are applicable to equations
of any degree whatever; it is according to the numerical
character of the values of the unknown quantities;
for, in calculating these numbers directly, without deducing
them from general formulas, different means would
evidently be employed when the numbers are not susceptible
of having their values determined otherwise than
by a series of approximations, always incomplete, or when
they can be obtained with entire exactness. This distinction
of incommensurable and of commensurable roots,
which require quite different principles for their determination,
important as it is in the numerical resolution of
equations, is entirely insignificant in the algebraic resolution,
in which the rational or irrational nature of the
numbers which are obtained is a mere accident of the
calculation, which cannot exercise any influence over the
methods employed; it is, in a word, a simple arithmetical
consideration. We may say as much, though in a less
degree, of the division of the commensurable roots themselves
into entire and fractional. In fine, the case is
the same, in a still greater degree, with the most general
classification of roots, as real and imaginary. All
these different considerations, which are preponderant as
to the numerical resolution of equations, and which are
of no importance in their algebraic resolution, render more
and more sensible the essentially distinct nature of these
two principal parts of algebra.

THE THEORY OF EQUATIONS.

These two departments, which constitute the immediate
object of the calculus of direct functions, are subordinate
to a third one, purely speculative, from which both
of them borrow their most powerful resources, and which
has been very exactly designated by the general name
of Theory of Equations, although it as yet relates only
to Algebraic equations. The numerical resolution of
equations, because of its generality, has special need of
this rational foundation.

This last and important branch of algebra is naturally
divided into two orders of questions, viz., those which refer
to the composition of equations, and those which concern
their transformation; these latter having for their
object to modify the roots of an equation without knowing
them, in accordance with any given law, providing
that this law is uniform in relation to all the parts.[9]



THE METHOD OF INDETERMINATE COEFFICIENTS.

To complete this rapid general enumeration of the different
essential parts of the calculus of direct functions,
I must, lastly, mention expressly one of the most fruitful
and important theories of algebra proper, that relating
to the transformation of functions into series by the aid
of what is called the Method of indeterminate Coefficients.
This method, so eminently analytical, and which
must be regarded as one of the most remarkable discoveries
of Descartes, has undoubtedly lost some of its importance
since the invention and the development of the
infinitesimal calculus, the place of which it might so happily
take in some particular respects. But the increasing
extension of the transcendental analysis, although it
has rendered this method much less necessary, has, on
the other hand, multiplied its applications and enlarged
its resources; so that by the useful combination between
the two theories, which has finally been effected, the use
of the method of indeterminate coefficients has become
at present much more extensive than it was even before
the formation of the calculus of indirect functions.





Having thus sketched the general outlines of algebra
proper, I have now to offer some considerations on several
leading points in the calculus of direct functions, our
ideas of which may be advantageously made more clear
by a philosophical examination.

IMAGINARY QUANTITIES.

The difficulties connected with several peculiar symbols
to which algebraic calculations sometimes lead, and
especially to the expressions called imaginary, have been,
I think, much exaggerated through purely metaphysical
considerations, which have been forced upon them, in the
place of regarding these abnormal results in their true
point of view as simple analytical facts. Viewing them
thus, we readily see that, since the spirit of mathematical
analysis consists in considering magnitudes in reference
to their relations only, and without any regard to
their determinate value, analysts are obliged to admit indifferently
every kind of expression which can be engendered
by algebraic combinations. The interdiction of
even one expression because of its apparent singularity
would destroy the generality of their conceptions. The
common embarrassment on this subject seems to me to
proceed essentially from an unconscious confusion between
the idea of function and the idea of value, or, what
comes to the same thing, between the algebraic and the
arithmetical point of view. A thorough examination
would show mathematical analysis to be much more clear
in its nature than even mathematicians commonly suppose.

NEGATIVE QUANTITIES.

As to negative quantities, which have given rise to so
many misplaced discussions, as irrational as useless, we
must distinguish between their abstract signification and
their concrete interpretation, which have been almost always
confounded up to the present day. Under the first
point of view, the theory of negative quantities can be
established in a complete manner by a single algebraical
consideration. The necessity of admitting such expressions
is the same as for imaginary quantities, as above
indicated; and their employment as an analytical artifice,
to render the formulas more comprehensive, is a
mechanism of calculation which cannot really give rise
to any serious difficulty. We may therefore regard the
abstract theory of negative quantities as leaving nothing
essential to desire; it presents no obstacles but those inappropriately
introduced by sophistical considerations.

It is far from being so, however, with their concrete
theory. This consists essentially in that admirable property
of the signs + and-, of representing analytically
the oppositions of directions of which certain magnitudes
are susceptible. This general theorem on the relation
of the concrete to the abstract in mathematics is one of
the most beautiful discoveries which we owe to the genius
of Descartes, who obtained it as a simple result of properly
directed philosophical observation. A great number
of geometers have since striven to establish directly
its general demonstration, but thus far their efforts have
been illusory. Their vain metaphysical considerations
and heterogeneous minglings of the abstract and the
concrete have so confused the subject, that it becomes
necessary to here distinctly enunciate the general fact.
It consists in this: if, in any equation whatever, expressing
the relation of certain quantities which are susceptible
of opposition of directions, one or more of those quantities
come to be reckoned in a direction contrary to that
which belonged to them when the equation was first established,
it will not be necessary to form directly a new
equation for this second state of the phenomena; it will
suffice to change, in the first equation, the sign of each
of the quantities which shall have changed its direction;
and the equation, thus modified, will always rigorously
coincide with that which we would have arrived at in
recommencing to investigate, for this new case, the analytical
law of the phenomenon. The general theorem
consists in this constant and necessary coincidence. Now,
as yet, no one has succeeded in directly proving this; we
have assured ourselves of it only by a great number of
geometrical and mechanical verifications, which are, it
is true, sufficiently multiplied, and especially sufficiently
varied, to prevent any clear mind from having the least
doubt of the exactitude and the generality of this essential
property, but which, in a philosophical point of view,
do not at all dispense with the research for so important
an explanation. The extreme extent of the theorem must
make us comprehend both the fundamental difficulties of
this research and the high utility for the perfecting of
mathematical science which would belong to the general
conception of this great truth. This imperfection of theory,
however, has not prevented geometers from making
the most extensive and the most important use of this
property in all parts of concrete mathematics.

It follows from the above general enunciation of the
fact, independently of any demonstration, that the property
of which we speak must never be applied to magnitudes
whose directions are continually varying, without
giving rise to a simple opposition of direction; in
that case, the sign with which every result of calculation
is necessarily affected is not susceptible of any concrete
interpretation, and the attempts sometimes made to establish
one are erroneous. This circumstance occurs,
among other occasions, in the case of a radius vector in
geometry, and diverging forces in mechanics.

PRINCIPLE OF HOMOGENEITY.

A second general theorem on the relation of the concrete
to the abstract is that which is ordinarily designated
under the name of Principle of Homogeneity. It
is undoubtedly much less important in its applications
than the preceding, but it particularly merits our attention
as having, by its nature, a still greater extent,
since it is applicable to all phenomena without distinction,
and because of the real utility which it often possesses
for the verification of their analytical laws. I
can, moreover, exhibit a direct and general demonstration
of it which seems to me very simple. It is founded
on this single observation, which is self-evident, that the
exactitude of every relation between any concrete magnitudes
whatsoever is independent of the value of the
units to which they are referred for the purpose of expressing
them in numbers. For example, the relation
which exists between the three sides of a right-angled
triangle is the same, whether they are measured by yards,
or by miles, or by inches.

It follows from this general consideration, that every
equation which expresses the analytical law of any phenomenon
must possess this property of being in no way
altered, when all the quantities which are found in it
are made to undergo simultaneously the change corresponding
to that which their respective units would
experience. Now this change evidently consists in all
the quantities of each sort becoming at once m times
smaller, if the unit which corresponds to them becomes
m times greater, or reciprocally. Thus every equation
which represents any concrete relation whatever must
possess this characteristic of remaining the same, when
we make m times greater all the quantities which it contains,
and which express the magnitudes between which
the relation exists; excepting always the numbers which
designate simply the mutual ratios of these different
magnitudes, and which therefore remain invariable during
the change of the units. It is this property which
constitutes the law of Homogeneity in its most extended
signification, that is, of whatever analytical functions the
equations may be composed.

But most frequently we consider only the cases in
which the functions are such as are called algebraic,
and to which the idea of degree is applicable. In this
case we can give more precision to the general proposition
by determining the analytical character which must
be necessarily presented by the equation, in order that
this property may be verified. It is easy to see, then,
that, by the modification just explained, all the terms of
the first degree, whatever may be their form, rational or
irrational, entire or fractional, will become m times greater;
all those of the second degree, m2 times; those of
the third, m3 times, &c. Thus the terms of the same degree,
however different may be their composition, varying
in the same manner, and the terms of different degrees
varying in an unequal proportion, whatever similarity
there may be in their composition, it will be necessary,
to prevent the equation from being disturbed,
that all the terms which it contains should be of the same
degree. It is in this that properly consists the ordinary
theorem of Homogeneity, and it is from this circumstance
that the general law has derived its name, which,
however, ceases to be exactly proper for all other functions.

In order to treat this subject in its whole extent, it is
important to observe an essential condition, to which attention
must be paid in applying this property when the
phenomenon expressed by the equation presents magnitudes
of different natures. Thus it may happen that
the respective units are completely independent of each
other, and then the theorem of Homogeneity will hold
good, either with reference to all the corresponding classes
of quantities, or with regard to only a single one or more
of them. But it will happen on other occasions that the
different units will have fixed relations to one another,
determined by the nature of the question; then it will
be necessary to pay attention to this subordination of
the units in verifying the homogeneity, which will not
exist any longer in a purely algebraic sense, and the
precise form of which will vary according to the nature
of the phenomena. Thus, for example, to fix our ideas,
when, in the analytical expression of geometrical phenomena,
we are considering at once lines, areas, and volumes,
it will be necessary to observe that the three corresponding
units are necessarily so connected with each
other that, according to the subordination generally established
in that respect, when the first becomes m times
greater, the second becomes m2 times, and the third m3
times. It is with such a modification that homogeneity
will exist in the equations, in which, if they are algebraic,
we will have to estimate the degree of each term
by doubling the exponents of the factors which correspond
to areas, and tripling those of the factors relating
to volumes.





Such are the principal general considerations relating
to the Calculus of Direct Functions. We have now to
pass to the philosophical examination of the Calculus of
Indirect Functions, the much superior importance and
extent of which claim a fuller development.

CHAPTER III.

TRANSCENDENTAL ANALYSIS:

DIFFERENT MODES OF VIEWING IT.

We determined, in the second chapter, the philosophical
character of the transcendental analysis, in whatever
manner it may be conceived, considering only the general
nature of its actual destination as a part of mathematical
science. This analysis has been presented by
geometers under several points of view, really distinct,
although necessarily equivalent, and leading always to
identical results. They may be reduced to three principal
ones; those of Leibnitz, of Newton, and of Lagrange,
of which all the others are only secondary modifications.
In the present state of science, each of these
three general conceptions offers essential advantages which
pertain to it exclusively, without our having yet succeeded
in constructing a single method uniting all these
different characteristic qualities. This combination will
probably be hereafter effected by some method founded
upon the conception of Lagrange when that important
philosophical labour shall have been accomplished,
the study of the other conceptions will have only a historic
interest; but, until then, the science must be considered
as in only a provisional state, which requires the
simultaneous consideration of all the various modes of
viewing this calculus. Illogical as may appear this multiplicity
of conceptions of one identical subject, still,
without them all, we could form but a very insufficient
idea of this analysis, whether in itself, or more especially
in relation to its applications. This want of system
in the most important part of mathematical analysis will
not appear strange if we consider, on the one hand, its
great extent and its superior difficulty, and, on the other,
its recent formation.

ITS EARLY HISTORY.

If we had to trace here the systematic history of the
successive formation of the transcendental analysis, it
would be necessary previously to distinguish carefully
from the calculus of indirect functions, properly so called,
the original idea of the infinitesimal method, which
can be conceived by itself, independently of any calculus.
We should see that the first germ of this idea is found
in the procedure constantly employed by the Greek geometers,
under the name of the Method of Exhaustions,
as a means of passing from the properties of straight lines
to those of curves, and consisting essentially in substituting
for the curve the auxiliary consideration of an inscribed
or circumscribed polygon, by means of which they
rose to the curve itself, taking in a suitable manner the
limits of the primitive ratios. Incontestable as is this
filiation of ideas, it would be giving it a greatly exaggerated
importance to see in this method of exhaustions
the real equivalent of our modern methods, as some geometers
have done; for the ancients had no logical and
general means for the determination of these limits, and
this was commonly the greatest difficulty of the question;
so that their solutions were not subjected to abstract
and invariable rules, the uniform application of
which would lead with certainty to the knowledge sought;
which is, on the contrary, the principal characteristic of
our transcendental analysis. In a word, there still remained
the task of generalizing the conceptions used by
the ancients, and, more especially, by considering it in a
manner purely abstract, of reducing it to a complete system
of calculation, which to them was impossible.

The first idea which was produced in this new direction
goes back to the great geometer Fermat, whom Lagrange
has justly presented as having blocked out the
direct formation of the transcendental analysis by his
method for the determination of maxima and minima,
and for the finding of tangents, which consisted essentially
in introducing the auxiliary consideration of the
correlative increments of the proposed variables, increments
afterward suppressed as equal to zero when the
equations had undergone certain suitable transformations.
But, although Fermat was the first to conceive
this analysis in a truly abstract manner, it was yet far
from being regularly formed into a general and distinct
calculus having its own notation, and especially freed
from the superfluous consideration of terms which, in the
analysis of Fermat, were finally not taken into the account,
after having nevertheless greatly complicated all
the operations by their presence. This is what Leibnitz
so happily executed, half a century later, after some intermediate
modifications of the ideas of Fermat introduced
by Wallis, and still more by Barrow; and he has
thus been the true creator of the transcendental analysis,
such as we now employ it. This admirable discovery
was so ripe (like all the great conceptions of the
human intellect at the moment of their manifestation),
that Newton, on his side, had arrived, at the same time,
or a little earlier, at a method exactly equivalent, by
considering this analysis under a very different point of
view, which, although more logical in itself, is really
less adapted to give to the common fundamental method
all the extent and the facility which have been imparted
to it by the ideas of Leibnitz. Finally, Lagrange, putting
aside the heterogeneous considerations which had
guided Leibnitz and Newton, has succeeded in reducing
the transcendental analysis, in its greatest perfection, to
a purely algebraic system, which only wants more aptitude
for its practical applications.

After this summary glance at the general history of
the transcendental analysis, we will proceed to the dogmatic
exposition of the three principal conceptions, in order
to appreciate exactly their characteristic properties,
and to show the necessary identity of the methods which
are thence derived. Let us begin with that of Leibnitz.

METHOD OF LEIBNITZ.

Infinitely small Elements. This consists in introducing
into the calculus, in order to facilitate the establishment
of equations, the infinitely small elements of which
all the quantities, the relations between which are sought,
are considered to be composed. These elements or differentials
will have certain relations to one another,
which are constantly and necessarily more simple and
easy to discover than those of the primitive quantities, and
by means of which we will be enabled (by a special calculus
having for its peculiar object the elimination of these
auxiliary infinitesimals) to go back to the desired equations,
which it would have been most frequently impossible
to obtain directly. This indirect analysis may have
different degrees of indirectness; for, when there is too
much difficulty in forming immediately the equation between
the differentials of the magnitudes under consideration,
a second application of the same general artifice
will have to be made, and these differentials be treated,
in their turn, as new primitive quantities, and a relation
be sought between their infinitely small elements (which,
with reference to the final objects of the question, will be
second differentials), and so on; the same transformation
admitting of being repeated any number of times,
on the condition of finally eliminating the constantly increasing
number of infinitesimal quantities introduced as
auxiliaries.

A person not yet familiar with these considerations
does not perceive at once how the employment of these
auxiliary quantities can facilitate the discovery of the
analytical laws of phenomena; for the infinitely small
increments of the proposed magnitudes being of the same
species with them, it would seem that their relations
should not be obtained with more ease, inasmuch as the
greater or less value of a quantity cannot, in fact, exercise
any influence on an inquiry which is necessarily independent,
by its nature, of every idea of value. But
it is easy, nevertheless, to explain very clearly, and in a
quite general manner, how far the question must be simplified
by such an artifice. For this purpose, it is necessary
to begin by distinguishing different orders of infinitely
small quantities, a very precise idea of which
may be obtained by considering them as being either the
successive powers of the same primitive infinitely small
quantity, or as being quantities which may be regarded
as having finite ratios with these powers; so that, to
take an example, the second, third, &c., differentials of
any one variable are classed as infinitely small quantities
of the second order, the third, &c., because it is
easy to discover in them finite multiples of the second,
third, &c., powers of a certain first differential. These
preliminary ideas being established, the spirit of the infinitesimal
analysis consists in constantly neglecting the
infinitely small quantities in comparison with finite quantities,
and generally the infinitely small quantities of any
order whatever in comparison with all those of an inferior
order. It is at once apparent how much such a
liberty must facilitate the formation of equations between
the differentials of quantities, since, in the place of these
differentials, we can substitute such other elements as we
may choose, and as will be more simple to consider, only
taking care to conform to this single condition, that the
new elements differ from the preceding ones only by quantities
infinitely small in comparison with them. It is
thus that it will be possible, in geometry, to treat curved
lines as composed of an infinity of rectilinear elements,
curved surfaces as formed of plane elements, and, in mechanics,
variable motions as an infinite series of uniform
motions, succeeding one another at infinitely small intervals
of time.

Examples. Considering the importance of this admirable
conception, I think that I ought here to complete
the illustration of its fundamental character by the summary
indication of some leading examples.

1. Tangents. Let it be required to determine, for
each point of a plane curve, the equation of which is
given, the direction of its tangent; a question whose
general solution was the primitive object of the inventors
of the transcendental analysis. We will consider the
tangent as a secant joining two points infinitely near to
each other; and then, designating by dy and dx the infinitely
small differences of the co-ordinates of those two
points, the elementary principles of geometry will immediately
give the equation t = dy/dx for the trigonometrical
tangent of the angle which is made with the axis of the
abscissas by the desired tangent, this being the most simple
way of fixing its position in a system of rectilinear
co-ordinates. This equation, common to all curves, being
established, the question is reduced to a simple analytical
problem, which will consist in eliminating the infinitesimals
dx and dy, which were introduced as auxiliaries, by
determining in each particular case, by means of the equation
of the proposed curve, the ratio of dy to dx, which will
be constantly done by uniform and very simple methods.

2. Rectification of an Arc. In the second place, suppose
that we wish to know the length of the arc of any
curve, considered as a function of the co-ordinates of its extremities.
It would be impossible to establish directly the
equation between this arc s and these co-ordinates, while
it is easy to find the corresponding relation between the
differentials of these different magnitudes. The most simple
theorems of elementary geometry will in fact give at
once, considering the infinitely small arc ds as a right
line, the equations


ds2 = dy2 + dx2, or ds2 = dx2 + dy2 + dz2,



according as the curve is of single or double curvature.
In either case, the question is now entirely within the
domain of analysis, which, by the elimination of the differentials
(which is the peculiar object of the calculus of
indirect functions), will carry us back from this relation
to that which exists between the finite quantities themselves
under examination.

3. Quadrature of a Curve. It would be the same
with the quadrature of curvilinear areas. If the curve is
a plane one, and referred to rectilinear co-ordinates, we
will conceive the area A comprised between this curve,
the axis of the abscissas, and two extreme co-ordinates,
to increase by an infinitely small quantity dA, as the result
of a corresponding increment of the abscissa. The
relation between these two differentials can be immediately
obtained with the greatest facility by substituting for
the curvilinear element of the proposed area the rectangle
formed by the extreme ordinate and the element of the
abscissa, from which it evidently differs only by an infinitely
small quantity of the second order. This will at
once give, whatever may be the curve, the very simple
differential equation


dA = ydx,



from which, when the curve is defined, the calculus of
indirect functions will show how to deduce the finite
equation, which is the immediate object of the problem.

4. Velocity in Variable Motion. In like manner, in
Dynamics, when we desire to know the expression for
the velocity acquired at each instant by a body impressed
with a motion varying according to any law, we will
consider the motion as being uniform during an infinitely
small element of the time t, and we will thus immediately
form the differential equation de = vdt, in which
v designates the velocity acquired when the body has
passed over the space e; and thence it will be easy to
deduce, by simple and invariable analytical procedures,
the formula which would give the velocity in each particular
motion, in accordance with the corresponding relation
between the time and the space; or, reciprocally,
what this relation would be if the mode of variation of
the velocity was supposed to be known, whether with respect
to the space or to the time.

5. Distribution of Heat. Lastly, to indicate another
kind of questions, it is by similar steps that we are able,
in the study of thermological phenomena, according to
the happy conception of M. Fourier, to form in a very
simple manner the general differential equation which
expresses the variable distribution of heat in any body
whatever, subjected to any influences, by means of the
single and easily-obtained relation, which represents the
uniform distribution of heat in a right-angled parallelopipedon,
considering (geometrically) every other body as
decomposed into infinitely small elements of a similar
form, and (thermologically) the flow of heat as constant
during an infinitely small element of time. Henceforth,
all the questions which can be presented by abstract thermology
will be reduced, as in geometry and mechanics,
to mere difficulties of analysis, which will always consist
in the elimination of the differentials introduced as auxiliaries
to facilitate the establishment of the equations.

Examples of such different natures are more than sufficient
to give a clear general idea of the immense scope
of the fundamental conception of the transcendental analysis
as formed by Leibnitz, constituting, as it undoubtedly
does, the most lofty thought to which the human
mind has as yet attained.

It is evident that this conception was indispensable to
complete the foundation of mathematical science, by enabling
us to establish, in a broad and fruitful manner,
the relation of the concrete to the abstract. In this respect
it must be regarded as the necessary complement
of the great fundamental idea of Descartes on the general
analytical representation of natural phenomena: an
idea which did not begin to be worthily appreciated and
suitably employed till after the formation of the infinitesimal
analysis, without which it could not produce,
even in geometry, very important results.

Generality of the Formulas. Besides the admirable
facility which is given by the transcendental analysis for
the investigation of the mathematical laws of all phenomena,
a second fundamental and inherent property, perhaps
as important as the first, is the extreme generality of
the differential formulas, which express in a single equation
each determinate phenomenon, however varied the
subjects in relation to which it is considered. Thus we
see, in the preceding examples, that a single differential
equation gives the tangents of all curves, another their
rectifications, a third their quadratures; and in the same
way, one invariable formula expresses the mathematical
law of every variable motion; and, finally, a single equation
constantly represents the distribution of heat in any
body and for any case. This generality, which is so exceedingly
remarkable, and which is for geometers the
basis of the most elevated considerations, is a fortunate
and necessary consequence of the very spirit of the transcendental
analysis, especially in the conception of Leibnitz.
Thus the infinitesimal analysis has not only furnished
a general method for indirectly forming equations
which it would have been impossible to discover in a direct
manner, but it has also permitted us to consider, for
the mathematical study of natural phenomena, a new
order of more general laws, which nevertheless present a
clear and precise signification to every mind habituated
to their interpretation. By virtue of this second characteristic
property, the entire system of an immense science,
such as geometry or mechanics, has been condensed
into a small number of analytical formulas, from which
the human mind can deduce, by certain and invariable
rules, the solution of all particular problems.

Demonstration of the Method. To complete the general
exposition of the conception of Leibnitz, there remains
to be considered the demonstration of the logical
procedure to which it leads, and this, unfortunately, is
the most imperfect part of this beautiful method.

In the beginning of the infinitesimal analysis, the
most celebrated geometers rightly attached more importance
to extending the immortal discovery of Leibnitz
and multiplying its applications than to rigorously establishing
the logical bases of its operations. They contented
themselves for a long time by answering the objections
of second-rate geometers by the unhoped-for solution
of the most difficult problems; doubtless persuaded
that in mathematical science, much more than in any
other, we may boldly welcome new methods, even when
their rational explanation is imperfect, provided they are
fruitful in results, inasmuch as its much easier and more
numerous verifications would not permit any error to remain
long undiscovered. But this state of things could
not long exist, and it was necessary to go back to the
very foundations of the analysis of Leibnitz in order to
prove, in a perfectly general manner, the rigorous exactitude
of the procedures employed in this method, in spite
of the apparent infractions of the ordinary rules of reasoning
which it permitted.

Leibnitz, urged to answer, had presented an explanation
entirely erroneous, saying that he treated infinitely
small quantities as incomparables, and that he neglected
them in comparison with finite quantities, "like grains
of sand in comparison with the sea:" a view which would
have completely changed the nature of his analysis, by
reducing it to a mere approximative calculus, which, under
this point of view, would be radically vicious, since
it would be impossible to foresee, in general, to what degree
the successive operations might increase these first
errors, which could thus evidently attain any amount.
Leibnitz, then, did not see, except in a very confused
manner, the true logical foundations of the analysis which
he had created. His earliest successors limited themselves,
at first, to verifying its exactitude by showing the
conformity of its results, in particular applications, to
those obtained by ordinary algebra or the geometry of the
ancients; reproducing, according to the ancient methods,
so far as they were able, the solutions of some problems after
they had been once obtained by the new method, which
alone was capable of discovering them in the first place.

When this great question was considered in a more
general manner, geometers, instead of directly attacking
the difficulty, preferred to elude it in some way, as Euler
and D'Alembert, for example, have done, by demonstrating
the necessary and constant conformity of the
conception of Leibnitz, viewed in all its applications,
with other fundamental conceptions of the transcendental
analysis, that of Newton especially, the exactitude of
which was free from any objection. Such a general verification
is undoubtedly strictly sufficient to dissipate any
uncertainty as to the legitimate employment of the analysis
of Leibnitz. But the infinitesimal method is so important—it
offers still, in almost all its applications, such
a practical superiority over the other general conceptions
which have been successively proposed—that there
would be a real imperfection in the philosophical character
of the science if it could not justify itself, and needed
to be logically founded on considerations of another order,
which would then cease to be employed.

It was, then, of real importance to establish directly
and in a general manner the necessary rationality of the
infinitesimal method. After various attempts more or
less imperfect, a distinguished geometer, Carnot, presented
at last the true direct logical explanation of the method
of Leibnitz, by showing it to be founded on the principle
of the necessary compensation of errors, this being,
in fact, the precise and luminous manifestation of what
Leibnitz had vaguely and confusedly perceived. Carnot
has thus rendered the science an essential service, although,
as we shall see towards the end of this chapter,
all this logical scaffolding of the infinitesimal method,
properly so called, is very probably susceptible of only a
provisional existence, inasmuch as it is radically vicious
in its nature. Still, we should not fail to notice the
general system of reasoning proposed by Carnot, in order
to directly legitimate the analysis of Leibnitz. Here is
the substance of it:

In establishing the differential equation of a phenomenon,
we substitute, for the immediate elements of the different
quantities considered, other simpler infinitesimals,
which differ from them infinitely little in comparison
with them; and this substitution constitutes the principal
artifice of the method of Leibnitz, which without it
would possess no real facility for the formation of equations.
Carnot regards such an hypothesis as really producing
an error in the equation thus obtained, and which
for this reason he calls imperfect; only, it is clear that
this error must be infinitely small. Now, on the other
hand, all the analytical operations, whether of differentiation
or of integration, which are performed upon these
differential equations, in order to raise them to finite
equations by eliminating all the infinitesimals which
have been introduced as auxiliaries, produce as constantly,
by their nature, as is easily seen, other analogous errors,
so that an exact compensation takes place, and the
final equations, in the words of Carnot, become perfect.
Carnot views, as a certain and invariable indication of
the actual establishment of this necessary compensation,
the complete elimination of the various infinitely small
quantities, which is always, in fact, the final object of
all the operations of the transcendental analysis; for if
we have committed no other infractions of the general
rules of reasoning than those thus exacted by the very
nature of the infinitesimal method, the infinitely small
errors thus produced cannot have engendered other than
infinitely small errors in all the equations, and the relations
are necessarily of a rigorous exactitude as soon as
they exist between finite quantities alone, since the only
errors then possible must be finite ones, while none such
can have entered. All this general reasoning is founded
on the conception of infinitesimal quantities, regarded as
indefinitely decreasing, while those from which they are
derived are regarded as fixed.


Illustration by Tangents. Thus, to illustrate this abstract
exposition by a single example, let us take up again
the question of tangents, which is the most easy to analyze
completely. We will regard the equation t = dy/dx,
obtained above, as being affected with an infinitely small
error, since it would be perfectly rigorous only for the
secant. Now let us complete the solution by seeking,
according to the equation of each curve, the ratio between
the differentials of the co-ordinates. If we suppose
this equation to be y = ax2, we shall evidently have


dy = 2axdx + adx2.



In this formula we shall have to neglect the term dx2
as an infinitely small quantity of the second order. Then
the combination of the two imperfect equations.


t = dy/dx, dy = 2ax(dx),



being sufficient to eliminate entirely the infinitesimals,
the finite result, t = 2ax, will necessarily be rigorously correct,
from the effect of the exact compensation of the two
errors committed; since, by its finite nature, it cannot be
affected by an infinitely small error, and this is, nevertheless,
the only one which it could have, according to
the spirit of the operations which have been executed.

It would be easy to reproduce in a uniform manner
the same reasoning with reference to all the other general
applications of the analysis of Leibnitz.

This ingenious theory is undoubtedly more subtile than
solid, when we examine it more profoundly; but it has
really no other radical logical fault than that of the infinitesimal
method itself, of which it is, it seems to me,
the natural development and the general explanation, so
that it must be adopted for as long a time as it shall be
thought proper to employ this method directly.



I pass now to the general exposition of the two other
fundamental conceptions of the transcendental analysis,
limiting myself in each to its principal idea, the philosophical
character of the analysis having been sufficiently
determined above in the examination of the conception
of Leibnitz, which I have specially dwelt upon because
it admits of being most easily grasped as a whole, and
most rapidly described.

METHOD OF NEWTON.

Newton has successively presented his own method of
conceiving the transcendental analysis under several different
forms. That which is at present the most commonly
adopted was designated by Newton, sometimes under
the name of the Method of prime and ultimate Ratios,
sometimes under that of the Method of Limits.

Method of Limits. The general spirit of the transcendental
analysis, from this point of view, consists in
introducing as auxiliaries, in the place of the primitive
quantities, or concurrently with them, in order to facilitate
the establishment of equations, the limits of the ratios
of the simultaneous increments of these quantities;
or, in other words, the final ratios of these increments;
limits or final ratios which can be easily shown to have
a determinate and finite value. A special calculus, which
is the equivalent of the infinitesimal calculus, is then
employed to pass from the equations between these limits
to the corresponding equations between the primitive
quantities themselves.


The power which is given by such an analysis, of expressing
with more ease the mathematical laws of phenomena,
depends in general on this, that since the calculus
applies, not to the increments themselves of the proposed
quantities, but to the limits of the ratios of those
increments, we can always substitute for each increment
any other magnitude more easy to consider, provided that
their final ratio is the ratio of equality, or, in other words,
that the limit of their ratio is unity. It is clear, indeed,
that the calculus of limits would be in no way affected
by this substitution. Starting from this principle, we
find nearly the equivalent of the facilities offered by the
analysis of Leibnitz, which are then merely conceived under
another point of view. Thus curves will be regarded
as the limits of a series of rectilinear polygons, variable
motions as the limits of a collection of uniform motions
of constantly diminishing durations, and so on.

Examples. 1. Tangents. Suppose, for example, that
we wish to determine the direction of the tangent to a
curve; we will regard it as the limit towards which would
tend a secant, which should turn about the given point
so that its second point of intersection should indefinitely
approach the first. Representing the differences of the co-ordinates
of the two points by Δy and Δx, we would have
at each instant, for the trigonometrical tangent of the angle
which the secant makes with the axis of abscissas,


t = Δy/Δx;



from which, taking the limits, we will obtain, relatively
to the tangent itself, this general formula of transcendental
analysis,


t = L(Δy/Δx),




the characteristic L being employed to designate the limit.
The calculus of indirect functions will show how to deduce
from this formula in each particular case, when the
equation of the curve is given, the relation between t and
x, by eliminating the auxiliary quantities which have
been introduced. If we suppose, in order to complete the
solution, that the equation of the proposed curve is y = ax2,
we shall evidently have


Δy = 2axΔx + a(Δx)2,



from which we shall obtain


Δy/Δx = 2ax + aΔx.



Now it is clear that the limit towards which the second
number tends, in proportion as Δx diminishes, is 2ax.
We shall therefore find, by this method, t = 2ax, as we
obtained it for the same case by the method of Leibnitz.

2. Rectifications. In like manner, when the rectification
of a curve is desired, we must substitute for the increment
of the arc s the chord of this increment, which
evidently has such a connexion with it that the limit
of their ratio is unity; and then we find (pursuing in
other respects the same plan as with the method of Leibnitz)
this general equation of rectifications:


(LΔs/Δx)² = 1 + (LΔy/Δx)²,

or (LΔs/Δx)2 = 1 + (LΔy/Δx)2 + (LΔz/Δx)2,



according as the curve is plane or of double curvature.
It will now be necessary, for each particular curve, to
pass from this equation to that between the arc and the
abscissa, which depends on the transcendental calculus
properly so called.


We could take up, with the same facility, by the
method of limits, all the other general questions, the solution
of which has been already indicated according to the
infinitesimal method.

Such is, in substance, the conception which Newton
formed for the transcendental analysis, or, more precisely,
that which Maclaurin and D'Alembert have presented
as the most rational basis of that analysis, in seeking to
fix and to arrange the ideas of Newton upon that subject.

Fluxions and Fluents. Another distinct form under
which Newton has presented this same method should be
here noticed, and deserves particularly to fix our attention,
as much by its ingenious clearness in some cases
as by its having furnished the notation best suited to this
manner of viewing the transcendental analysis, and, moreover,
as having been till lately the special form of the calculus
of indirect functions commonly adopted by the English
geometers. I refer to the calculus of fluxions and
of fluents, founded on the general idea of velocities.

To facilitate the conception of the fundamental idea,
let us consider every curve as generated by a point impressed
with a motion varying according to any law whatever.
The different quantities which the curve can present,
the abscissa, the ordinate, the arc, the area, &c.,
will be regarded as simultaneously produced by successive
degrees during this motion. The velocity with which
each shall have been described will be called the fluxion
of that quantity, which will be inversely named its fluent.
Henceforth the transcendental analysis will consist,
according to this conception, in forming directly the
equations between the fluxions of the proposed quantities,
in order to deduce therefrom, by a special calculus,
the equations between the fluents themselves. What
has been stated respecting curves may, moreover, evidently
be applied to any magnitudes whatever, regarded,
by the aid of suitable images, as produced by motion.

It is easy to understand the general and necessary
identity of this method with that of limits complicated
with the foreign idea of motion. In fact, resuming the
case of the curve, if we suppose, as we evidently always
may, that the motion of the describing point is uniform
in a certain direction, that of the abscissa, for example,
then the fluxion of the abscissa will be constant, like the
element of the time; for all the other quantities generated,
the motion cannot be conceived to be uniform, except
for an infinitely small time. Now the velocity being
in general according to its mechanical conception, the
ratio of each space to the time employed in traversing it,
and this time being here proportional to the increment of
the abscissa, it follows that the fluxions of the ordinate,
of the arc, of the area, &c., are really nothing else (rejecting
the intermediate consideration of time) than the
final ratios of the increments of these different quantities
to the increment of the abscissa. This method of fluxions
and fluents is, then, in reality, only a manner of
representing, by a comparison borrowed from mechanics,
the method of prime and ultimate ratios, which alone can
be reduced to a calculus. It evidently, then, offers the
same general advantages in the various principal applications
of the transcendental analysis, without its being
necessary to present special proofs of this.



METHOD OF LAGRANGE.

Derived Functions. The conception of Lagrange,
in its admirable simplicity, consists in representing the
transcendental analysis as a great algebraic artifice, by
which, in order to facilitate the establishment of equations,
we introduce, in the place of the primitive functions,
or concurrently with them, their derived functions;
that is, according to the definition of Lagrange,
the coefficient of the first term of the increment of each
function, arranged according to the ascending powers of
the increment of its variable. The special calculus of
indirect functions has for its constant object, here as
well as in the conceptions of Leibnitz and of Newton, to
eliminate these derivatives which have been thus employed
as auxiliaries, in order to deduce from their relations
the corresponding equations between the primitive
magnitudes.

An Extension of ordinary Analysis. The transcendental
analysis is, then, nothing but a simple though very
considerable extension of ordinary analysis. Geometers
have long been accustomed to introduce in analytical investigations,
in the place of the magnitudes themselves
which they wished to study, their different powers, or
their logarithms, or their sines, &c., in order to simplify
the equations, and even to obtain them more easily.
This successive derivation is an artifice of the same
nature, only of greater extent, and procuring, in consequence,
much more important resources for this common
object.

But, although we can readily conceive, à priori, that
the auxiliary consideration of these derivatives may facilitate
the establishment of equations, it is not easy to
explain why this must necessarily follow from this mode
of derivation rather than from any other transformation.
Such is the weak point of the great idea of Lagrange.
The precise advantages of this analysis cannot as yet be
grasped in an abstract manner, but only shown by considering
separately each principal question, so that the
verification is often exceedingly laborious.

Example. Tangents. This manner of conceiving the
transcendental analysis may be best illustrated by its application
to the most simple of the problems above examined—that
of tangents.

Instead of conceiving the tangent as the prolongation
of the infinitely small element of the curve, according to
the notion of Leibnitz—or as the limit of the secants, according
to the ideas of Newton—Lagrange considers it,
according to its simple geometrical character, analogous
to the definitions of the ancients, to be a right line such
that no other right line can pass through the point of
contact between it and the curve. Then, to determine
its direction, we must seek the general expression of its
distance from the curve, measured in any direction whatever—in
that of the ordinate, for example—and dispose
of the arbitrary constant relating to the inclination of the
right line, which will necessarily enter into that expression,
in such a way as to diminish that separation as much
as possible. Now this distance, being evidently equal
to the difference of the two ordinates of the curve and of
the right line, which correspond to the same new abscissa
x + h, will be represented by the formula


(f'(x) - t)h + qh2 + rh3 + etc.,



in which t designates, as above, the unknown trigonometrical
tangent of the angle which the required line makes
with the axis of abscissas, and f'(x) the derived function
of the ordinate f(x). This being understood, it is easy
to see that, by disposing of t so as to make the first term
of the preceding formula equal to zero, we will render the
interval between the two lines the least possible, so that
any other line for which t did not have the value thus
determined would necessarily depart farther from the proposed
curve. We have, then, for the direction of the tangent
sought, the general expression t = f'(x), a result exactly
equivalent to those furnished by the Infinitesimal
Method and the Method of Limits. We have yet to find
f'(x) in each particular curve, which is a mere question
of analysis, quite identical with those which are presented,
at this stage of the operations, by the other methods.

After these considerations upon the principal general
conceptions, we need not stop to examine some other theories
proposed, such as Euler's Calculus of Vanishing
Quantities, which are really modifications—more or less
important, and, moreover, no longer used—of the preceding
methods.

I have now to establish the comparison and the appreciation
of these three fundamental methods. Their perfect
and necessary conformity is first to be proven in a
general manner.

FUNDAMENTAL IDENTITY OF THE THREE METHODS.

It is, in the first place, evident from what precedes,
considering these three methods as to their actual destination,
independently of their preliminary ideas, that
they all consist in the same general logical artifice, which
has been characterized in the first chapter; to wit, the
introduction of a certain system of auxiliary magnitudes,
having uniform relations to those which are the special
objects of the inquiry, and substituted for them expressly
to facilitate the analytical expression of the mathematical
laws of the phenomena, although they have finally to
be eliminated by the aid of a special calculus. It is
this which has determined me to regularly define the
transcendental analysis as the calculus of indirect functions,
in order to mark its true philosophical character,
at the same time avoiding any discussion upon the best
manner of conceiving and applying it. The general effect
of this analysis, whatever the method employed, is,
then, to bring every mathematical question much more
promptly within the power of the calculus, and thus to
diminish considerably the serious difficulty which is usually
presented by the passage from the concrete to the abstract.
Whatever progress we may make, we can never
hope that the calculus will ever be able to grasp every
question of natural philosophy, geometrical, or mechanical,
or thermological, &c., immediately upon its birth,
which would evidently involve a contradiction. Every
problem will constantly require a certain preliminary labour
to be performed, in which the calculus can be of no
assistance, and which, by its nature, cannot be subjected
to abstract and invariable rules; it is that which has
for its special object the establishment of equations, which
form the indispensable starting point of all analytical researches.
But this preliminary labour has been remarkably
simplified by the creation of the transcendental analysis,
which has thus hastened the moment at which the
solution admits of the uniform and precise application of
general and abstract methods; by reducing, in each case,
this special labour to the investigation of equations between
the auxiliary magnitudes; from which the calculus
then leads to equations directly referring to the proposed
magnitudes, which, before this admirable conception, it
had been necessary to establish directly and separately.
Whether these indirect equations are differential equations,
according to the idea of Leibnitz, or equations of
limits, conformably to the conception of Newton, or, lastly,
derived equations, according to the theory of Lagrange,
the general procedure is evidently always the same.

But the coincidence of these three principal methods
is not limited to the common effect which they produce;
it exists, besides, in the very manner of obtaining it. In
fact, not only do all three consider, in the place of the
primitive magnitudes, certain auxiliary ones, but, still
farther, the quantities thus introduced as subsidiary are
exactly identical in the three methods, which consequently
differ only in the manner of viewing them. This
can be easily shown by taking for the general term of
comparison any one of the three conceptions, especially
that of Lagrange, which is the most suitable to serve as
a type, as being the freest from foreign considerations.
Is it not evident, by the very definition of derived functions,
that they are nothing else than what Leibnitz calls
differential coefficients, or the ratios of the differential
of each function to that of the corresponding variable,
since, in determining the first differential, we will be
obliged, by the very nature of the infinitesimal method,
to limit ourselves to taking the only term of the increment
of the function which contains the first power of
the infinitely small increment of the variable? In the
same way, is not the derived function, by its nature,
likewise the necessary limit towards which tends the ratio
between the increment of the primitive function and
that of its variable, in proportion as this last indefinitely
diminishes, since it evidently expresses what that ratio
becomes when we suppose the increment of the variable
to equal zero? That which is designated by dx/dy in the
method of Leibnitz; that which ought to be noted as
L(Δy/Δx) in that of Newton; and that which Lagrange has
indicated by f'(x), is constantly one same function, seen
from three different points of view, the considerations
of Leibnitz and Newton properly consisting in making
known two general necessary properties of the derived
function. The transcendental analysis, examined abstractedly
and in its principle, is then always the same,
whatever may be the conception which is adopted, and
the procedures of the calculus of indirect functions are
necessarily identical in these different methods, which in
like manner must, for any application whatever, lead constantly
to rigorously uniform results.

COMPARATIVE VALUE OF THE THREE METHODS.

If now we endeavour to estimate the comparative value
of these three equivalent conceptions, we shall find in
each advantages and inconveniences which are peculiar
to it, and which still prevent geometers from confining
themselves to any one of them, considered as final.

That of Leibnitz. The conception of Leibnitz presents
incontestably, in all its applications, a very marked
superiority, by leading in a much more rapid manner,
and with much less mental effort, to the formation of
equations between the auxiliary magnitudes. It is to its
use that we owe the high perfection which has been acquired
by all the general theories of geometry and mechanics.
Whatever may be the different speculative
opinions of geometers with respect to the infinitesimal
method, in an abstract point of view, all tacitly agree in
employing it by preference, as soon as they have to treat
a new question, in order not to complicate the necessary
difficulty by this purely artificial obstacle proceeding from
a misplaced obstinacy in adopting a less expeditious course.
Lagrange himself, after having reconstructed the transcendental
analysis on new foundations, has (with that
noble frankness which so well suited his genius) rendered
a striking and decisive homage to the characteristic properties
of the conception of Leibnitz, by following it exclusively
in the entire system of his Méchanique Analytique.
Such a fact renders any comments unnecessary.

But when we consider the conception of Leibnitz in
itself and in its logical relations, we cannot escape admitting,
with Lagrange, that it is radically vicious in
this, that, adopting its own expressions, the notion of infinitely
small quantities is a false idea, of which it is in
fact impossible to obtain a clear conception, however we
may deceive ourselves in that matter. Even if we adopt
the ingenious idea of the compensation of errors, as above
explained, this involves the radical inconvenience of being
obliged to distinguish in mathematics two classes of reasonings,
those which are perfectly rigorous, and those in
which we designedly commit errors which subsequently
have to be compensated. A conception which leads to
such strange consequences is undoubtedly very unsatisfactory
in a logical point of view.


To say, as do some geometers, that it is possible in
every case to reduce the infinitesimal method to that of
limits, the logical character of which is irreproachable,
would evidently be to elude the difficulty rather than to
remove it; besides, such a transformation almost entirely
strips the conception of Leibnitz of its essential advantages
of facility and rapidity.

Finally, even disregarding the preceding important
considerations, the infinitesimal method would no less
evidently present by its nature the very serious defect of
breaking the unity of abstract mathematics, by creating
a transcendental analysis founded on principles so different
from those which form the basis of the ordinary analysis.
This division of analysis into two worlds almost
entirely independent of each other, tends to hinder the
formation of truly general analytical conceptions. To
fully appreciate the consequences of this, we should have
to go back to the state of the science before Lagrange
had established a general and complete harmony between
these two great sections.

That of Newton. Passing now to the conception of
Newton, it is evident that by its nature it is not exposed
to the fundamental logical objections which are called
forth by the method of Leibnitz. The notion of limits
is, in fact, remarkable for its simplicity and its precision.
In the transcendental analysis presented in this manner,
the equations are regarded as exact from their very origin,
and the general rules of reasoning are as constantly
observed as in ordinary analysis. But, on the other
hand, it is very far from offering such powerful resources
for the solution of problems as the infinitesimal method.
The obligation which it imposes, of never considering
the increments of magnitudes separately and by themselves,
nor even in their ratios, but only in the limits of
those ratios, retards considerably the operations of the
mind in the formation of auxiliary equations. We may
even say that it greatly embarrasses the purely analytical
transformations. Thus the transcendental analysis,
considered separately from its applications, is far from presenting
in this method the extent and the generality which
have been imprinted upon it by the conception of Leibnitz.
It is very difficult, for example, to extend the theory
of Newton to functions of several independent variables.
But it is especially with reference to its applications
that the relative inferiority of this theory is most
strongly marked.

Several Continental geometers, in adopting the method
of Newton as the more logical basis of the transcendental
analysis, have partially disguised this inferiority by a serious
inconsistency, which consists in applying to this method
the notation invented by Leibnitz for the infinitesimal
method, and which is really appropriate to it alone.
In designating by dy/dx that which logically ought, in the
theory of limits, to be denoted by L(Δy/Δx), and in extending
to all the other analytical conceptions this displacement
of signs, they intended, undoubtedly, to combine the special
advantages of the two methods; but, in reality, they
have only succeeded in causing a vicious confusion between
them, a familiarity with which hinders the formation
of clear and exact ideas of either. It would certainly
be singular, considering this usage in itself, that,
by the mere means of signs, it could be possible to effect
a veritable combination between two theories so distinct
as those under consideration.

Finally, the method of limits presents also, though in
a less degree, the greater inconvenience, which I have
above noted in reference to the infinitesimal method, of
establishing a total separation between the ordinary and
the transcendental analysis; for the idea of limits, though
clear and rigorous, is none the less in itself, as Lagrange
has remarked, a foreign idea, upon which analytical theories
ought not to be dependent.

That of Lagrange. This perfect unity of analysis,
and this purely abstract character of its fundamental notions,
are found in the highest degree in the conception
of Lagrange, and are found there alone; it is, for this
reason, the most rational and the most philosophical of
all. Carefully removing every heterogeneous consideration,
Lagrange has reduced the transcendental analysis
to its true peculiar character, that of presenting a very
extensive class of analytical transformations, which facilitate
in a remarkable degree the expression of the conditions
of various problems. At the same time, this analysis
is thus necessarily presented as a simple extension
of ordinary analysis; it is only a higher algebra. All the
different parts of abstract mathematics, previously so incoherent,
have from that moment admitted of being conceived
as forming a single system.

Unhappily, this conception, which possesses such fundamental
properties, independently of its so simple and
so lucid notation, and which is undoubtedly destined to
become the final theory of transcendental analysis, because
of its high philosophical superiority over all the
other methods proposed, presents in its present state too
many difficulties in its applications, as compared with the
conception of Newton, and still more with that of Leibnitz,
to be as yet exclusively adopted. Lagrange himself
has succeeded only with great difficulty in rediscovering,
by his method, the principal results already obtained
by the infinitesimal method for the solution of the general
questions of geometry and mechanics; we may judge
from that what obstacles would be found in treating in
the same manner questions which were truly new and
important. It is true that Lagrange, on several occasions,
has shown that difficulties call forth, from men of
genius, superior efforts, capable of leading to the greatest
results. It was thus that, in trying to adapt his method
to the examination of the curvature of lines, which seemed
so far from admitting its application, he arrived at that
beautiful theory of contacts which has so greatly perfected
that important part of geometry. But, in spite
of such happy exceptions, the conception of Lagrange has
nevertheless remained, as a whole, essentially unsuited
to applications.

The final result of the general comparison which I
have too briefly sketched, is, then, as already suggested,
that, in order to really understand the transcendental analysis,
we should not only consider it in its principles according
to the three fundamental conceptions of Leibnitz,
of Newton, and of Lagrange, but should besides accustom
ourselves to carry out almost indifferently, according
to these three principal methods, and especially
according to the first and the last, the solution of all important
questions, whether of the pure calculus of indirect
functions or of its applications. This is a course which
I could not too strongly recommend to all those who desire
to judge philosophically of this admirable creation of
the human mind, as well as to those who wish to learn
to make use of this powerful instrument with success and
with facility. In all the other parts of mathematical science,
the consideration of different methods for a single
class of questions may be useful, even independently of
its historical interest, but it is not indispensable; here,
on the contrary, it is strictly necessary.

Having determined with precision, in this chapter, the
philosophical character of the calculus of indirect functions,
according to the principal fundamental conceptions
of which it admits, we have next to consider, in the following
chapter, the logical division and the general composition
of this calculus.



CHAPTER IV.

THE DIFFERENTIAL AND INTEGRAL CALCULUS.

ITS TWO FUNDAMENTAL DIVISIONS.

The calculus of indirect functions, in accordance with
the considerations explained in the preceding chapter, is
necessarily divided into two parts (or, more properly, is
decomposed into two different calculi entirely distinct,
although intimately connected by their nature), according
as it is proposed to find the relations between the
auxiliary magnitudes (the introduction of which constitutes
the general spirit of this calculus) by means of the
relations between the corresponding primitive magnitudes;
or, conversely, to try to discover these direct
equations by means of the indirect equations originally
established. Such is, in fact, constantly the double object
of the transcendental analysis.

These two systems have received different names, according
to the point of view under which this analysis
has been regarded. The infinitesimal method, properly
so called, having been the most generally employed for
the reasons which have been given, almost all geometers
employ habitually the denominations of Differential
Calculus and of Integral Calculus, established by
Leibnitz, and which are, in fact, very rational consequences
of his conception. Newton, in accordance with
his method, named the first the Calculus of Fluxions,
and the second the Calculus of Fluents, expressions which
were commonly employed in England. Finally, following
the eminently philosophical theory founded by Lagrange,
one would be called the Calculus of Derived
Functions, and the other the Calculus of Primitive
Functions. I will continue to make use of the terms of
Leibnitz, as being more convenient for the formation of
secondary expressions, although I ought, in accordance
with the suggestions made in the preceding chapter, to
employ concurrently all the different conceptions, approaching
as nearly as possible to that of Lagrange.

THEIR RELATIONS TO EACH OTHER.

The differential calculus is evidently the logical basis
of the integral calculus; for we do not and cannot
know how to integrate directly any other differential expressions
than those produced by the differentiation of
the ten simple functions which constitute the general elements
of our analysis. The art of integration consists,
then, essentially in bringing all the other cases, as far as
is possible, to finally depend on only this small number
of fundamental integrations.

In considering the whole body of the transcendental
analysis, as I have characterized it in the preceding chapter,
it is not at first apparent what can be the peculiar
utility of the differential calculus, independently of this
necessary relation with the integral calculus, which seems
as if it must be, by itself, the only one directly indispensable.
In fact, the elimination of the infinitesimals or
of the derivatives, introduced as auxiliaries to facilitate
the establishment of equations, constituting, as we have
seen, the final and invariable object of the calculus of indirect
functions, it is natural to think that the calculus
which teaches how to deduce from the equations between
these auxiliary magnitudes, those which exist between the
primitive magnitudes themselves, ought strictly to suffice
for the general wants of the transcendental analysis without
our perceiving, at the first glance, what special and
constant part the solution of the inverse question can
have in such an analysis. It would be a real error, though
a common one, to assign to the differential calculus, in order
to explain its peculiar, direct, and necessary influence,
the destination of forming the differential equations, from
which the integral calculus then enables us to arrive at
the finite equations; for the primitive formation of differential
equations is not and cannot be, properly speaking,
the object of any calculus, since, on the contrary, it
forms by its nature the indispensable starting point of any
calculus whatever. How, in particular, could the differential
calculus, which in itself is reduced to teaching the
means of differentiating the different equations, be a
general procedure for establishing them? That which
in every application of the transcendental analysis really
facilitates the formation of equations, is the infinitesimal
method, and not the infinitesimal calculus, which is perfectly
distinct from it, although it is its indispensable complement.
Such a consideration would, then, give a false
idea of the special destination which characterizes the differential
calculus in the general system of the transcendental
analysis.

But we should nevertheless very imperfectly conceive
the real peculiar importance of this first branch of the
calculus of indirect functions, if we saw in it only a simple
preliminary labour, having no other general and essential
object than to prepare indispensable foundations
for the integral calculus. As the ideas on this matter
are generally confused, I think that I ought here to explain
in a summary manner this important relation as I
view it, and to show that in every application of the
transcendental analysis a primary, direct, and necessary
part is constantly assigned to the differential calculus.

1. Use of the Differential Calculus as preparatory
to that of the Integral. In forming the differential equations
of any phenomenon whatever, it is very seldom that
we limit ourselves to introduce differentially only those
magnitudes whose relations are sought. To impose that
condition would be to uselessly diminish the resources
presented by the transcendental analysis for the expression
of the mathematical laws of phenomena. Most frequently
we introduce into the primitive equations, through
their differentials, other magnitudes whose relations are
already known or supposed to be so, and without the
consideration of which it would be frequently impossible
to establish equations. Thus, for example, in the general
problem of the rectification of curves, the differential
equation,


ds2 = dy2 + dx2, or ds2 = dx2 + dy2 + dz2,



is not only established between the desired function s and
the independent variable x, to which it is referred, but, at
the same time, there have been introduced, as indispensable
intermediaries, the differentials of one or two other
functions, y and z, which are among the data of the
problem; it would not have been possible to form directly
the equation between ds and dx, which would, besides,
be peculiar to each curve considered. It is the same for
most questions. Now in these cases it is evident that
the differential equation is not immediately suitable for
integration. It is previously necessary that the differentials
of the functions supposed to be known, which
have been employed as intermediaries, should be entirely
eliminated, in order that equations may be obtained between
the differentials of the functions which alone are
sought and those of the really independent variables, after
which the question depends on only the integral calculus.
Now this preparatory elimination of certain differentials,
in order to reduce the infinitesimals to the
smallest number possible, belongs simply to the differential
calculus; for it must evidently be done by determining,
by means of the equations between the functions
supposed to be known, taken as intermediaries, the
relations of their differentials, which is merely a question
of differentiation. Thus, for example, in the case of rectifications,
it will be first necessary to calculate dy, or dy
and dz, by differentiating the equation or the equations
of each curve proposed; after eliminating these expressions,
the general differential formula above enunciated
will then contain only ds and dx; having arrived at this
point, the elimination of the infinitesimals can be completed
only by the integral calculus.

Such is, then, the general office necessarily belonging
to the differential calculus in the complete solution of the
questions which exact the employment of the transcendental
analysis; to produce, as far as is possible, the elimination
of the infinitesimals, that is, to reduce in each
case the primitive differential equations so that they shall
contain only the differentials of the really independent
variables, and those of the functions sought, by causing
to disappear, by elimination, the differentials of all the
other known functions which may have been taken as intermediaries
at the time of the formation of the differential
equations of the problem which is under consideration.

2. Employment of the Differential Calculus alone.
For certain questions, which, although few in number,
have none the less, as we shall see hereafter, a very great
importance, the magnitudes which are sought enter directly,
and not by their differentials, into the primitive
differential equations, which then contain differentially
only the different known functions employed as intermediaries,
in accordance with the preceding explanation.
These cases are the most favourable of all; for it is evident
that the differential calculus is then entirely sufficient
for the complete elimination of the infinitesimals,
without the question giving rise to any integration. This
is what occurs, for example, in the problem of tangents
in geometry; in that of velocities in mechanics, &c.

3. Employment of the Integral Calculus alone. Finally,
some other questions, the number of which is also
very small, but the importance of which is no less great,
present a second exceptional case, which is in its nature
exactly the converse of the preceding. They are those
in which the differential equations are found to be immediately
ready for integration, because they contain, at
their first formation, only the infinitesimals which relate
to the functions sought, or to the really independent variables,
without its being necessary to introduce, differentially,
other functions as intermediaries. If in these
new cases we introduce these last functions, since, by hypothesis,
they will enter directly and not by their differentials,
ordinary algebra will suffice to eliminate them,
and to bring the question to depend on only the integral
calculus. The differential calculus will then have no
special part in the complete solution of the problem, which
will depend entirely upon the integral calculus. The
general question of quadratures offers an important example
of this, for the differential equation being then
dA = ydx, will become immediately fit for integration as
soon as we shall have eliminated, by means of the equation
of the proposed curve, the intermediary function y,
which does not enter into it differentially. The same
circumstances exist in the problem of cubatures, and in
some others equally important.

Three classes of Questions hence resulting. As a
general result of the previous considerations, it is then
necessary to divide into three classes the mathematical
questions which require the use of the transcendental
analysis; the first class comprises the problems susceptible
of being entirely resolved by means of the differential
calculus alone, without any need of the integral calculus;
the second, those which are, on the contrary, entirely
dependent upon the integral calculus, without the
differential calculus having any part in their solution;
lastly, in the third and the most extensive, which constitutes
the normal case, the two others being only exceptional,
the differential and the integral calculus have
each in their turn a distinct and necessary part in the
complete solution of the problem, the former making the
primitive differential equations undergo a preparation
which is indispensable for the application of the latter.
Such are exactly their general relations, of which too
indefinite and inexact ideas are generally formed.





Let us now take a general survey of the logical composition
of each calculus, beginning with the differential.

THE DIFFERENTIAL CALCULUS.

In the exposition of the transcendental analysis, it is
customary to intermingle with the purely analytical part
(which reduces itself to the treatment of the abstract
principles of differentiation and integration) the study of
its different principal applications, especially those which
concern geometry. This confusion of ideas, which is a
consequence of the actual manner in which the science
has been developed, presents, in the dogmatic point of
view, serious inconveniences in this respect, that it makes
it difficult properly to conceive either analysis or geometry.
Having to consider here the most rational co-ordination
which is possible, I shall include, in the following
sketch, only the calculus of indirect functions properly
so called, reserving for the portion of this volume
which relates to the philosophical study of concrete mathematics
the general examination of its great geometrical
and mechanical applications.

Two Cases: explicit and implicit Functions. The
fundamental division of the differential calculus, or of
the general subject of differentiation, consists in distinguishing
two cases, according as the analytical functions
which are to be differentiated are explicit or implicit;
from which flow two parts ordinarily designated by the
names of differentiation of formulas and differentiation
of equations. It is easy to understand, à priori, the
importance of this classification. In fact, such a distinction
would be illusory if the ordinary analysis was
perfect; that is, if we knew how to resolve all equations
algebraically, for then it would be possible to render
every implicit function explicit; and, by differentiating
it in that state alone, the second part of the differential
calculus would be immediately comprised in the first,
without giving rise to any new difficulty. But the algebraical
resolution of equations being, as we have seen,
still almost in its infancy, and as yet impossible for most
cases, it is plain that the case is very different, since
we have, properly speaking, to differentiate a function
without knowing it, although it is determinate. The
differentiation of implicit functions constitutes then, by
its nature, a question truly distinct from that presented
by explicit functions, and necessarily more complicated.
It is thus evident that we must commence with the differentiation
of formulas, and reduce the differentiation
of equations to this primary case by certain invariable
analytical considerations, which need not be here mentioned.

These two general cases of differentiation are also distinct
in another point of view equally necessary, and too
important to be left unnoticed. The relation which is
obtained between the differentials is constantly more indirect,
in comparison with that of the finite quantities,
in the differentiation of implicit functions than in that
of explicit functions. We know, in fact, from the considerations
presented by Lagrange on the general formation
of differential equations, that, on the one hand, the
same primitive equation may give rise to a greater or
less number of derived equations of very different forms,
although at bottom equivalent, depending upon which of
the arbitrary constants is eliminated, which is not the
case in the differentiation of explicit formulas; and
that, on the other hand, the unlimited system of the
different primitive equations, which correspond to the
same derived equation, presents a much more profound
analytical variety than that of the different functions,
which admit of one same explicit differential, and which
are distinguished from each other only by a constant
term. Implicit functions must therefore be regarded as
being in reality still more modified by differentiation
than explicit functions. We shall again meet with this
consideration relatively to the integral calculus, where
it acquires a preponderant importance.

Two Sub-cases: A single Variable or several Variables.
Each of the two fundamental parts of the Differential
Calculus is subdivided into two very distinct theories,
according as we are required to differentiate functions
of a single variable or functions of several independent
variables. This second case is, by its nature,
quite distinct from the first, and evidently presents more
complication, even in considering only explicit functions,
and still more those which are implicit. As to the rest,
one of these cases is deduced from the other in a general
manner, by the aid of an invariable and very simple
principle, which consists in regarding the total differential
of a function which is produced by the simultaneous
increments of the different independent variables which
it contains, as the sum of the partial differentials which
would be produced by the separate increment of each
variable in turn, if all the others were constant. It is
necessary, besides, carefully to remark, in connection
with this subject, a new idea which is introduced by
the distinction of functions into those of one variable
and of several; it is the consideration of these different
special derived functions, relating to each variable separately,
and the number of which increases more and
more in proportion as the order of the derivation becomes
higher, and also when the variables become more numerous.
It results from this that the differential relations
belonging to functions of several variables are, by
their nature, both much more indirect, and especially
much more indeterminate, than those relating to functions
of a single variable. This is most apparent in the
case of implicit functions, in which, in the place of the
simple arbitrary constants which elimination causes to
disappear when we form the proper differential equations
for functions of a single variable, it is the arbitrary functions
of the proposed variables which are then eliminated;
whence must result special difficulties when these
equations come to be integrated.

Finally, to complete this summary sketch of the different
essential parts of the differential calculus proper,
I should add, that in the differentiation of implicit functions,
whether of a single variable or of several, it is necessary
to make another distinction; that of the case in
which it is required to differentiate at once different
functions of this kind, combined in certain primitive
equations, from that in which all these functions are
separate.

The functions are evidently, in fact, still more implicit
in the first case than in the second, if we consider
that the same imperfection of ordinary analysis, which
forbids our converting every implicit function into an
equivalent explicit function, in like manner renders us
unable to separate the functions which enter simultaneously
into any system of equations. It is then necessary
to differentiate, not only without knowing how
to resolve the primitive equations, but even without being
able to effect the proper eliminations among them,
thus producing a new difficulty.

Reduction of the whole to the Differentiation of the
ten elementary Functions. Such, then, are the natural
connection and the logical distribution of the different
principal theories which compose the general system of
differentiation. Since the differentiation of implicit
functions is deduced from that of explicit functions by
a single constant principle, and the differentiation of
functions of several variables is reduced by another fixed
principle to that of functions of a single variable, the
whole of the differential calculus is finally found to rest
upon the differentiation of explicit functions with a single
variable, the only one which is ever executed directly.
Now it is easy to understand that this first theory,
the necessary basis of the entire system, consists simply
in the differentiation of the ten simple functions, which
are the uniform elements of all our analytical combinations,
and the list of which has been given in the first
chapter, on page 51; for the differentiation of compound
functions is evidently deduced, in an immediate and necessary
manner, from that of the simple functions which
compose them. It is, then, to the knowledge of these
ten fundamental differentials, and to that of the two general
principles just mentioned, which bring under it all
the other possible cases, that the whole system of differentiation
is properly reduced. We see, by the combination
of these different considerations, how simple and
how perfect is the entire system of the differential calculus.
It certainly constitutes, in its logical relations,
the most interesting spectacle which mathematical analysis
can present to our understanding.


Transformation of derived Functions for new Variables.
The general sketch which I have just summarily
drawn would nevertheless present an important deficiency,
if I did not here distinctly indicate a final theory,
which forms, by its nature, the indispensable complement
of the system of differentiation. It is that which has
for its object the constant transformation of derived functions,
as a result of determinate changes in the independent
variables, whence results the possibility of referring
to new variables all the general differential formulas
primitively established for others. This question
is now resolved in the most complete and the most simple
manner, as are all those of which the differential
calculus is composed. It is easy to conceive the general
importance which it must have in any of the applications
of the transcendental analysis, the fundamental
resources of which it may be considered as augmenting,
by permitting us to choose (in order to form the differential
equations, in the first place, with more ease) that
system of independent variables which may appear to
be the most advantageous, although it is not to be finally
retained. It is thus, for example, that most of the
principal questions of geometry are resolved much more
easily by referring the lines and surfaces to rectilinear
co-ordinates, and that we may, nevertheless, have occasion
to express these lines, etc., analytically by the aid
of polar co-ordinates, or in any other manner. We will
then be able to commence the differential solution of the
problem by employing the rectilinear system, but only
as an intermediate step, from which, by the general theory
here referred to, we can pass to the final system,
which sometimes could not have been considered directly.


Different Orders of Differentiation. In the logical
classification of the differential calculus which has just
been given, some may be inclined to suggest a serious
omission, since I have not subdivided each of its four
essential parts according to another general consideration,
which seems at first view very important; namely,
that of the higher or lower order of differentiation. But
it is easy to understand that this distinction has no real
influence in the differential calculus, inasmuch as it does
not give rise to any new difficulty. If, indeed, the differential
calculus was not rigorously complete, that is,
if we did not know how to differentiate at will any function
whatever, the differentiation to the second or higher
order of each determinate function might engender special
difficulties. But the perfect universality of the differential
calculus plainly gives us the assurance of being
able to differentiate, to any order whatever, all known
functions whatever, the question reducing itself to a constantly
repeated differentiation of the first order. This
distinction, unimportant as it is for the differential calculus,
acquires, however, a very great importance in the
integral calculus, on account of the extreme imperfection
of the latter.

Analytical Applications. Finally, though this is not
the place to consider the various applications of the differential
calculus, yet an exception may be made for
those which consist in the solution of questions which are
purely analytical, which ought, indeed, to be logically
treated in continuation of a system of differentiation, because
of the evident homogeneity of the considerations
involved. These questions may be reduced to three essential
ones.


Firstly, the development into series of functions of
one or more variables, or, more generally, the transformation
of functions, which constitutes the most beautiful
and the most important application of the differential calculus
to general analysis, and which comprises, besides
the fundamental series discovered by Taylor, the remarkable
series discovered by Maclaurin, John Bernouilli, Lagrange,
&c.:

Secondly, the general theory of maxima and minima
values for any functions whatever, of one or more variables;
one of the most interesting problems which analysis
can present, however elementary it may now have
become, and to the complete solution of which the differential
calculus naturally applies:

Thirdly, the general determination of the true value
of functions which present themselves under an indeterminate
appearance for certain hypotheses made on the
values of the corresponding variables; which is the least
extensive and the least important of the three.

The first question is certainly the principal one in all
points of view; it is also the most susceptible of receiving
a new extension hereafter, especially by conceiving,
in a broader manner than has yet been done, the employment
of the differential calculus in the transformation
of functions, on which subject Lagrange has left
some valuable hints.





Having thus summarily, though perhaps too briefly,
considered the chief points in the differential calculus, I
now proceed to an equally rapid exposition of a systematic
outline of the Integral Calculus, properly so called,
that is, the abstract subject of integration.

THE INTEGRAL CALCULUS.

Its Fundamental Division. The fundamental division
of the Integral Calculus is founded on the same principle
as that of the Differential Calculus, in distinguishing
the integration of explicit differential formulas, and the
integration of implicit differentials or of differential equations.
The separation of these two cases is even much
more profound in relation to integration than to differentiation.
In the differential calculus, in fact, this distinction
rests, as we have seen, only on the extreme imperfection
of ordinary analysis. But, on the other hand,
it is easy to see that, even though all equations could be
algebraically resolved, differential equations would none
the less constitute a case of integration quite distinct
from that presented by the explicit differential formulas;
for, limiting ourselves, for the sake of simplicity, to the
first order, and to a single function y of a single variable
x, if we suppose any differential equation between x, y,
and dy/dx, to be resolved with reference to dy/dx, the expression
of the derived function being then generally found
to contain the primitive function itself, which is the object
of the inquiry, the question of integration will not
have at all changed its nature, and the solution will not
really have made any other progress than that of having
brought the proposed differential equation to be of only
the first degree relatively to the derived function, which
is in itself of little importance. The differential would
not then be determined in a manner much less implicit
than before, as regards the integration, which would continue
to present essentially the same characteristic difficulty.
The algebraic resolution of equations could not
make the case which we are considering come within the
simple integration of explicit differentials, except in the
special cases in which the proposed differential equation
did not contain the primitive function itself, which would
consequently permit us, by resolving it, to find dy/dx in
terms of x only, and thus to reduce the question to the
class of quadratures. Still greater difficulties would evidently
be found in differential equations of higher orders,
or containing simultaneously different functions of several
independent variables.

The integration of differential equations is then necessarily
more complicated than that of explicit differentials,
by the elaboration of which last the integral calculus
has been created, and upon which the others have been
made to depend as far as it has been possible. All the
various analytical methods which have been proposed for
integrating differential equations, whether it be the separation
of the variables, the method of multipliers, &c.,
have in fact for their object to reduce these integrations
to those of differential formulas, the only one which, by its
nature, can be undertaken directly. Unfortunately, imperfect
as is still this necessary base of the whole integral
calculus, the art of reducing to it the integration of differential
equations is still less advanced.

Subdivisions: one variable or several. Each of these
two fundamental branches of the integral calculus is next
subdivided into two others (as in the differential calculus,
and for precisely analogous reasons), according as we
consider functions with a single variable, or functions
with several independent variables.


This distinction is, like the preceding one, still more
important for integration than for differentiation. This
is especially remarkable in reference to differential equations.
Indeed, those which depend on several independent
variables may evidently present this characteristic
and much more serious difficulty, that the desired function
may be differentially defined by a simple relation between
its different special derivatives relative to the different
variables taken separately. Hence results the
most difficult and also the most extensive branch of the
integral calculus, which is commonly named the Integral
Calculus of partial differences, created by D'Alembert,
and in which, according to the just appreciation of
Lagrange, geometers ought to have seen a really new
calculus, the philosophical character of which has not yet
been determined with sufficient exactness. A very striking
difference between this case and that of equations
with a single independent variable consists, as has been
already observed, in the arbitrary functions which take
the place of the simple arbitrary constants, in order to give
to the corresponding integrals all the proper generality.

It is scarcely necessary to say that this higher branch
of transcendental analysis is still entirely in its infancy,
since, even in the most simple case, that of an equation
of the first order between the partial derivatives of a single
function with two independent variables, we are not
yet completely able to reduce the integration to that of
the ordinary differential equations. The integration of
functions of several variables is much farther advanced
in the case (infinitely more simple indeed) in which it
has to do with only explicit differential formulas. We
can then, in fact, when these formulas fulfil the necessary
conditions of integrability, always reduce their integration
to quadratures.

Other Subdivisions: different Orders of Differentiation.
A new general distinction, applicable as a subdivision
to the integration of explicit or implicit differentials,
with one variable or several, is drawn from the higher
or lower order of the differentials: a distinction which,
as we have above remarked, does not give rise to any
special question in the differential calculus.

Relatively to explicit differentials, whether of one variable
or of several, the necessity of distinguishing their
different orders belongs only to the extreme imperfection
of the integral calculus. In fact, if we could always integrate
every differential formula of the first order, the
integration of a formula of the second order, or of any
other, would evidently not form a new question, since, by
integrating it at first in the first degree, we would arrive
at the differential expression of the immediately preceding
order, from which, by a suitable series of analogous
integrations, we would be certain of finally arriving at
the primitive function, the final object of these operations.
But the little knowledge which we possess on integration
of even the first order causes quite another state
of affairs, so that a higher order of differentials produces
new difficulties; for, having differential formulas of any
order above the first, it may happen that we may be able
to integrate them, either once, or several times in succession,
and that we may still be unable to go back to
the primitive functions, if these preliminary labours have
produced, for the differentials of a lower order, expressions
whose integrals are not known. This circumstance
must occur so much the oftener (the number of known
integrals being still very small), seeing that these successive
integrals are generally very different functions
from the derivatives which have produced them.

With reference to implicit differentials, the distinction
of orders is still more important; for, besides the
preceding reason, the influence of which is evidently
analogous in this case, and is even greater, it is easy to
perceive that the higher order of the differential equations
necessarily gives rise to questions of a new nature.
In fact, even if we could integrate every equation of the
first order relating to a single function, that would not
be sufficient for obtaining the final integral of an equation
of any order whatever, inasmuch as every differential
equation is not reducible to that of an immediately inferior
order. Thus, for example, if we have given any
relation between x, y, dx/dy, and d2y/dx2, to determine a function
y of a variable x, we shall not be able to deduce
from it at once, after effecting a first integration, the
corresponding differential relation between x, y, and dy/dx,
from which, by a second integration, we could ascend
to the primitive equations. This would not necessarily
take place, at least without introducing new auxiliary
functions, unless the proposed equation of the second order
did not contain the required function y, together with
its derivatives. As a general principle, differential equations
will have to be regarded as presenting cases which
are more and more implicit, as they are of a higher order,
and which cannot be made to depend on one another
except by special methods, the investigation of which
consequently forms a new class of questions, with respect
to which we as yet know scarcely any thing, even
for functions of a single variable.[10]

Another equivalent distinction. Still farther, when
we examine more profoundly this distinction of different
orders of differential equations, we find that it can be
always made to come under a final general distinction,
relative to differential equations, which remains to be
noticed. Differential equations with one or more independent
variables may contain simply a single function,
or (in a case evidently more complicated and more implicit,
which corresponds to the differentiation of simultaneous
implicit functions) we may have to determine
at the same time several functions from the differential
equations in which they are found united, together with
their different derivatives. It is clear that such a state
of the question necessarily presents a new special difficulty,
that of separating the different functions desired,
by forming for each, from the proposed differential equations,
an isolated differential equation which does not
contain the other functions or their derivatives. This
preliminary labour, which is analogous to the elimination
of algebra, is evidently indispensable before attempting
any direct integration, since we cannot undertake
generally (except by special artifices which are very
rarely applicable) to determine directly several distinct
functions at once.

Now it is easy to establish the exact and necessary
coincidence of this new distinction with the preceding
one respecting the order of differential equations. We
know, in fact, that the general method for isolating functions
in simultaneous differential equations consists essentially
in forming differential equations, separately in
relation to each function, and of an order equal to the
sum of all those of the different proposed equations.
This transformation can always be effected. On the
other hand, every differential equation of any order in
relation to a single function might evidently always be
reduced to the first order, by introducing a suitable number
of auxiliary differential equations, containing at the
same time the different anterior derivatives regarded as
new functions to be determined. This method has, indeed,
sometimes been actually employed with success,
though it is not the natural one.

Here, then, are two necessarily equivalent orders of
conditions in the general theory of differential equations;
the simultaneousness of a greater or smaller number of
functions, and the higher or lower order of differentiation
of a single function. By augmenting the order of
the differential equations, we can isolate all the functions;
and, by artificially multiplying the number of
the functions, we can reduce all the equations to the
first order. There is, consequently, in both cases, only
one and the same difficulty from two different points of
sight. But, however we may conceive it, this new difficulty
is none the less real, and constitutes none the
less, by its nature, a marked separation between the integration
of equations of the first order and that of equations
of a higher order. I prefer to indicate the distinction
under this last form as being more simple, more
general, and more logical.


Quadratures. From the different considerations
which have been indicated respecting the logical dependence
of the various principal parts of the integral calculus,
we see that the integration of explicit differential
formulas of the first order and of a single variable is the
necessary basis of all other integrations, which we never
succeed in effecting but so far as we reduce them to this
elementary case, evidently the only one which, by its
nature, is capable of being treated directly. This simple
fundamental integration is often designated by the
convenient expression of quadratures, seeing that every
integral of this kind, Sf(x)dx, may, in fact, be regarded
as representing the area of a curve, the equation of which
in rectilinear co-ordinates would be y = f(x). Such a
class of questions corresponds, in the differential calculus,
to the elementary case of the differentiation of explicit
functions of a single variable. But the integral question
is, by its nature, very differently complicated, and
especially much more extensive than the differential
question. This latter is, in fact, necessarily reduced, as
we have seen, to the differentiation of the ten simple
functions, the elements of all which are considered in
analysis. On the other hand, the integration of compound
functions does not necessarily follow from that of
the simple functions, each combination of which may
present special difficulties with respect to the integral
calculus. Hence results the naturally indefinite extent,
and the so varied complication of the question of quadratures,
upon which, in spite of all the efforts of analysts,
we still possess so little complete knowledge.

In decomposing this question, as is natural, according
to the different forms which may be assumed by the
derivative function, we distinguish the case of algebraic
functions and that of transcendental functions.

Integration of Transcendental Functions. The truly
analytical integration of transcendental functions is as
yet very little advanced, whether for exponential, or for
logarithmic, or for circular functions. But a very small
number of cases of these three different kinds have as
yet been treated, and those chosen from among the simplest;
and still the necessary calculations are in most
cases extremely laborious. A circumstance which we
ought particularly to remark in its philosophical connection
is, that the different procedures of quadrature
have no relation to any general view of integration, and
consist of simple artifices very incoherent with each other,
and very numerous, because of the very limited extent
of each.

One of these artifices should, however, here be noticed,
which, without being really a method of integration,
is nevertheless remarkable for its generality; it is
the procedure invented by John Bernouilli, and known
under the name of integration by parts, by means of
which every integral may be reduced to another which
is sometimes found to be more easy to be obtained.
This ingenious relation deserves to be noticed for another
reason, as having suggested the first idea of that transformation
of integrals yet unknown, which has lately
received a greater extension, and of which M. Fourier
especially has made so new and important a use in the
analytical questions produced by the theory of heat.

Integration of Algebraic Functions. As to the integration
of algebraic functions, it is farther advanced.
However, we know scarcely any thing in relation to irrational
functions, the integrals of which have been obtained
only in extremely limited cases, and particularly by
rendering them rational. The integration of rational
functions is thus far the only theory of the integral calculus
which has admitted of being treated in a truly complete
manner; in a logical point of view, it forms, then,
its most satisfactory part, but perhaps also the least important.
It is even essential to remark, in order to have
a just idea of the extreme imperfection of the integral
calculus, that this case, limited as it is, is not entirely
resolved except for what properly concerns integration
viewed in an abstract manner; for, in the execution, the
theory finds its progress most frequently quite stopped,
independently of the complication of the calculations, by
the imperfection of ordinary analysis, seeing that it
makes the integration finally depend upon the algebraic
resolution of equations, which greatly limits its use.

To grasp in a general manner the spirit of the different
procedures which are employed in quadratures, we
must observe that, by their nature, they can be primitively
founded only on the differentiation of the ten simple
functions. The results of this, conversely considered,
establish as many direct theorems of the integral calculus,
the only ones which can be directly known. All the
art of integration afterwards consists, as has been said
in the beginning of this chapter, in reducing all the other
quadratures, so far as is possible, to this small number
of elementary ones, which unhappily we are in most
cases unable to effect.

Singular Solutions. In this systematic enumeration
of the various essential parts of the integral calculus, considered
in their logical relations, I have designedly neglected
(in order not to break the chain of sequence) to
consider a very important theory, which forms implicitly
a portion of the general theory of the integration of differential
equations, but which I ought here to notice separately,
as being, so to speak, outside of the integral calculus,
and being nevertheless of the greatest interest, both
by its logical perfection and by the extent of its applications.
I refer to what are called Singular Solutions
of differential equations, called sometimes, but improperly,
particular solutions, which have been the subject
of very remarkable investigations by Euler and Laplace,
and of which Lagrange especially has presented such a
beautiful and simple general theory. Clairaut, who first
had occasion to remark their existence, saw in them a
paradox of the integral calculus, since these solutions
have the peculiarity of satisfying the differential equations
without being comprised in the corresponding general
integrals. Lagrange has since explained this paradox
in the most ingenious and most satisfactory manner,
by showing how such solutions are always derived
from the general integral by the variation of the arbitrary
constants. He was also the first to suitably appreciate
the importance of this theory, and it is with
good reason that he devoted to it so full a development
in his "Calculus of Functions." In a logical point of
view, this theory deserves all our attention by the character
of perfect generality which it admits of, since Lagrange
has given invariable and very simple procedures
for finding the singular solution of any differential equation
which is susceptible of it; and, what is no less remarkable,
these procedures require no integration, consisting
only of differentiations, and are therefore always
applicable. Differentiation has thus become, by a happy
artifice, a means of compensating, in certain circumstances,
for the imperfection of the integral calculus.
Indeed, certain problems especially require, by their nature,
the knowledge of these singular solutions; such,
for example, in geometry, are all the questions in which
a curve is to be determined from any property of its tangent
or its osculating circle. In all cases of this kind,
after having expressed this property by a differential
equation, it will be, in its analytical relations, the singular
equation which will form the most important object
of the inquiry, since it alone will represent the required
curve; the general integral, which thenceforth it
becomes unnecessary to know, designating only the system
of the tangents, or of the osculating circles of this
curve. We may hence easily understand all the importance
of this theory, which seems to me to be not as yet
sufficiently appreciated by most geometers.

Definite Integrals. Finally, to complete our review
of the vast collection of analytical researches of which is
composed the integral calculus, properly so called, there
remains to be mentioned one theory, very important in
all the applications of the transcendental analysis, which
I have had to leave outside of the system, as not being
really destined for veritable integration, and proposing, on
the contrary, to supply the place of the knowledge of truly
analytical integrals, which are most generally unknown.
I refer to the determination of definite integrals.

The expression, always possible, of integrals in infinite
series, may at first be viewed as a happy general
means of compensating for the extreme imperfection of
the integral calculus. But the employment of such series,
because of their complication, and of the difficulty
of discovering the law of their terms, is commonly of only
moderate utility in the algebraic point of view, although
sometimes very essential relations have been thence deduced.
It is particularly in the arithmetical point of
view that this procedure acquires a great importance, as
a means of calculating what are called definite integrals,
that is, the values of the required functions for certain
determinate values of the corresponding variables.

An inquiry of this nature exactly corresponds, in transcendental
analysis, to the numerical resolution of equations
in ordinary analysis. Being generally unable to
obtain the veritable integral—named by opposition the
general or indefinite integral; that is, the function which,
differentiated, has produced the proposed differential formula—analysts
have been obliged to employ themselves
in determining at least, without knowing this function,
the particular numerical values which it would take on
assigning certain designated values to the variables.
This is evidently resolving the arithmetical question
without having previously resolved the corresponding algebraic
one, which most generally is the most important
one. Such an analysis is, then, by its nature, as
imperfect as we have seen the numerical resolution of
equations to be. It presents, like this last, a vicious
confusion of arithmetical and algebraic considerations,
whence result analogous inconveniences both in the
purely logical point of view and in the applications.
We need not here repeat the considerations suggested in
our third chapter. But it will be understood that, unable
as we almost always are to obtain the true integrals,
it is of the highest importance to have been able
to obtain this solution, incomplete and necessarily insufficient
as it is. Now this has been fortunately attained
at the present day for all cases, the determination of
the value of definite integrals having been reduced to
entirely general methods, which leave nothing to desire,
in a great number of cases, but less complication in the
calculations, an object towards which are at present directed
all the special transformations of analysts. Regarding
now this sort of transcendental arithmetic as
perfect, the difficulty in the applications is essentially
reduced to making the proposed research depend, finally,
on a simple determination of definite integrals, which
evidently cannot always be possible, whatever analytical
skill may be employed in effecting such a transformation.

Prospects of the Integral Calculus. From the considerations
indicated in this chapter, we see that, while
the differential calculus constitutes by its nature a limited
and perfect system, to which nothing essential remains
to be added, the integral calculus, or the simple system
of integration, presents necessarily an inexhaustible field
for the activity of the human mind, independently of
the indefinite applications of which the transcendental
analysis is evidently susceptible. The general argument
by which I have endeavoured, in the second chapter,
to make apparent the impossibility of ever discovering
the algebraic solution of equations of any degree and
form whatsoever, has undoubtedly infinitely more force
with regard to the search for a single method of integration,
invariably applicable to all cases. "It is," says
Lagrange, "one of those problems whose general solution
we cannot hope for." The more we meditate on
this subject, the more we will be convinced that such a
research is utterly chimerical, as being far above the feeble
reach of our intelligence; although the labours of
geometers must certainly augment hereafter the amount
of our knowledge respecting integration, and thus create
methods of greater generality. The transcendental analysis
is still too near its origin—there is especially too
little time since it has been conceived in a truly rational
manner—for us now to be able to have a correct idea of
what it will hereafter become. But, whatever should be
our legitimate hopes, let us not forget to consider, before
all, the limits which are imposed by our intellectual constitution,
and which, though not susceptible of a precise
determination, have none the less an incontestable reality.

I am induced to think that, when geometers shall have
exhausted the most important applications of our present
transcendental analysis, instead of striving to impress
upon it, as now conceived, a chimerical perfection, they
will rather create new resources by changing the mode
of derivation of the auxiliary quantities introduced in
order to facilitate the establishment of equations, and
the formation of which might follow an infinity of other
laws besides the very simple relation which has been
chosen, according to the conception suggested in the first
chapter. The resources of this nature appear to me susceptible
of a much greater fecundity than those which
would consist of merely pushing farther our present calculus
of indirect functions. It is a suggestion which I
submit to the geometers who have turned their thoughts
towards the general philosophy of analysis.

Finally, although, in the summary exposition which
was the object of this chapter, I have had to exhibit the
condition of extreme imperfection which still belongs to
the integral calculus, the student would have a false idea
of the general resources of the transcendental analysis if
he gave that consideration too great an importance. It
is with it, indeed, as with ordinary analysis, in which a
very small amount of fundamental knowledge respecting
the resolution of equations has been employed with an
immense degree of utility. Little advanced as geometers
really are as yet in the science of integrations, they
have nevertheless obtained, from their scanty abstract
conceptions, the solution of a multitude of questions of
the first importance in geometry, in mechanics, in thermology,
&c. The philosophical explanation of this
double general fact results from the necessarily preponderating
importance and grasp of abstract branches of
knowledge, the least of which is naturally found to correspond
to a crowd of concrete researches, man having
no other resource for the successive extension of his intellectual
means than in the consideration of ideas more
and more abstract, and still positive.





In order to finish the complete exposition of the philosophical
character of the transcendental analysis, there
remains to be considered a final conception, by which
the immortal Lagrange has rendered this analysis still
better adapted to facilitate the establishment of equations
in the most difficult problems, by considering a class of
equations still more indirect than the ordinary differential
equations. It is the Calculus, or, rather, the Method
of Variations; the general appreciation of which will be
our next subject.

CHAPTER V.

THE CALCULUS OF VARIATIONS.

In order to grasp with more ease the philosophical
character of the Method of Variations, it will be well to
begin by considering in a summary manner the special
nature of the problems, the general resolution of which
has rendered necessary the formation of this hyper-transcendental
analysis. It is still too near its origin, and
its applications have been too few, to allow us to obtain
a sufficiently clear general idea of it from a purely abstract
exposition of its fundamental theory.

PROBLEMS GIVING RISE TO IT.

The mathematical questions which have given birth
to the Calculus of Variations consist generally in the
investigation of the maxima and minima of certain indeterminate
integral formulas, which express the analytical
law of such or such a phenomenon of geometry
or mechanics, considered independently of any particular
subject. Geometers for a long time designated all the
questions of this character by the common name of Isoperimetrical
Problems, which, however, is really suitable
to only the smallest number of them.

Ordinary Questions of Maxima and Minima. In
the common theory of maxima and minima, it is proposed
to discover, with reference to a given function of
one or more variables, what particular values must be
assigned to these variables, in order that the corresponding
value of the proposed function may be a maximum
or a minimum with respect to those values which immediately
precede and follow it; that is, properly speaking,
we seek to know at what instant the function ceases
to increase and commences to decrease, or reciprocally.
The differential calculus is perfectly sufficient, as we
know, for the general resolution of this class of questions,
by showing that the values of the different variables,
which suit either the maximum or minimum, must
always reduce to zero the different first derivatives of
the given function, taken separately with reference to
each independent variable, and by indicating, moreover,
a suitable characteristic for distinguishing the maximum
from the minimum; consisting, in the case of a function
of a single variable, for example, in the derived function
of the second order taking a negative value for the maximum,
and a positive value for the minimum. Such
are the well-known fundamental conditions belonging to
the greatest number of cases.

A new Class of Questions. The construction of this
general theory having necessarily destroyed the chief
interest which questions of this kind had for geometers,
they almost immediately rose to the consideration of a
new order of problems, at once much more important and
of much greater difficulty—those of isoperimeters. It
is, then, no longer the values of the variables belonging
to the maximum or the minimum of a given function
that it is required to determine. It is the form of the
function itself which is required to be discovered, from
the condition of the maximum or of the minimum of a
certain definite integral, merely indicated, which depends
upon that function.


Solid of least Resistance. The oldest question of
this nature is that of the solid of least resistance, treated
by Newton in the second book of the Principia, in
which he determines what ought to be the meridian
curve of a solid of revolution, in order that the resistance
experienced by that body in the direction of its axis
may be the least possible. But the course pursued by
Newton, from the nature of his special method of transcendental
analysis, had not a character sufficiently simple,
sufficiently general, and especially sufficiently analytical,
to attract geometers to this new order of problems.
To effect this, the application of the infinitesimal
method was needed; and this was done, in 1695, by
John Bernouilli, in proposing the celebrated problem of
the Brachystochrone.

This problem, which afterwards suggested such a long
series of analogous questions, consists in determining
the curve which a heavy body must follow in order to
descend from one point to another in the shortest possible
time. Limiting the conditions to the simple fall
in a vacuum, the only case which was at first considered,
it is easily found that the required curve must be
a reversed cycloid with a horizontal base, and with its
origin at the highest point. But the question may become
singularly complicated, either by taking into account
the resistance of the medium, or the change in the
intensity of gravity.

Isoperimeters. Although this new class of problems
was in the first place furnished by mechanics, it is in
geometry that the principal investigations of this character
were subsequently made. Thus it was proposed
to discover which, among all the curves of the same contour
traced between two given points, is that whose area
is a maximum or minimum, whence has come the name
of Problem of Isoperimeters; or it was required that
the maximum or minimum should belong to the surface
produced by the revolution of the required curve about
an axis, or to the corresponding volume; in other cases,
it was the vertical height of the center of gravity of the
unknown curve, or of the surface and of the volume
which it might generate, which was to become a maximum
or minimum, &c. Finally, these problems were
varied and complicated almost to infinity by the Bernouillis,
by Taylor, and especially by Euler, before Lagrange
reduced their solution to an abstract and entirely
general method, the discovery of which has put a
stop to the enthusiasm of geometers for such an order of
inquiries. This is not the place for tracing the history
of this subject. I have only enumerated some of the
simplest principal questions, in order to render apparent
the original general object of the method of variations.

Analytical Nature of these Problems. We see that
all these problems, considered in an analytical point of
view, consist, by their nature, in determining what form
a certain unknown function of one or more variables
ought to have, in order that such or such an integral,
dependent upon that function, shall have, within assigned
limits, a value which is a maximum or a minimum
with respect to all those which it would take if the required
function had any other form whatever.

Thus, for example, in the problem of the brachystochrone,
it is well known that if y = f(z), x = π(z), are the
rectilinear equations of the required curve, supposing
the axes of x and of y to be horizontal, and the axis of
z to be vertical, the time of the fall of a heavy body in
that curve from the point whose ordinate is z1, to that
whose ordinate is z2, is expressed in general terms by
the definite integral


∫_{z_{2}}z_{1}√(1 + (f'(z))2 + (π'(z))2/(2gz))dz.



It is, then, necessary to find what the two unknown
functions f and π must be, in order that this integral
may be a minimum.

In the same way, to demand what is the curve among
all plane isoperimetrical curves, which includes the greatest
area, is the same thing as to propose to find, among
all the functions f(x) which can give a certain constant
value to the integral


∫dx√(1 + (f'(x) )2),



that one which renders the integral ∫f(x)dx, taken between
the same limits, a maximum. It is evidently always
so in other questions of this class.

Methods of the older Geometers. In the solutions
which geometers before Lagrange gave of these problems,
they proposed, in substance, to reduce them to the
ordinary theory of maxima and minima. But the means
employed to effect this transformation consisted in special
simple artifices peculiar to each case, and the discovery
of which did not admit of invariable and certain
rules, so that every really new question constantly reproduced
analogous difficulties, without the solutions previously
obtained being really of any essential aid, otherwise
than by their discipline and training of the mind.
In a word, this branch of mathematics presented, then,
the necessary imperfection which always exists when the
part common to all questions of the same class has not
yet been distinctly grasped in order to be treated in an
abstract and thenceforth general manner.

METHOD OF LAGRANGE.

Lagrange, in endeavouring to bring all the different
problems of isoperimeters to depend upon a common analysis,
organized into a distinct calculus, was led to conceive
a new kind of differentiation, to which he has applied
the characteristic δ, reserving the characteristic d
for the common differentials. These differentials of a
new species, which he has designated under the name of
Variations, consist of the infinitely small increments
which the integrals receive, not by virtue of analogous
increments on the part of the corresponding variables, as
in the ordinary transcendental analysis, but by supposing
that the form of the function placed under the sign of
integration undergoes an infinitely small change. This
distinction is easily conceived with reference to curves,
in which we see the ordinate, or any other variable of
the curve, admit of two sorts of differentials, evidently
very different, according as we pass from one point to another
infinitely near it on the same curve, or to the corresponding
point of the infinitely near curve produced by
a certain determinate modification of the first curve.[11] It
is moreover clear, that the relative variations of different
magnitudes connected with each other by any laws
whatever are calculated, all but the characteristic, almost
exactly in the same manner as the differentials. Finally,
from the general notion of variations are in like manner
deduced the fundamental principles of the algorithm
proper to this method, consisting simply in the evidently
permissible liberty of transposing at will the characteristics
specially appropriated to variations, before or after
those which correspond to the ordinary differentials.

This abstract conception having been once formed, Lagrange
was able to reduce with ease, and in the most
general manner, all the problems of Isoperimeters to the
simple ordinary theory of maxima and minima. To obtain
a clear idea of this great and happy transformation,
we must previously consider an essential distinction which
arises in the different questions of isoperimeters.

Two Classes of Questions. These investigations
must, in fact, be divided into two general classes, according
as the maxima and minima demanded are absolute
or relative, to employ the abridged expressions of
geometers.

Questions of the first Class. The first case is that
in which the indeterminate definite integrals, the maximum
or minimum of which is sought, are not subjected,
by the nature of the problem, to any condition; as happens,
for example, in the problem of the brachystochrone,
in which the choice is to be made between all imaginable
curves. The second case takes place when, on the
contrary, the variable integrals can vary only according
to certain conditions, which usually consist in other definite
integrals (which depend, in like manner, upon the
required functions) always retaining the same given value;
as, for example, in all the geometrical questions relating
to real isoperimetrical figures, and in which, by
the nature of the problem, the integral relating to the
length of the curve, or to the area of the surface, must
remain constant during the variation of that integral
which is the object of the proposed investigation.

The Calculus of Variations gives immediately the
general solution of questions of the former class; for it
evidently follows, from the ordinary theory of maxima
and minima, that the required relation must reduce to
zero the variation of the proposed integral with reference
to each independent variable; which gives the condition
common to both the maximum and the minimum: and,
as a characteristic for distinguishing the one from the
other, that the variation of the second order of the same
integral must be negative for the maximum and positive
for the minimum. Thus, for example, in the problem
of the brachystochrone, we will have, in order to determine
the nature of the curve sought, the equation of
condition


δ∫_{z_{2}}z_{1}√([1 + (f'(z))2 + (π'(z))2]/(2gz))dz = 0,



which, being decomposed into two, with respect to the
two unknown functions f and π, which are independent
of each other, will completely express the analytical
definition of the required curve. The only difficulty
peculiar to this new analysis consists in the elimination
of the characteristic δ, for which the calculus of variations
furnishes invariable and complete rules, founded, in
general, on the method of "integration by parts," from
which Lagrange has thus derived immense advantage.
The constant object of this first analytical elaboration
(which this is not the place for treating in detail) is to
arrive at real differential equations, which can always
be done; and thereby the question comes under the ordinary
transcendental analysis, which furnishes the solution,
at least so far as to reduce it to pure algebra if
the integration can be effected. The general object of
the method of variations is to effect this transformation,
for which Lagrange has established rules, which are simple,
invariable, and certain of success.

Equations of Limits. Among the greatest special
advantages of the method of variations, compared with
the previous isolated solutions of isoperimetrical problems,
is the important consideration of what Lagrange
calls Equations of Limits, which were entirely neglected
before him, though without them the greater part of
the particular solutions remained necessarily incomplete.
When the limits of the proposed integrals are to be fixed,
their variations being zero, there is no occasion for
noticing them. But it is no longer so when these limits,
instead of being rigorously invariable, are only subjected
to certain conditions; as, for example, if the two points
between which the required curve is to be traced are
not fixed, and have only to remain upon given lines or
surfaces. Then it is necessary to pay attention to the
variation of their co-ordinates, and to establish between
them the relations which correspond to the equations of
these lines or of these surfaces.

A more general consideration. This essential consideration
is only the final complement of a more general
and more important consideration relative to the
variations of different independent variables. If these
variables are really independent of one another, as when
we compare together all the imaginable curves susceptible
of being traced between two points, it will be the
same with their variations, and, consequently, the terms
relating to each of these variations will have to be separately
equal to zero in the general equation which expresses
the maximum or the minimum. But if, on the
contrary, we suppose the variables to be subjected to any
fixed conditions, it will be necessary to take notice of the
resulting relation between their variations, so that the
number of the equations into which this general equation
is then decomposed is always equal to only the
number of the variables which remain truly independent.
It is thus, for example, that instead of seeking
for the shortest path between any two points, in choosing
it from among all possible ones, it may be proposed to
find only what is the shortest among all those which
may be taken on any given surface; a question the general
solution of which forms certainly one of the most
beautiful applications of the method of variations.

Questions of the second Class. Problems in which
such modifying conditions are considered approach very
nearly, in their nature, to the second general class of
applications of the method of variations, characterized
above as consisting in the investigation of relative maxima
and minima. There is, however, this essential difference
between the two cases, that in this last the
modification is expressed by an integral which depends
upon the function sought, while in the other it is designated
by a finite equation which is immediately given.
It is hence apparent that the investigation of relative
maxima and minima is constantly and necessarily more
complicated than that of absolute maxima and minima.
Luckily, a very important general theory, discovered by
the genius of the great Euler before the invention of
the Calculus of Variations, gives a uniform and very
simple means of making one of these two classes of
questions dependent on the other. It consists in this,
that if we add to the integral which is to be a maximum
or a minimum, a constant and indeterminate multiple
of that one which, by the nature of the problem, is to
remain constant, it will be sufficient to seek, by the general
method of Lagrange above indicated, the absolute
maximum or minimum of this whole expression. It
can be easily conceived, indeed, that the part of the complete
variation which would proceed from the last integral
must be equal to zero (because of the constant
character of this last) as well as the portion due to the
first integral, which disappears by virtue of the maximum
or minimum state. These two conditions evidently
unite to produce, in that respect, effects exactly
alike.

Such is a sketch of the general manner in which the
method of variation is applied to all the different questions
which compose what is called the Theory of Isoperimeters.
It will undoubtedly have been remarked in
this summary exposition how much use has been made
in this new analysis of the second fundamental property
of the transcendental analysis noticed in the third chapter,
namely, the generality of the infinitesimal expressions
for the representation of the same geometrical or
mechanical phenomenon, in whatever body it may be
considered. Upon this generality, indeed, are founded,
by their nature, all the solutions due to the method of
variations. If a single formula could not express the
length or the area of any curve whatever; if another
fixed formula could not designate the time of the fall of
a heavy body, according to whatever line it may descend,
&c., how would it have been possible to resolve
questions which unavoidably require, by their nature, the
simultaneous consideration of all the cases which can be
determined in each phenomenon by the different subjects
which exhibit it.

Other Applications of this Method. Notwithstanding
the extreme importance of the theory of isoperimeters,
and though the method of variations had at first no
other object than the logical and general solution of this
order of problems, we should still have but an incomplete
idea of this beautiful analysis if we limited its
destination to this. In fact, the abstract conception of
two distinct natures of differentiation is evidently applicable
not only to the cases for which it was created, but
also to all those which present, for any reason whatever,
two different manners of making the same magnitudes
vary. It is in this way that Lagrange himself has made,
in his "Méchanique Analytique," an extensive and important
application of his calculus of variations, by employing
it to distinguish the two sorts of changes which
are naturally presented by the questions of rational mechanics
for the different points which are considered, according
as we compare the successive positions which
are occupied, in virtue of its motion, by the same point
of each body in two consecutive instants, or as we pass
from one point of the body to another in the same instant.
One of these comparisons produces ordinary differentials;
the other gives rise to variations, which, there as every
where, are only differentials taken under a new point of
view. Such is the general acceptation in which we
should conceive the Calculus of Variations, in order suitably
to appreciate the importance of this admirable logical
instrument, the most powerful that the human mind
has as yet constructed.

The method of variations being only an immense extension
of the general transcendental analysis, I have no
need of proving specially that it is susceptible of being
considered under the different fundamental points of view
which the calculus of indirect functions, considered as a
whole, admits of. Lagrange invented the Calculus of
Variations in accordance with the infinitesimal conception,
and, indeed, long before he undertook the general reconstruction
of the transcendental analysis. When he
had executed this important reformation, he easily showed
how it could also be applied to the Calculus of Variations,
which he expounded with all the proper development,
according to his theory of derivative functions.
But the more that the use of the method of variations is
difficult of comprehension, because of the higher degree
of abstraction of the ideas considered, the more necessary
is it, in its application, to economize the exertions of the
mind, by adopting the most direct and rapid analytical
conception, namely, that of Leibnitz. Accordingly, Lagrange
himself has constantly preferred it in the important
use which he has made of the Calculus of Variations
in his "Analytical Mechanics." In fact, there does
not exist the least hesitation in this respect among geometers.

ITS RELATIONS TO THE ORDINARY CALCULUS.

In order to make as clear as possible the philosophical
character of the Calculus of Variations, I think that I
should, in conclusion, briefly indicate a consideration
which seems to me important, and by which I can approach
it to the ordinary transcendental analysis in a
higher degree than Lagrange seems to me to have done.[12]

We noticed in the preceding chapter the formation of
the calculus of partial differences, created by D'Alembert,
as having introduced into the transcendental analysis
a new elementary idea; the notion of two kinds of
increments, distinct and independent of one another,
which a function of two variables may receive by virtue
of the change of each variable separately. It is thus
that the vertical ordinate of a surface, or any other magnitude
which is referred to it, varies in two manners
which are quite distinct, and which may follow the most
different laws, according as we increase either the one
or the other of the two horizontal co-ordinates. Now
such a consideration seems to me very nearly allied, by
its nature, to that which serves as the general basis of
the method of variations. This last, indeed, has in reality
done nothing but transfer to the independent variables
themselves the peculiar conception which had been
already adopted for the functions of these variables; a
modification which has remarkably enlarged its use. I
think, therefore, that so far as regards merely the fundamental
conceptions, we may consider the calculus created
by D'Alembert as having established a natural and necessary
transition between the ordinary infinitesimal calculus
and the calculus of variations; such a derivation
of which seems to be adapted to make the general notion
more clear and simple.



According to the different considerations indicated in
this chapter, the method of variations presents itself as
the highest degree of perfection which the analysis of indirect
functions has yet attained. In its primitive state,
this last analysis presented itself as a powerful general
means of facilitating the mathematical study of natural
phenomena, by introducing, for the expression of their
laws, the consideration of auxiliary magnitudes, chosen
in such a manner that their relations are necessarily more
simple and more easy to obtain than those of the direct
magnitudes. But the formation of these differential
equations was not supposed to admit of any general and
abstract rules. Now the Analysis of Variations, considered
in the most philosophical point of view, may be
regarded as essentially destined, by its nature, to bring
within the reach of the calculus the actual establishment
of the differential equations; for, in a great number of
important and difficult questions, such is the general effect
of the varied equations, which, still more indirect
than the simple differential equations with respect to the
special objects of the investigation, are also much more
easy to form, and from which we may then, by invariable
and complete analytical methods, the object of which
is to eliminate the new order of auxiliary infinitesimals
which have been introduced, deduce those ordinary differential
equations which it would often have been impossible
to establish directly. The method of variations
forms, then, the most sublime part of that vast system
of mathematical analysis, which, setting out from the
most simple elements of algebra, organizes, by an uninterrupted
succession of ideas, general methods more and
more powerful, for the study of natural philosophy, and
which, in its whole, presents the most incomparably imposing
and unequivocal monument of the power of the
human intellect.

We must, however, also admit that the conceptions
which are habitually considered in the method of variations
being, by their nature, more indirect, more general,
and especially more abstract than all others, the
employment of such a method exacts necessarily and
continuously the highest known degree of intellectual
exertion, in order never to lose sight of the precise object
of the investigation, in following reasonings which
offer to the mind such uncertain resting-places, and in
which signs are of scarcely any assistance. We must
undoubtedly attribute in a great degree to this difficulty
the little real use which geometers, with the exception
of Lagrange, have as yet made of such an admirable
conception.



CHAPTER VI.

THE CALCULUS OF FINITE DIFFERENCES.

The different fundamental considerations indicated in
the five preceding chapters constitute, in reality, all the
essential bases of a complete exposition of mathematical
analysis, regarded in the philosophical point of view.
Nevertheless, in order not to neglect any truly important
general conception relating to this analysis, I think
that I should here very summarily explain the veritable
character of a kind of calculus which is very extended,
and which, though at bottom it really belongs to ordinary
analysis, is still regarded as being of an essentially
distinct nature. I refer to the Calculus of Finite Differences,
which will be the special subject of this chapter.

Its general Character. This calculus, created by
Taylor, in his celebrated work entitled Methodus Incrementorum,
consists essentially in the consideration of the
finite increments which functions receive as a consequence
of analogous increments on the part of the corresponding
variables. These increments or differences,
which take the characteristic Δ, to distinguish them from
differentials, or infinitely small increments, may be in
their turn regarded as new functions, and become the
subject of a second similar consideration, and so on; from
which results the notion of differences of various successive
orders, analogous, at least in appearance, to the
consecutive orders of differentials. Such a calculus evidently
presents, like the calculus of indirect functions,
two general classes of questions:

1°. To determine the successive differences of all the
various analytical functions of one or more variables, as
the result of a definite manner of increase of the independent
variables, which are generally supposed to augment
in arithmetical progression.

2°. Reciprocally, to start from these differences, or,
more generally, from any equations established between
them, and go back to the primitive functions themselves,
or to their corresponding relations.

Hence follows the decomposition of this calculus into
two distinct ones, to which are usually given the names
of the Direct, and the Inverse Calculus of Finite Differences,
the latter being also sometimes called the Integral
Calculus of Finite Differences. Each of these would,
also, evidently admit of a logical distribution similar to
that given in the fourth chapter for the differential and
the integral calculus.

Its true Nature. There is no doubt that Taylor
thought that by such a conception he had founded a calculus
of an entirely new nature, absolutely distinct from
ordinary analysis, and more general than the calculus of
Leibnitz, although resting on an analogous consideration.
It is in this way, also, that almost all geometers have
viewed the analysis of Taylor; but Lagrange, with his
usual profundity, clearly perceived that these properties
belonged much more to the forms and to the notations
employed by Taylor than to the substance of his theory.
In fact, that which constitutes the peculiar character of
the analysis of Leibnitz, and makes of it a truly distinct
and superior calculus, is the circumstance that the derived
functions are in general of an entirely different nature
from the primitive functions, so that they may give
rise to more simple and more easily formed relations:
whence result the admirable fundamental properties of
the transcendental analysis, which have been already explained.
But it is not so with the differences considered
by Taylor; for these differences are, by their nature,
functions essentially similar to those which have produced
them, a circumstance which renders them unsuitable
to facilitate the establishment of equations, and
prevents their leading to more general relations. Every
equation of finite differences is truly, at bottom, an equation
directly relating to the very magnitudes whose successive
states are compared. The scaffolding of new
signs, which produce an illusion respecting the true character
of these equations, disguises it, however, in a very
imperfect manner, since it could always be easily made
apparent by replacing the differences by the equivalent
combinations of the primitive magnitudes, of which they
are really only the abridged designations. Thus the calculus
of Taylor never has offered, and never can offer, in
any question of geometry or of mechanics, that powerful
general aid which we have seen to result necessarily
from the analysis of Leibnitz. Lagrange has, moreover,
very clearly proven that the pretended analogy observed
between the calculus of differences and the infinitesimal
calculus was radically vicious, in this way, that the formulas
belonging to the former calculus can never furnish,
as particular cases, those which belong to the latter,
the nature of which is essentially distinct.

From these considerations I am led to think that the
calculus of finite differences is, in general, improperly
classed with the transcendental analysis proper, that is,
with the calculus of indirect functions. I consider it, on
the contrary, in accordance with the views of Lagrange,
to be only a very extensive and very important branch
of ordinary analysis, that is to say, of that which I
have named the calculus of direct functions, the equations
which it considers being always, in spite of the
notation, simple direct equations.

GENERAL THEORY OF SERIES.

To sum up as briefly as possible the preceding explanation,
the calculus of Taylor ought to be regarded
as having constantly for its true object the general theory
of Series, the most simple cases of which had alone
been considered before that illustrious geometer. I
ought, properly, to have mentioned this important theory
in treating, in the second chapter, of Algebra proper,
of which it is such an extensive branch. But, in order
to avoid a double reference to it, I have preferred to notice
it only in the consideration of the calculus of finite
differences, which, reduced to its most simple general
expression, is nothing but a complete logical study of
questions relating to series.

Every Series, or succession of numbers deduced from
one another according to any constant law, necessarily
gives rise to these two fundamental questions:

1°. The law of the series being supposed known, to
find the expression for its general term, so as to be able
to calculate immediately any term whatever without being
obliged to form successively all the preceding terms.

2°. In the same circumstances, to determine the sum
of any number of terms of the series by means of their
places, so that it can be known without the necessity
of continually adding these terms together.

These two fundamental questions being considered to
be resolved, it may be proposed, reciprocally, to find the
law of a series from the form of its general term, or the
expression of the sum. Each of these different problems
has so much the more extent and difficulty, as there
can be conceived a greater number of different laws for
the series, according to the number of preceding terms
on which each term directly depends, and according to
the function which expresses that dependence. We may
even consider series with several variable indices, as Laplace
has done in his "Analytical Theory of Probabilities,"
by the analysis to which he has given the name
of Theory of Generating Functions, although it is really
only a new and higher branch of the calculus of finite
differences or of the general theory of series.

These general views which I have indicated give only
an imperfect idea of the truly infinite extent and variety
of the questions to which geometers have risen by means
of this single consideration of series, so simple in appearance
and so limited in its origin. It necessarily
presents as many different cases as the algebraic resolution
of equations, considered in its whole extent; and it
is, by its nature, much more complicated, so much, indeed,
that it always needs this last to conduct it to a complete
solution. We may, therefore, anticipate what must
still be its extreme imperfection, in spite of the successive
labours of several geometers of the first order. We do
not, indeed, possess as yet the complete and logical solution
of any but the most simple questions of this nature.


Its identity with this Calculus. It is now easy to
conceive the necessary and perfect identity, which has
been already announced, between the calculus of finite
differences and the theory of series considered in all its
bearings. In fact, every differentiation after the manner
of Taylor evidently amounts to finding the law of
formation of a series with one or with several variable
indices, from the expression of its general term; in the
same way, every analogous integration may be regarded
as having for its object the summation of a series, the
general term of which would be expressed by the proposed
difference. In this point of view, the various problems
of the calculus of differences, direct or inverse, resolved
by Taylor and his successors, have really a very
great value, as treating of important questions relating
to series. But it is very doubtful if the form and the
notation introduced by Taylor really give any essential
facility in the solution of questions of this kind. It
would be, perhaps, more advantageous for most cases, and
certainly more logical, to replace the differences by the
terms themselves, certain combinations of which they
represent. As the calculus of Taylor does not rest on
a truly distinct fundamental idea, and has nothing peculiar
to it but its system of signs, there could never really
be any important advantage in considering it as detached
from ordinary analysis, of which it is, in reality, only an
immense branch. This consideration of differences, most
generally useless, even if it does not cause complication,
seems to me to retain the character of an epoch in which,
analytical ideas not being sufficiently familiar to geometers,
they were naturally led to prefer the special forms
suitable for simple numerical comparisons.



PERIODIC OR DISCONTINUOUS FUNCTIONS.

However that may be, I must not finish this general
appreciation of the calculus of finite differences without
noticing a new conception to which it has given birth, and
which has since acquired a great importance. It is the
consideration of those periodic or discontinuous functions
which preserve the same value for an infinite series of
values of the corresponding variables, subjected to a certain
law, and which must be necessarily added to the integrals
of the equations of finite differences in order to
render them sufficiently general, as simple arbitrary constants
are added to all quadratures in order to complete
their generality. This idea, primitively introduced by
Euler, has since been the subject of extended investigation
by M. Fourier, who has made new and important
applications of it in his mathematical theory of heat.

APPLICATIONS OF THIS CALCULUS.

Series. Among the principal general applications
which have been made of the calculus of finite differences,
it would be proper to place in the first rank, as the
most extended and the most important, the solution of
questions relating to series; if, as has been shown, the
general theory of series ought not to be considered as constituting,
by its nature, the actual foundation of the calculus
of Taylor.

Interpolations. This great class of problems being
then set aside, the most essential of the veritable applications
of the analysis of Taylor is, undoubtedly, thus
far, the general method of interpolations, so frequently
and so usefully employed in the investigation of the empirical
laws of natural phenomena. The question consists,
as is well known, in intercalating between certain given
numbers other intermediate numbers, subjected to the
same law which we suppose to exist between the first.
We can abundantly verify, in this principal application
of the calculus of Taylor, how truly foreign and often inconvenient
is the consideration of differences with respect
to the questions which depend on that analysis. Indeed,
Lagrange has replaced the formulas of interpolation, deduced
from the ordinary algorithm of the calculus of
finite differences, by much simpler general formulas,
which are now almost always preferred, and which have
been found directly, without making any use of the notion
of differences, which only complicates the question.

Approximate Rectification, &c. A last important
class of applications of the calculus of finite differences,
which deserves to be distinguished from the preceding,
consists in the eminently useful employment made of it
in geometry for determining by approximation the length
and the area of any curve, and in the same way the cubature
of a body of any form whatever. This procedure
(which may besides be conceived abstractly as depending
on the same analytical investigation as the question of
interpolation) frequently offers a valuable supplement to
the entirely logical geometrical methods which often lead
to integrations, which we do not yet know how to effect,
or to calculations of very complicated execution.






Such are the various principal considerations to be
noticed with respect to the calculus of finite differences.
This examination completes the proposed philosophical
outline of abstract Mathematics.

Concrete Mathematics will now be the subject of a
similar labour. In it we shall particularly devote ourselves
to examining how it has been possible (supposing
the general science of the calculus to be perfect), by invariable
procedures, to reduce to pure questions of analysis
all the problems which can be presented by Geometry and
Mechanics, and thus to impress on these two fundamental
bases of natural philosophy a degree of precision and especially
of unity; in a word, a character of high perfection,
which could be communicated to them by such a
course alone.

BOOK II.

GEOMETRY.
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CHAPTER I.

GENERAL VIEW OF GEOMETRY.

Its true Nature. After the general exposition of the
philosophical character of concrete mathematics, compared
with that of abstract mathematics, given in the introductory
chapter, it need not here be shown in a special
manner that geometry must be considered as a true natural
science, only much more simple, and therefore much
more perfect, than any other. This necessary perfection
of geometry, obtained essentially by the application of
mathematical analysis, which it so eminently admits, is
apt to produce erroneous views of the real nature of this
fundamental science, which most minds at present conceive
to be a purely logical science quite independent of
observation. It is nevertheless evident, to any one who
examines with attention the character of geometrical reasonings,
even in the present state of abstract geometry,
that, although the facts which are considered in it are
much more closely united than those relating to any other
science, still there always exists, with respect to every
body studied by geometers, a certain number of primitive
phenomena, which, since they are not established by any
reasoning, must be founded on observation alone, and
which form the necessary basis of all the deductions.

The scientific superiority of geometry arises from the
phenomena which it considers being necessarily the most
universal and the most simple of all. Not only may all
the bodies of nature give rise to geometrical inquiries, as
well as mechanical ones, but still farther, geometrical
phenomena would still exist, even though all the parts
of the universe should be considered as immovable. Geometry
is then, by its nature, more general than mechanics.
At the same time, its phenomena are more simple,
for they are evidently independent of mechanical phenomena,
while these latter are always complicated with the
former. The same relations hold good in comparing
geometry with abstract thermology.

For these reasons, in our classification we have made
geometry the first part of concrete mathematics; that
part the study of which, in addition to its own importance,
serves as the indispensable basis of all the rest.

Before considering directly the philosophical study of
the different orders of inquiries which constitute our
present geometry, we should obtain a clear and exact
idea of the general destination of that science, viewed in
all its bearings. Such is the object of this chapter.

Definition. Geometry is commonly defined in a very
vague and entirely improper manner, as being the science
of extension. An improvement on this would be to say
that geometry has for its object the measurement of extension;
but such an explanation would be very insufficient,
although at bottom correct, and would be far from
giving any idea of the true general character of geometrical
science.


To do this, I think that I should first explain two fundamental
ideas, which, very simple in themselves, have
been singularly obscured by the employment of metaphysical
considerations.

The Idea of Space. The first is that of Space.
This conception properly consists simply in this, that, instead
of considering extension in the bodies themselves,
we view it in an indefinite medium, which we regard as
containing all the bodies of the universe. This notion is
naturally suggested to us by observation, when we think
of the impression which a body would leave in a fluid in
which it had been placed. It is clear, in fact, that, as regards
its geometrical relations, such an impression may
be substituted for the body itself, without altering the
reasonings respecting it. As to the physical nature of
this indefinite space, we are spontaneously led to represent
it to ourselves, as being entirely analogous to the
actual medium in which we live; so that if this medium
was liquid instead of gaseous, our geometrical space
would undoubtedly be conceived as liquid also. This
circumstance is, moreover, only very secondary, the essential
object of such a conception being only to make
us view extension separately from the bodies which manifest
it to us. We can easily understand in advance the
importance of this fundamental image, since it permits
us to study geometrical phenomena in themselves, abstraction
being made of all the other phenomena which
constantly accompany them in real bodies, without, however,
exerting any influence over them. The regular establishment
of this general abstraction must be regarded
as the first step which has been made in the rational
study of geometry, which would have been impossible if
it had been necessary to consider, together with the form
and the magnitude of bodies, all their other physical
properties. The use of such an hypothesis, which is
perhaps the most ancient philosophical conception created
by the human mind, has now become so familiar to
us, that we have difficulty in exactly estimating its importance,
by trying to appreciate the consequences which
would result from its suppression.

Different Kinds of Extension. The second preliminary
geometrical conception which we have to examine
is that of the different kinds of extension, designated by
the words volume, surface, line, and even point, and of
which the ordinary explanation is so unsatisfactory.[13]

Although it is evidently impossible to conceive any extension
absolutely deprived of any one of the three fundamental
dimensions, it is no less incontestable that, in
a great number of occasions, even of immediate utility,
geometrical questions depend on only two dimensions,
considered separately from the third, or on a single dimension,
considered separately from the two others. Again,
independently of this direct motive, the study of extension
with a single dimension, and afterwards with two,
clearly presents itself as an indispensable preliminary for
facilitating the study of complete bodies of three dimensions,
the immediate theory of which would be too complicated.
Such are the two general motives which oblige
geometers to consider separately extension with regard to
one or to two dimensions, as well as relatively to all three
together.

The general notions of surface and of line have been
formed by the human mind, in order that it may be able
to think, in a permanent manner, of extension in two
directions, or in one only. The hyperbolical expressions
habitually employed by geometers to define these notions
tend to convey false ideas of them; but, examined in
themselves, they have no other object than to permit us
to reason with facility respecting these two kinds of extension,
making complete abstraction of that which ought
not to be taken into consideration. Now for this it is
sufficient to conceive the dimension which we wish to
eliminate as becoming gradually smaller and smaller,
the two others remaining the same, until it arrives at
such a degree of tenuity that it can no longer fix the attention.
It is thus that we naturally acquire the real
idea of a surface, and, by a second analogous operation,
the idea of a line, by repeating for breadth what we had
at first done for thickness. Finally, if we again repeat
the same operation, we arrive at the idea of a point, or
of an extension considered only with reference to its
place, abstraction being made of all magnitude, and designed
consequently to determine positions.

Surfaces evidently have, moreover, the general property
of exactly circumscribing volumes; and in the same
way, lines, in their turn, circumscribe surfaces and are
limited by points. But this consideration, to which too
much importance is often given, is only a secondary
one.


Surfaces and lines are, then, in reality, always conceived
with three dimensions; it would be, in fact, impossible
to represent to one's self a surface otherwise than
as an extremely thin plate, and a line otherwise than as
an infinitely fine thread. It is even plain that the degree
of tenuity attributed by each individual to the dimensions
of which he wishes to make abstraction is not
constantly identical, for it must depend on the degree of
subtilty of his habitual geometrical observations. This
want of uniformity has, besides, no real inconvenience,
since it is sufficient, in order that the ideas of surface
and of line should satisfy the essential condition of their
destination, for each one to represent to himself the dimensions
which are to be neglected as being smaller than
all those whose magnitude his daily experience gives him
occasion to appreciate.

We hence see how devoid of all meaning are the fantastic
discussions of metaphysicians upon the foundations
of geometry. It should also be remarked that these primordial
ideas are habitually presented by geometers in
an unphilosophical manner, since, for example, they explain
the notions of the different sorts of extent in an
order absolutely the inverse of their natural dependence,
which often produces the most serious inconveniences in
elementary instruction.

THE FINAL OBJECT OF GEOMETRY.

These preliminaries being established, we can proceed
directly to the general definition of geometry, continuing
to conceive this science as having for its final object the
measurement of extension.

It is necessary in this matter to go into a thorough
explanation, founded on the distinction of the three kinds
of extension, since the notion of measurement is not exactly
the same with reference to surfaces and volumes
as to lines.

Nature of Geometrical Measurement. If we take the
word measurement in its direct and general mathematical
acceptation, which signifies simply the determination
of the value of the ratios between any homogeneous
magnitudes, we must consider, in geometry, that the
measurement of surfaces and of volumes, unlike that of
lines, is never conceived, even in the most simple and the
most favourable cases, as being effected directly. The
comparison of two lines is regarded as direct; that of
two surfaces or of two volumes is, on the contrary, always
indirect. Thus we conceive that two lines may
be superposed; but the superposition of two surfaces, or,
still more so, of two volumes, is evidently impossible in
most cases; and, even when it becomes rigorously practicable,
such a comparison is never either convenient or
exact. It is, then, very necessary to explain wherein
properly consists the truly geometrical measurement of
a surface or of a volume.

Measurement of Surfaces and of Volumes. For this
we must consider that, whatever may be the form of a
body, there always exists a certain number of lines, more
or less easy to be assigned, the length of which is sufficient
to define exactly the magnitude of its surface or of
its volume. Geometry, regarding these lines as alone
susceptible of being directly measured, proposes to deduce,
from the simple determination of them, the ratio of the
surface or of the volume sought, to the unity of surface,
or to the unity of volume. Thus the general object of
geometry, with respect to surfaces and to volumes, is
properly to reduce all comparisons of surfaces or of volumes
to simple comparisons of lines.

Besides the very great facility which such a transformation
evidently offers for the measurement of volumes
and of surfaces, there results from it, in considering it
in a more extended and more scientific manner, the general
possibility of reducing to questions of lines all questions
relating to volumes and to surfaces, considered with
reference to their magnitude. Such is often the most
important use of the geometrical expressions which determine
surfaces and volumes in functions of the corresponding
lines.

It is true that direct comparisons between surfaces or
between volumes are sometimes employed; but such
measurements are not regarded as geometrical, but only
as a supplement sometimes necessary, although too rarely
applicable, to the insufficiency or to the difficulty of
truly rational methods. It is thus that we often determine
the volume of a body, and in certain cases its surface,
by means of its weight. In the same way, on other
occasions, when we can substitute for the proposed volume
an equivalent liquid volume, we establish directly
the comparison of the two volumes, by profiting by the
property possessed by liquid masses, of assuming any desired
form. But all means of this nature are purely mechanical,
and rational geometry necessarily rejects them.

To render more sensible the difference between these
modes of determination and true geometrical measurements,
I will cite a single very remarkable example; the
manner in which Galileo determined the ratio of the ordinary
cycloid to that of the generating circle. The
geometry of his time was as yet insufficient for the rational
solution of such a problem. Galileo conceived
the idea of discovering that ratio by a direct experiment.
Having weighed as exactly as possible two plates of the
same material and of equal thickness, one of them having
the form of a circle and the other that of the generated
cycloid, he found the weight of the latter always
triple that of the former; whence he inferred that the
area of the cycloid is triple that of the generating circle,
a result agreeing with the veritable solution subsequently
obtained by Pascal and Wallis. Such a success evidently
depends on the extreme simplicity of the ratio
sought; and we can understand the necessary insufficiency
of such expedients, even when they are actually practicable.

We see clearly, from what precedes, the nature of that
part of geometry relating to volumes and that relating to
surfaces. But the character of the geometry of lines is
not so apparent, since, in order to simplify the exposition,
we have considered the measurement of lines as being
made directly. There is, therefore, needed a complementary
explanation with respect to them.

Measurement of curved Lines. For this purpose, it
is sufficient to distinguish between the right line and
curved lines, the measurement of the first being alone
regarded as direct, and that of the other as always indirect.
Although superposition is sometimes strictly practicable
for curved lines, it is nevertheless evident that
truly rational geometry must necessarily reject it, as
not admitting of any precision, even when it is possible.
The geometry of lines has, then, for its general object, to
reduce in every case the measurement of curved lines to
that of right lines; and consequently, in the most extended
point of view, to reduce to simple questions of
right lines all questions relating to the magnitude of any
curves whatever. To understand the possibility of such
a transformation, we must remark, that in every curve
there always exist certain right lines, the length of which
must be sufficient to determine that of the curve. Thus,
in a circle, it is evident that from the length of the radius
we must be able to deduce that of the circumference;
in the same way, the length of an ellipse depends
on that of its two axes; the length of a cycloid upon the
diameter of the generating circle, &c.; and if, instead
of considering the whole of each curve, we demand, more
generally, the length of any arc, it will be sufficient to
add to the different rectilinear parameters, which determine
the whole curve, the chord of the proposed arc, or
the co-ordinates of its extremities. To discover the relation
which exists between the length of a curved line
and that of similar right lines, is the general problem of
the part of geometry which relates to the study of lines.

Combining this consideration with those previously
suggested with respect to volumes and to surfaces, we
may form a very clear idea of the science of geometry,
conceived in all its parts, by assigning to it, for its general
object, the final reduction of the comparisons of all
kinds of extent, volumes, surfaces, or lines, to simple comparisons
of right lines, the only comparisons regarded as
capable of being made directly, and which indeed could
not be reduced to any others more easy to effect. Such
a conception, at the same time, indicates clearly the veritable
character of geometry, and seems suited to show
at a single glance its utility and its perfection.


Measurement of right Lines. In order to complete
this fundamental explanation, I have yet to show how
there can be, in geometry, a special section relating to
the right line, which seems at first incompatible with the
principle that the measurement of this class of lines must
always be regarded as direct.

It is so, in fact, as compared with that of curved lines,
and of all the other objects which geometry considers.
But it is evident that the estimation of a right line cannot
be viewed as direct except so far as the linear unit can
be applied to it. Now this often presents insurmountable
difficulties, as I had occasion to show, for another
reason, in the introductory chapter. We must, then,
make the measurement of the proposed right line depend
on other analogous measurements capable of being effected
directly. There is, then, necessarily a primary distinct
branch of geometry, exclusively devoted to the right
line; its object is to determine certain right lines from
others by means of the relations belonging to the figures
resulting from their assemblage. This preliminary part
of geometry, which is almost imperceptible in viewing
the whole of the science, is nevertheless susceptible of a
great development. It is evidently of especial importance,
since all other geometrical measurements are referred
to those of right lines, and if they could not be determined,
the solution of every question would remain
unfinished.

Such, then, are the various fundamental parts of rational
geometry, arranged according to their natural dependence;
the geometry of lines being first considered,
beginning with the right line; then the geometry of surfaces,
and, finally, that of solids.



INFINITE EXTENT OF ITS FIELD.

Having determined with precision the general and
final object of geometrical inquiries, the science must
now be considered with respect to the field embraced by
each of its three fundamental sections.

Thus considered, geometry is evidently susceptible,
by its nature, of an extension which is rigorously infinite;
for the measurement of lines, of surfaces, or
of volumes presents necessarily as many distinct questions
as we can conceive different figures subjected to
exact definitions; and their number is evidently infinite.

Geometers limited themselves at first to consider the
most simple figures which were directly furnished them
by nature, or which were deduced from these primitive
elements by the least complicated combinations. But
they have perceived, since Descartes, that, in order to constitute
the science in the most philosophical manner, it
was necessary to make it apply to all imaginable figures.
This abstract geometry will then inevitably comprehend
as particular cases all the different real figures which
the exterior world could present. It is then a fundamental
principle in truly rational geometry to consider, as
far as possible, all figures which can be rigorously conceived.

The most superficial examination is enough to convince
us that these figures present a variety which is
quite infinite.

Infinity of Lines. With respect to curved lines, regarding
them as generated by the motion of a point governed
by a certain law, it is plain that we shall have, in
general, as many different curves as we conceive different
laws for this motion, which may evidently be determined
by an infinity of distinct conditions; although it
may sometimes accidentally happen that new generations
produce curves which have been already obtained. Thus,
among plane curves, if a point moves so as to remain constantly
at the same distance from a fixed point, it will
generate a circle; if it is the sum or the difference of
its distances from two fixed points which remains constant,
the curve described will be an ellipse or an hyperbola;
if it is their product, we shall have an entirely different
curve; if the point departs equally from a fixed
point and from a fixed line, it will describe a parabola;
if it revolves on a circle at the same time that this circle
rolls along a straight line, we shall have a cycloid;
if it advances along a straight line, while this line, fixed
at one of its extremities, turns in any manner whatever,
there will result what in general terms are called spirals,
which of themselves evidently present as many
perfectly distinct curves as we can suppose different relations
between these two motions of translation and of
rotation, &c. Each of these different curves may then
furnish new ones, by the different general constructions
which geometers have imagined, and which give rise to
evolutes, to epicycloids, to caustics, &c. Finally, there
exists a still greater variety among curves of double curvature.

Infinity of Surfaces. As to surfaces, the figures are
necessarily more different still, considering them as generated
by the motion of lines. Indeed, the figure may
then vary, not only in considering, as in curves, the different
infinitely numerous laws to which the motion of
the generating line may be subjected, but also in supposing
that this line itself may change its nature; a circumstance
which has nothing analogous in curves, since
the points which describe them cannot have any distinct
figure. Two classes of very different conditions may
then cause the figures of surfaces to vary, while there
exists only one for lines. It is useless to cite examples
of this doubly infinite multiplicity of surfaces. It would
be sufficient to consider the extreme variety of the single
group of surfaces which may be generated by a right line,
and which comprehends the whole family of cylindrical
surfaces, that of conical surfaces, the most general class
of developable surfaces, &c.

Infinity of Volumes. With respect to volumes, there
is no occasion for any special consideration, since they are
distinguished from each other only by the surfaces which
bound them.

In order to complete this sketch, it should be added
that surfaces themselves furnish a new general means of
conceiving new curves, since every curve may be regarded
as produced by the intersection of two surfaces. It
is in this way, indeed, that the first lines which we may
regard as having been truly invented by geometers were
obtained, since nature gave directly the straight line and
the circle. We know that the ellipse, the parabola, and
the hyperbola, the only curves completely studied by the
ancients, were in their origin conceived only as resulting
from the intersection of a cone with circular base by
a plane in different positions. It is evident that, by the
combined employment of these different general means
for the formation of lines and of surfaces, we could produce
a rigorously infinitely series of distinct forms in
starting from only a very small number of figures directly
furnished by observation.

Analytical invention of Curves, &c. Finally, all
the various direct means for the invention of figures
have scarcely any farther importance, since rational geometry
has assumed its final character in the hands of
Descartes. Indeed, as we shall see more fully in chapter
iii., the invention of figures is now reduced to the
invention of equations, so that nothing is more easy than
to conceive new lines and new surfaces, by changing at
will the functions introduced into the equations. This
simple abstract procedure is, in this respect, infinitely
more fruitful than all the direct resources of geometry, developed
by the most powerful imagination, which should
devote itself exclusively to that order of conceptions. It
also explains, in the most general and the most striking
manner, the necessarily infinite variety of geometrical
forms, which thus corresponds to the diversity of analytical
functions. Lastly, it shows no less clearly that the
different forms of surfaces must be still more numerous
than those of lines, since lines are represented analytically
by equations with two variables, while surfaces give
rise to equations with three variables, which necessarily
present a greater diversity.

The preceding considerations are sufficient to show
clearly the rigorously infinite extent of each of the three
general sections of geometry.

EXPANSION OF ORIGINAL DEFINITION.

To complete the formation of an exact and sufficiently
extended idea of the nature of geometrical inquiries,
it is now indispensable to return to the general definition
above given, in order to present it under a new point of
view, without which the complete science would be only
very imperfectly conceived.

When we assign as the object of geometry the measurement
of all sorts of lines, surfaces, and volumes, that
is, as has been explained, the reduction of all geometrical
comparisons to simple comparisons of right lines, we
have evidently the advantage of indicating a general destination
very precise and very easy to comprehend. But
if we set aside every definition, and examine the actual
composition of the science of geometry, we will at first
be induced to regard the preceding definition as much
too narrow; for it is certain that the greater part of the
investigations which constitute our present geometry do
not at all appear to have for their object the measurement
of extension. In spite of this fundamental objection,
I will persist in retaining this definition; for, in
fact, if, instead of confining ourselves to considering the
different questions of geometry isolatedly, we endeavour
to grasp the leading questions, in comparison with which
all others, however important they may be, must be regarded
as only secondary, we will finally recognize that
the measurement of lines, of surfaces, and of volumes, is
the invariable object, sometimes direct, though most often
indirect, of all geometrical labours.

This general proposition being fundamental, since it
can alone give our definition all its value, it is indispensable
to enter into some developments upon this subject.



PROPERTIES OF LINES AND SURFACES.

When we examine with attention the geometrical investigations
which do not seem to relate to the measurement
of extent, we find that they consist essentially in
the study of the different properties of each line or of each
surface; that is, in the knowledge of the different modes
of generation, or at least of definition, peculiar to each
figure considered. Now we can easily establish in the
most general manner the necessary relation of such a
study to the question of measurement, for which the
most complete knowledge of the properties of each form
is an indispensable preliminary. This is concurrently
proven by two considerations, equally fundamental, although
quite distinct in their nature.

Necessity of their Study: 1. To find the most suitable
Property. The first, purely scientific, consists in
remarking that, if we did not know any other characteristic
property of each line or surface than that one according
to which geometers had first conceived it, in
most cases it would be impossible to succeed in the solution
of questions relating to its measurement. In fact,
it is easy to understand that the different definitions
which each figure admits of are not all equally suitable
for such an object, and that they even present the most
complete oppositions in that respect. Besides, since the
primitive definition of each figure was evidently not chosen
with this condition in view, it is clear that we must
not expect, in general, to find it the most suitable;
whence results the necessity of discovering others, that
is, of studying as far as is possible the properties of the
proposed figure. Let us suppose, for example, that the
circle is defined to be "the curve which, with the same
contour, contains the greatest area." This is certainly
a very characteristic property, but we would evidently
find insurmountable difficulties in trying to deduce from
such a starting point the solution of the fundamental
questions relating to the rectification or to the quadrature
of this curve. It is clear, in advance, that the
property of having all its points equally distant from a
fixed point must evidently be much better adapted to
inquiries of this nature, even though it be not precisely
the most suitable. In like manner, would Archimedes
ever have been able to discover the quadrature of the
parabola if he had known no other property of that curve
than that it was the section of a cone with a circular
base, by a plane parallel to its generatrix? The purely
speculative labours of preceding geometers, in transforming
this first definition, were evidently indispensable
preliminaries to the direct solution of such a question.
The same is true, in a still greater degree, with respect
to surfaces. To form a just idea of this, we need only
compare, as to the question of cubature or quadrature,
the common definition of the sphere with that one, no
less characteristic certainly, which would consist in regarding
a spherical body, as that one which, with the
same area, contains the greatest volume.

No more examples are needed to show the necessity
of knowing, so far as is possible, all the properties of each
line or of each surface, in order to facilitate the investigation
of rectifications, of quadratures, and of cubatures,
which constitutes the final object of geometry. We may
even say that the principal difficulty of questions of this
kind consists in employing in each case the property which
is best adapted to the nature of the proposed problem.
Thus, while we continue to indicate, for more precision,
the measurement of extension as the general destination
of geometry, this first consideration, which goes to the
very bottom of the subject, shows clearly the necessity
of including in it the study, as thorough as possible, of
the different generations or definitions belonging to the
same form.

2. To pass from the Concrete to the Abstract. A
second consideration, of at least equal importance, consists
in such a study being indispensable for organizing
in a rational manner the relation of the abstract to the
concrete in geometry.

The science of geometry having to consider all imaginable
figures which admit of an exact definition, it necessarily
results from this, as we have remarked, that
questions relating to any figures presented by nature
are always implicitly comprised in this abstract geometry,
supposed to have attained its perfection. But when
it is necessary to actually pass to concrete geometry, we
constantly meet with a fundamental difficulty, that of
knowing to which of the different abstract types we are
to refer, with sufficient approximation, the real lines or
surfaces which we have to study. Now it is for the
purpose of establishing such a relation that it is particularly
indispensable to know the greatest possible number
of properties of each figure considered in geometry.

In fact, if we always confined ourselves to the single
primitive definition of a line or of a surface, supposing
even that we could then measure it (which, according to
the first order of considerations, would generally be impossible),
this knowledge would remain almost necessarily
barren in the application, since we should not ordinarily
know how to recognize that figure in nature when
it presented itself there; to ensure that, it would be necessary
that the single characteristic, according to which
geometers had conceived it, should be precisely that one
whose verification external circumstances would admit:
a coincidence which would be purely fortuitous, and on
which we could not count, although it might sometimes
take place. It is, then, only by multiplying as much as
possible the characteristic properties of each abstract figure,
that we can be assured, in advance, of recognizing
it in the concrete state, and of thus turning to account
all our rational labours, by verifying in each case the definition
which is susceptible of being directly proven. This
definition is almost always the only one in given circumstances,
and varies, on the other hand, for the same
figure, with different circumstances; a double reason for
its previous determination.

Illustration: Orbits of the Planets. The geometry
of the heavens furnishes us with a very memorable example
in this matter, well suited to show the general necessity
of such a study. We know that the ellipse was
discovered by Kepler to be the curve which the planets
describe about the sun, and the satellites about their
planets. Now would this fundamental discovery, which
re-created astronomy, ever have been possible, if geometers
had been always confined to conceiving the ellipse
only as the oblique section of a circular cone by a
plane? No such definition, it is evident, would admit
of such a verification. The most general property of the
ellipse, that the sum of the distances from any of its points
to two fixed points is a constant quantity, is undoubtedly
much more susceptible, by its nature, of causing the
curve to be recognized in this case, but still is not directly
suitable. The only characteristic which can here
be immediately verified is that which is derived from the
relation which exists in the ellipse between the length of
the focal distances and their direction; the only relation
which admits of an astronomical interpretation, as expressing
the law which connects the distance from the
planet to the sun, with the time elapsed since the beginning
of its revolution. It was, then, necessary that the
purely speculative labours of the Greek geometers on the
properties of the conic sections should have previously
presented their generation under a multitude of different
points of view, before Kepler could thus pass from the
abstract to the concrete, in choosing from among all these
different characteristics that one which could be most
easily proven for the planetary orbits.

Illustration: Figure of the Earth. Another example
of the same order, but relating to surfaces, occurs in
considering the important question of the figure of the
earth. If we had never known any other property of the
sphere than its primitive character of having all its points
equally distant from an interior point, how would we ever
have been able to discover that the surface of the earth
was spherical? For this, it was necessary previously to
deduce from this definition of the sphere some properties
capable of being verified by observations made upon the
surface alone, such as the constant ratio which exists between
the length of the path traversed in the direction
of any meridian of a sphere going towards a pole, and
the angular height of this pole above the horizon at each
point. Another example, but involving a much longer
series of preliminary speculations, is the subsequent proof
that the earth is not rigorously spherical, but that its
form is that of an ellipsoid of revolution.

After such examples, it would be needless to give any
others, which any one besides may easily multiply. All
of them prove that, without a very extended knowledge
of the different properties of each figure, the relation of
the abstract to the concrete, in geometry, would be purely
accidental, and that the science would consequently want
one of its most essential foundations.

Such, then, are two general considerations which fully
demonstrate the necessity of introducing into geometry a
great number of investigations which have not the measurement
of extension for their direct object; while we
continue, however, to conceive such a measurement as
being the final destination of all geometrical science. In
this way we can retain the philosophical advantages of
the clearness and precision of this definition, and still include
in it, in a very logical though indirect manner, all
known geometrical researches, in considering those which
do not seem to relate to the measurement of extension,
as intended either to prepare for the solution of the final
questions, or to render possible the application of the solutions
obtained.

Having thus recognized, as a general principle, the close
and necessary connexion of the study of the properties of
lines and surfaces with those researches which constitute
the final object of geometry, it is evident that geometers,
in the progress of their labours, must by no means constrain
themselves to keep such a connexion always in
view. Knowing, once for all, how important it is to
vary as much as possible the manner of conceiving each
figure, they should pursue that study, without considering
of what immediate use such or such a special property
may be for rectifications, quadratures, and cubatures.
They would uselessly fetter their inquiries by attaching
a puerile importance to the continued establishment of
that co-ordination.

This general exposition of the general object of geometry
is so much the more indispensable, since, by the very
nature of the subject, this study of the different properties
of each line and of each surface necessarily composes
by far the greater part of the whole body of geometrical
researches. Indeed, the questions directly relating to rectifications,
to quadratures, and to cubatures, are evidently,
by themselves, very few in number for each figure considered.
On the other hand, the study of the properties
of the same figure presents an unlimited field to the activity
of the human mind, in which it may always hope
to make new discoveries. Thus, although geometers have
occupied themselves for twenty centuries, with more or
less activity undoubtedly, but without any real interruption,
in the study of the conic sections, they are far from
regarding that so simple subject as being exhausted; and
it is certain, indeed, that in continuing to devote themselves
to it, they would not fail to find still unknown
properties of those different curves. If labours of this
kind have slackened considerably for a century past, it
is not because they are completed, but only, as will be
presently explained, because the philosophical revolution
in geometry, brought about by Descartes, has singularly
diminished the importance of such researches.

It results from the preceding considerations that not
only is the field of geometry necessarily infinite because
of the variety of figures to be considered, but also in virtue
of the diversity of the points of view under the same
figure may be regarded. This last conception is, indeed,
that which gives the broadest and most complete idea of
the whole body of geometrical researches. We see that
studies of this kind consist essentially, for each line or for
each surface, in connecting all the geometrical phenomena
which it can present, with a single fundamental phenomenon,
regarded as the primitive definition.

THE TWO GENERAL METHODS OF GEOMETRY.

Having now explained in a general and yet precise
manner the final object of geometry, and shown how the
science, thus defined, comprehends a very extensive class
of researches which did not at first appear necessarily to
belong to it, there remains to be considered the method
to be followed for the formation of this science. This
discussion is indispensable to complete this first sketch
of the philosophical character of geometry. I shall here
confine myself to indicating the most general consideration
in this matter, developing and summing up this important
fundamental idea in the following chapters.

Geometrical questions may be treated according to
two methods so different, that there result from them two
sorts of geometry, so to say, the philosophical character
of which does not seem to me to have yet been properly
apprehended. The expressions of Synthetical Geometry
and Analytical Geometry, habitually employed to designate
them, give a very false idea of them. I would much
prefer the purely historical denominations of Geometry of
the Ancients and Geometry of the Moderns, which have
at least the advantage of not causing their true character
to be misunderstood. But I propose to employ henceforth
the regular expressions of Special Geometry and
General Geometry, which seem to me suited to characterize
with precision the veritable nature of the two
methods.

Their fundamental Difference. The fundamental
difference between the manner in which we conceive
Geometry since Descartes, and the manner in which the
geometers of antiquity treated geometrical questions, is
not the use of the Calculus (or Algebra), as is commonly
thought to be the case. On the one hand, it is certain
that the use of the calculus was not entirely unknown
to the ancient geometers, since they used to make continual
and very extensive applications of the theory of
proportions, which was for them, as a means of deduction,
a sort of real, though very imperfect and especially
extremely limited equivalent for our present algebra.
The calculus may even be employed in a much more
complete manner than they have used it, in order to obtain
certain geometrical solutions, which will still retain
all the essential character of the ancient geometry; this
occurs very frequently with respect to those problems of
geometry of two or of three dimensions, which are commonly
designated under the name of determinate. On
the other hand, important as is the influence of the calculus
in our modern geometry, various solutions obtained
without algebra may sometimes manifest the peculiar
character which distinguishes it from the ancient geometry,
although analysis is generally indispensable. I will
cite, as an example, the method of Roberval for tangents,
the nature of which is essentially modern, and which,
however, leads in certain cases to complete solutions,
without any aid from the calculus. It is not, then, the
instrument of deduction employed which is the principal
distinction between the two courses which the human
mind can take in geometry.

The real fundamental difference, as yet imperfectly
apprehended, seems to me to consist in the very nature
of the questions considered. In truth, geometry, viewed
as a whole, and supposed to have attained entire perfection,
must, as we have seen on the one hand, embrace
all imaginable figures, and, on the other, discover
all the properties of each figure. It admits, from this
double consideration, of being treated according to two
essentially distinct plans; either, 1°, by grouping together
all the questions, however different they may be,
which relate to the same figure, and isolating those relating
to different bodies, whatever analogy there may
exist between them; or, 2°, on the contrary, by uniting
under one point of view all similar inquiries, to whatever
different figures they may relate, and separating the
questions relating to the really different properties of the
same body. In a word, the whole body of geometry
may be essentially arranged either with reference to the
bodies studied or to the phenomena to be considered.
The first plan, which is the most natural, was that of
the ancients; the second, infinitely more rational, is that
of the moderns since Descartes.

Geometry of the Ancients. Indeed, the principal characteristics
of the ancient geometry is that they studied,
one by one, the different lines and the different surfaces,
not passing to the examination of a new figure till they
thought they had exhausted all that there was interesting
in the figures already known. In this way of proceeding,
when they undertook the study of a new curve,
the whole of the labour bestowed on the preceding ones
could not offer directly any essential assistance, otherwise
than by the geometrical practice to which it had
trained the mind. Whatever might be the real similarity
of the questions proposed as to two different figures,
the complete knowledge acquired for the one could not
at all dispense with taking up again the whole of the investigation
for the other. Thus the progress of the mind
was never assured; so that they could not be certain, in
advance, of obtaining any solution whatever, however
analogous the proposed problem might be to questions
which had been already resolved. Thus, for example,
the determination of the tangents to the three conic sections
did not furnish any rational assistance for drawing
the tangent to any other new curve, such as the conchoid,
the cissoid, &c. In a word, the geometry of the
ancients was, according to the expression proposed above,
essentially special.

Geometry of the Moderns. In the system of the
moderns, geometry is, on the contrary, eminently general,
that is to say, relating to any figures whatever. It
is easy to understand, in the first place, that all geometrical
expressions of any interest may be proposed with
reference to all imaginable figures. This is seen directly
in the fundamental problems—of rectifications, quadratures,
and cubatures—which constitute, as has been
shown, the final object of geometry. But this remark
is no less incontestable, even for investigations which relate
to the different properties of lines and of surfaces,
and of which the most essential, such as the question of
tangents or of tangent planes, the theory of curvatures,
&c., are evidently common to all figures whatever. The
very few investigations which are truly peculiar to particular
figures have only an extremely secondary importance.
This being understood, modern geometry consists
essentially in abstracting, in order to treat it by itself,
in an entirely general manner, every question relating
to the same geometrical phenomenon, in whatever
bodies it may be considered. The application of the
universal theories thus constructed to the special determination
of the phenomenon which is treated of in each
particular body, is now regarded as only a subaltern labour,
to be executed according to invariable rules, and
the success of which is certain in advance. This labour
is, in a word, of the same character as the numerical calculation
of an analytical formula. There can be no other
merit in it than that of presenting in each case the solution
which is necessarily furnished by the general
method, with all the simplicity and elegance which the
line or the surface considered can admit of. But no real
importance is attached to any thing but the conception
and the complete solution of a new question belonging
to any figure whatever. Labours of this kind are alone
regarded as producing any real advance in science. The
attention of geometers, thus relieved from the examination
of the peculiarities of different figures, and wholly
directed towards general questions, has been thereby able
to elevate itself to the consideration of new geometrical
conceptions, which, applied to the curves studied by the
ancients, have led to the discovery of important properties
which they had not before even suspected. Such is
geometry, since the radical revolution produced by Descartes
in the general system of the science.


The Superiority of the modern Geometry. The mere
indication of the fundamental character of each of the
two geometries is undoubtedly sufficient to make apparent
the immense necessary superiority of modern geometry.
We may even say that, before the great conception
of Descartes, rational geometry was not truly constituted
upon definitive bases, whether in its abstract or
concrete relations. In fact, as regards science, considered
speculatively, it is clear that, in continuing indefinitely
to follow the course of the ancients, as did the
moderns before Descartes, and even for a little while afterwards,
by adding some new curves to the small number
of those which they had studied, the progress thus
made, however rapid it might have been, would still be
found, after a long series of ages, to be very inconsiderable
in comparison with the general system of geometry,
seeing the infinite variety of the forms which would still
have remained to be studied. On the contrary, at each
question resolved according to the method of the moderns,
the number of geometrical problems to be resolved
is then, once for all, diminished by so much with respect
to all possible bodies. Another consideration is, that it
resulted, from their complete want of general methods,
that the ancient geometers, in all their investigations,
were entirely abandoned to their own strength, without
ever having the certainty of obtaining, sooner or later,
any solution whatever. Though this imperfection of the
science was eminently suited to call forth all their admirable
sagacity, it necessarily rendered their progress
extremely slow; we can form some idea of this by the
considerable time which they employed in the study of
the conic sections. Modern geometry, making the progress
of our mind certain, permits us, on the contrary, to
make the greatest possible use of the forces of our intelligence,
which the ancients were often obliged to waste
on very unimportant questions.

A no less important difference between the two systems
appears when we come to consider geometry in the
concrete point of view. Indeed, we have already remarked
that the relation of the abstract to the concrete
in geometry can be founded upon rational bases only so
far as the investigations are made to bear directly upon
all imaginable figures. In studying lines, only one by
one, whatever may be the number, always necessarily
very small, of those which we shall have considered, the
application of such theories to figures really existing in
nature will never have any other than an essentially
accidental character, since there is nothing to assure us
that these figures can really be brought under the abstract
types considered by geometers.

Thus, for example, there is certainly something fortuitous
in the happy relation established between the
speculations of the Greek geometers upon the conic sections
and the determination of the true planetary orbits.
In continuing geometrical researches upon the same plan,
there was no good reason for hoping for similar coincidences;
and it would have been possible, in these special
studies, that the researches of geometers should have
been directed to abstract figures entirely incapable of any
application, while they neglected others, susceptible perhaps
of an important and immediate application. It is
clear, at least, that nothing positively guaranteed the
necessary applicability of geometrical speculations. It
is quite another thing in the modern geometry. From
the single circumstance that in it we proceed by general
questions relating to any figures whatever, we have in
advance the evident certainty that the figures really existing
in the external world could in no case escape the
appropriate theory if the geometrical phenomenon which
it considers presents itself in them.

From these different considerations, we see that the
ancient system of geometry wears essentially the character
of the infancy of the science, which did not begin
to become completely rational till after the philosophical
resolution produced by Descartes. But it is evident, on
the other hand, that geometry could not be at first conceived
except in this special manner. General geometry
would not have been possible, and its necessity could
not even have been felt, if a long series of special labours
on the most simple figures had not previously furnished
bases for the conception of Descartes, and rendered apparent
the impossibility of persisting indefinitely in the
primitive geometrical philosophy.

The Ancient the Base of the Modern. From this last
consideration we must infer that, although the geometry
which I have called general must be now regarded as
the only true dogmatical geometry, and that to which
we shall chiefly confine ourselves, the other having no
longer much more than an historical interest, nevertheless
it is not possible to entirely dispense with special geometry
in a rational exposition of the science. We undoubtedly
need not borrow directly from ancient geometry
all the results which it has furnished; but, from the
very nature of the subject, it is necessarily impossible entirely
to dispense with the ancient method, which will
always serve as the preliminary basis of the science, dogmatically
as well as historically. The reason of this is
easy to understand. In fact, general geometry being
essentially founded, as we shall soon establish, upon the
employment of the calculus in the transformation of geometrical
into analytical considerations, such a manner of
proceeding could not take possession of the subject immediately
at its origin. We know that the application
of mathematical analysis, from its nature, can never commence
any science whatever, since evidently it cannot
be employed until the science has already been sufficiently
cultivated to establish, with respect to the phenomena
considered, some equations which can serve as starting
points for the analytical operations. These fundamental
equations being once discovered, analysis will enable us
to deduce from them a multitude of consequences which
it would have been previously impossible even to suspect;
it will perfect the science to an immense degree,
both with respect to the generality of its conceptions and
to the complete co-ordination established between them.
But mere mathematical analysis could never be sufficient
to form the bases of any natural science, not even to demonstrate
them anew when they have once been established.
Nothing can dispense with the direct study of
the subject, pursued up to the point of the discovery of
precise relations.

We thus see that the geometry of the ancients will
always have, by its nature, a primary part, absolutely necessary
and more or less extensive, in the complete system
of geometrical knowledge. It forms a rigorously
indispensable introduction to general geometry. But it
is to this that it must be limited in a completely dogmatic
exposition. I will consider, then, directly, in the
following chapter, this special or preliminary geometry
restricted to exactly its necessary limits, in order to occupy
myself thenceforth only with the philosophical examination
of general or definitive geometry, the only one
which is truly rational, and which at present essentially
composes the science.



CHAPTER II.

ANCIENT OR SYNTHETIC GEOMETRY.

The geometrical method of the ancients necessarily
constituting a preliminary department in the dogmatical
system of geometry, designed to furnish general geometry
with indispensable foundations, it is now proper to
begin with determining wherein strictly consists this preliminary
function of special geometry, thus reduced to
the narrowest possible limits.

ITS PROPER EXTENT.

Lines; Polygons; Polyhedrons. In considering it
under this point of view, it is easy to recognize that we
might restrict it to the study of the right line alone for
what concerns the geometry of lines; to the quadrature
of rectilinear plane areas; and, lastly, to the cubature of
bodies terminated by plane faces. The elementary propositions
relating to these three fundamental questions
form, in fact, the necessary starting point of all geometrical
inquiries; they alone cannot be obtained except by
a direct study of the subject; while, on the contrary,
the complete theory of all other figures, even that of the
circle, and of the surfaces and volumes which are connected
with it, may at the present day be completely
comprehended in the domain of general or analytical
geometry; these primitive elements at once furnishing
equations which are sufficient to allow of the application
of the calculus to geometrical questions, which would not
have been possible without this previous condition.

It results from this consideration that, in common practice,
we give to elementary geometry more extent than
would be rigorously necessary to it; since, besides the
right line, polygons, and polyhedrons, we also include in
it the circle and the "round" bodies; the study of which
might, however, be as purely analytical as that, for example,
of the conic sections. An unreflecting veneration
for antiquity contributes to maintain this defect in method;
but the best reason which can be given for it is the
serious inconvenience for ordinary instruction which there
would be in postponing, to so distant an epoch of mathematical
education, the solution of several essential questions,
which are susceptible of a direct and continual application
to a great number of important uses. In fact,
to proceed in the most rational manner, we should employ
the integral calculus in obtaining the interesting
results relating to the length or the area of the circle, or
to the quadrature of the sphere, &c., which have been
determined by the ancients from extremely simple considerations.
This inconvenience would be of little importance
with regard to the persons destined to study
the whole of mathematical science, and the advantage
of proceeding in a perfectly logical order would have a
much greater comparative value. But the contrary case
being the more frequent, theories so essential have necessarily
been retained in elementary geometry. Perhaps
the conic sections, the cycloid, &c., might be advantageously
added in such cases.

Not to be farther restricted. While this preliminary
portion of geometry, which cannot be founded on the application
of the calculus, is reduced by its nature to a
very limited series of fundamental researches, relating to
the right line, polygonal areas, and polyhedrons, it is certain,
on the other hand, that we cannot restrict it any
more; although, by a veritable abuse of the spirit of
analysis, it has been recently attempted to present the
establishment of the principal theorems of elementary geometry
under an algebraical point of view. Thus some
have pretended to demonstrate, by simple abstract considerations
of mathematical analysis, the constant relation
which exists between the three angles of a rectilinear
triangle, the fundamental proposition of the theory
of similar triangles, that of parallelopipedons, &c.; in a
word, precisely the only geometrical propositions which
cannot be obtained except by a direct study of the subject,
without the calculus being susceptible of having
any part in it. Such aberrations are the unreflecting
exaggerations of that natural and philosophical tendency
which leads us to extend farther and farther the influence
of analysis in mathematical studies. In mechanics,
the pretended analytical demonstrations of the parallelogram
of forces are of similar character.

The viciousness of such a manner of proceeding follows
from the principles previously presented. We have already,
in fact, recognized that, since the calculus is not,
and cannot be, any thing but a means of deduction, it
would indicate a radically false idea of it to wish to
employ it in establishing the elementary foundations of
any science whatever; for on what would the analytical
reasonings in such an operation repose? A labour of this
nature, very far from really perfecting the philosophical
character of a science, would constitute a return towards
the metaphysical age, in presenting real facts as mere
logical abstractions.

When we examine in themselves these pretended analytical
demonstrations of the fundamental propositions
of elementary geometry, we easily verify their necessary
want of meaning. They are all founded on a vicious
manner of conceiving the principle of homogeneity, the
true general idea of which was explained in the second
chapter of the preceding book. These demonstrations
suppose that this principle does not allow us to admit the
coexistence in the same equation of numbers obtained by
different concrete comparisons, which is evidently false,
and contrary to the constant practice of geometers. Thus
it is easy to recognize that, by employing the law of homogeneity
in this arbitrary and illegitimate acceptation,
we could succeed in "demonstrating," with quite as much
apparent rigour, propositions whose absurdity is manifest
at the first glance. In examining attentively, for example,
the procedure by the aid of which it has been attempted
to prove analytically that the sum of the three
angles of any rectilinear triangle is constantly equal to
two right angles, we see that it is founded on this preliminary
principle that, if two triangles have two of their
angles respectively equal, the third angle of the one will
necessarily be equal to the third angle of the other. This
first point being granted, the proposed relation is immediately
deduced from it in a very exact and simple manner.
Now the analytical consideration by which this
previous proposition has been attempted to be established,
is of such a nature that, if it could be correct, we
could rigorously deduce from it, in reproducing it conversely,
this palpable absurdity, that two sides of a triangle
are sufficient, without any angle, for the entire determination
of the third side. We may make analogous
remarks on all the demonstrations of this sort, the sophisms
of which will be thus verified in a perfectly apparent
manner.

The more reason that we have here to consider geometry
as being at the present day essentially analytical, the
more necessary was it to guard against this abusive exaggeration
of mathematical analysis, according to which
all geometrical observation would be dispensed with, in
establishing upon pure algebraical abstractions the very
foundations of this natural science.

Attempted Demonstrations of Axioms, &c. Another
indication that geometers have too much overlooked the
character of a natural science which is necessarily inherent
in geometry, appears from their vain attempts, so
long made, to demonstrate rigorously, not by the aid of
the calculus, but by means of certain constructions, several
fundamental propositions of elementary geometry.
Whatever may be effected, it will evidently be impossible
to avoid sometimes recurring to simple and direct observation
in geometry as a means of establishing various
results. While, in this science, the phenomena
which are considered are, by virtue of their extreme simplicity,
much more closely connected with one another
than those relating to any other physical science, some
must still be found which cannot be deduced, and which,
on the contrary, serve as starting points. It may be
admitted that the greatest logical perfection of the science
is to reduce these to the smallest number possible,
but it would be absurd to pretend to make them completely
disappear. I avow, moreover, that I find fewer
real inconveniences in extending, a little beyond what
would be strictly necessary, the number of these geometrical
notions thus established by direct observation,
provided they are sufficiently simple, than in making
them the subjects of complicated and indirect demonstrations,
even when these demonstrations may be logically
irreproachable.

The true dogmatic destination of the geometry of the
ancients, reduced to its least possible indispensable developments,
having thus been characterized as exactly as
possible, it is proper to consider summarily each of the
principal parts of which it must be composed. I think
that I may here limit myself to considering the first and
the most extensive of these parts, that which has for its
object the study of the right line; the two other sections,
namely, the quadrature of polygons and the cubature
of polyhedrons, from their limited extent, not being capable
of giving rise to any philosophical consideration of
any importance, distinct from those indicated in the preceding
chapter with respect to the measure of areas and
of volumes in general.

GEOMETRY OF THE RIGHT LINE.

The final question which we always have in view in
the study of the right line, properly consists in determining,
by means of one another, the different elements
of any right-lined figure whatever; which enables us
always to know indirectly the length and position of a
right line, in whatever circumstances it may be placed.
This fundamental problem is susceptible of two general
solutions, the nature of which is quite distinct, the one
graphical, the other algebraic. The first, though very
imperfect, is that which must be first considered, because
it is spontaneously derived from the direct study
of the subject; the second, much more perfect in the
most important respects, cannot be studied till afterwards,
because it is founded upon the previous knowledge
of the other.

GRAPHICAL SOLUTIONS.

The graphical solution consists in constructing at will
the proposed figure, either with the same dimensions, or,
more usually, with dimensions changed in any ratio whatever.
The first mode need merely be mentioned as being
the most simple and the one which would first occur
to the mind, for it is evidently, by its nature, almost entirely
incapable of application. The second is, on the
contrary, susceptible of being most extensively and most
usefully applied. We still make an important and continual
use of it at the present day, not only to represent
with exactness the forms of bodies and their relative positions,
but even for the actual determination of geometrical
magnitudes, when we do not need great precision.
The ancients, in consequence of the imperfection of their
geometrical knowledge, employed this procedure in a
much more extensive manner, since it was for a long time
the only one which they could apply, even in the most
important precise determinations. It was thus, for example,
that Aristarchus of Samos estimated the relative distance
from the sun and from the moon to the earth, by
making measurements on a triangle constructed as exactly
as possible, so as to be similar to the right-angled
triangle formed by the three bodies at the instant when
the moon is in quadrature, and when an observation of
the angle at the earth would consequently be sufficient to
define the triangle. Archimedes himself, although he was
the first to introduce calculated determinations into geometry,
several times employed similar means. The
formation of trigonometry did not cause this method to
be entirely abandoned, although it greatly diminished its
use; the Greeks and the Arabians continued to employ
it for a great number of researches, in which we now regard
the use of the calculus as indispensable.

This exact reproduction of any figure whatever on a
different scale cannot present any great theoretical difficulty
when all the parts of the proposed figure lie in the
same plane. But if we suppose, as most frequently happens,
that they are situated in different planes, we see,
then, a new order of geometrical considerations arise.
The artificial figure, which is constantly plane, not being
capable, in that case, of being a perfectly faithful image
of the real figure, it is necessary previously to fix with
precision the mode of representation, which gives rise to
different systems of Projection.

It then remains to be determined according to what
laws the geometrical phenomena correspond in the two
figures. This consideration generates a new series of
geometrical investigations, the final object of which is
properly to discover how we can replace constructions in
relief by plane constructions. The ancients had to resolve
several elementary questions of this kind for various
cases in which we now employ spherical trigonometry,
principally for different problems relating to the celestial
sphere. Such was the object of their analemmas,
and of the other plane figures which for a long time supplied
the place of the calculus. We see by this that the
ancients really knew the elements of what we now name
Descriptive Geometry, although they did not conceive it
in a distinct and general manner.

I think it proper briefly to indicate in this place the
true philosophical character of this "Descriptive Geometry;"
although, being essentially a science of application,
it ought not to be included within the proper domain of
this work.

DESCRIPTIVE GEOMETRY.

All questions of geometry of three dimensions necessarily
give rise, when we consider their graphical solution,
to a common difficulty which is peculiar to them;
that of substituting for the different constructions in relief,
which are necessary to resolve them directly, and
which it is almost always impossible to execute, simple
equivalent plane constructions, by means of which we
finally obtain the same results. Without this indispensable
transformation, every solution of this kind would be
evidently incomplete and really inapplicable in practice,
although theoretically the constructions in space are usually
preferable as being more direct. It was in order to
furnish general means for always effecting such a transformation
that Descriptive Geometry was created, and
formed into a distinct and homogeneous system, by the
illustrious Monge. He invented, in the first place, a uniform
method of representing bodies by figures traced on a
single plane, by the aid of projections on two different
planes, usually perpendicular to each other, and one of
which is supposed to turn about their common intersection
so as to coincide with the other produced; in this
system, or in any other equivalent to it, it is sufficient
to regard points and lines as being determined by their
projections, and surfaces by the projections of their generating
lines. This being established, Monge—analyzing
with profound sagacity the various partial labours of
this kind which had before been executed by a number
of incongruous procedures, and considering also, in a general
and direct manner, in what any questions of that
nature must consist—found that they could always be
reduced to a very small number of invariable abstract
problems, capable of being resolved separately, once for
all, by uniform operations, relating essentially some to
the contacts and others to the intersections of surfaces.
Simple and entirely general methods for the graphical
solution of these two orders of problems having been
formed, all the geometrical questions which may arise in
any of the various arts of construction—stone-cutting,
carpentry, perspective, dialling, fortification, &c.—can
henceforth be treated as simple particular cases of a single
theory, the invariable application of which will always
necessarily lead to an exact solution, which may
be facilitated in practice by profiting by the peculiar
circumstances of each case.





This important creation deserves in a remarkable degree
to fix the attention of those philosophers who consider
all that the human species has yet effected as a
first step, and thus far the only really complete one, towards
that general renovation of human labours, which
must imprint upon all our arts a character of precision
and of rationality, so necessary to their future progress.
Such a revolution must, in fact, inevitably commence
with that class of industrial labours, which is essentially
connected with that science which is the most simple,
the most perfect, and the most ancient. It cannot fail
to extend hereafter, though with less facility, to all other
practical operations. Indeed Monge himself, who conceived
the true philosophy of the arts better than any one
else, endeavoured to sketch out a corresponding system
for the mechanical arts.

Essential as the conception of descriptive geometry
really is, it is very important not to deceive ourselves
with respect to its true destination, as did those who,
in the excitement of its first discovery, saw in it a means
of enlarging the general and abstract domain of rational
geometry. The result has in no way answered to these
mistaken hopes. And, indeed, is it not evident that descriptive
geometry has no special value except as a science
of application, and as forming the true special theory of
the geometrical arts? Considered in its abstract relations,
it could not introduce any truly distinct order of
geometrical speculations. We must not forget that, in
order that a geometrical question should fall within the
peculiar domain of descriptive geometry, it must necessarily
have been previously resolved by speculative geometry,
the solutions of which then, as we have seen,
always need to be prepared for practice in such a way as
to supply the place of constructions in relief by plane
constructions; a substitution which really constitutes the
only characteristic function of descriptive geometry.

It is proper, however, to remark here, that, with regard
to intellectual education, the study of descriptive geometry
possesses an important philosophical peculiarity, quite
independent of its high industrial utility. This is the
advantage which it so pre-eminently offers—in habituating
the mind to consider very complicated geometrical
combinations in space, and to follow with precision their
continual correspondence with the figures which are actually
traced—of thus exercising to the utmost, in the
most certain and precise manner, that important faculty
of the human mind which is properly called "imagination,"
and which consists, in its elementary and positive
acceptation, in representing to ourselves, clearly and easily,
a vast and variable collection of ideal objects, as if
they were really before us.

Finally, to complete the indication of the general nature
of descriptive geometry by determining its logical
character, we have to observe that, while it belongs to
the geometry of the ancients by the character of its solutions,
on the other hand it approaches the geometry of
the moderns by the nature of the questions which compose
it. These questions are in fact eminently remarkable
for that generality which, as we saw in the preceding
chapter, constitutes the true fundamental character
of modern geometry; for the methods used are always
conceived as applicable to any figures whatever, the peculiarity
of each having only a purely secondary influence.
The solutions of descriptive geometry are then graphical,
like most of those of the ancients, and at the same time
general, like those of the moderns.





After this important digression, we will pursue the
philosophical examination of special geometry, always
considered as reduced to its least possible development,
as an indispensable introduction to general geometry.
We have now sufficiently considered the graphical solution
of the fundamental problem relating to the right line—that
is, the determination of the different elements of any
right-lined figure by means of one another—and have
now to examine in a special manner the algebraic solution.

ALGEBRAIC SOLUTIONS.

This kind of solution, the evident superiority of which
need not here be dwelt upon, belongs necessarily, by the
very nature of the question, to the system of the ancient
geometry, although the logical method which is employed
causes it to be generally, but very improperly, separated
from it. We have thus an opportunity of verifying, in
a very important respect, what was established generally
in the preceding chapter, that it is not by the employment
of the calculus that the modern geometry is essentially
to be distinguished from the ancient. The ancients
are in fact the true inventors of the present trigonometry,
spherical as well as rectilinear; it being only much
less perfect in their hands, on account of the extreme inferiority
of their algebraical knowledge. It is, then, really
in this chapter, and not, as it might at first be thought,
in those which we shall afterwards devote to the philosophical
examination of general geometry, that it is proper
to consider the character of this important preliminary
theory, which is usually, though improperly, included in
what is called analytical geometry, but which is really
only a complement of elementary geometry properly so
called.

Since all right-lined figures can be decomposed into
triangles, it is evidently sufficient to know how to determine
the different elements of a triangle by means of one
another, which reduces polygonometry to simple trigonometry.



TRIGONOMETRY.

The difficulty in resolving algebraically such a question
as the above, consists essentially in forming, between
the angles and the sides of a triangle, three distinct equations;
which, when once obtained, will evidently reduce all
trigonometrical problems to mere questions of analysis.

How to introduce Angles. In considering the establishment
of these equations in the most general manner,
we immediately meet with a fundamental distinction
with respect to the manner of introducing the angles
into the calculation, according as they are made to enter
directly, by themselves or by the circular arcs which are
proportional to them; or indirectly, by the chords of
these arcs, which are hence called their trigonometrical
lines. Of these two systems of trigonometry the second
was of necessity the only one originally adopted, as being
the only practicable one, since the condition of geometry
made it easy enough to find exact relations between the
sides of the triangles and the trigonometrical lines which
represent the angles, while it would have been absolutely
impossible at that epoch to establish equations between
the sides and the angles themselves.

Advantages of introducing Trigonometrical Lines.
At the present day, since the solution can be obtained by
either system indifferently, that motive for preference no
longer exists; but geometers have none the less persisted
in following from choice the system primitively admitted
from necessity; for, the same reason which enabled these
trigonometrical equations to be obtained with much more
facility, must, in like manner, as it is still more easy to
conceive à priori, render these equations much more simple,
since they then exist only between right lines, instead
of being established between right lines and arcs
of circles. Such a consideration has so much the more
importance, as the question relates to formulas which are
eminently elementary, and destined to be continually
employed in all parts of mathematical science, as well
as in all its various applications.

It may be objected, however, that when an angle is
given, it is, in reality, always given by itself, and not by
its trigonometrical lines; and that when it is unknown, it
is its angular value which is properly to be determined,
and not that of any of its trigonometrical lines. It seems,
according to this, that such lines are only useless intermediaries
between the sides and the angles, which have
to be finally eliminated, and the introduction of which
does not appear capable of simplifying the proposed research.
It is indeed important to explain, with more
generality and precision than is customary, the great real
utility of this manner of proceeding.

Division of Trigonometry into two Parts. It consists
in the fact that the introduction of these auxiliary
magnitudes divides the entire question of trigonometry
into two others essentially distinct, one of which has
for its object to pass from the angles to their trigonometrical
lines, or the converse, and the other of which
proposes to determine the sides of the triangles by the trigonometrical
lines of their angles, or the converse. Now
the first of these two fundamental questions is evidently
susceptible, by its nature, of being entirely treated and
reduced to numerical tables once for all, in considering
all possible angles, since it depends only upon those angles,
and not at all upon the particular triangles in which
they may enter in each case; while the solution of the
second question must necessarily be renewed, at least in
its arithmetical relations, for each new triangle which it
is necessary to resolve. This is the reason why the first
portion of the complete work, which would be precisely
the most laborious, is no longer taken into the account,
being always done in advance; while, if such a decomposition
had not been performed, we would evidently have
found ourselves under the obligation of recommencing
the entire calculation in each particular case. Such is
the essential property of the present trigonometrical system,
which in fact would really present no actual advantage,
if it was necessary to calculate continually the
trigonometrical line of each angle to be considered, or the
converse; the intermediate agency introduced would then
be more troublesome than convenient.

In order to clearly comprehend the true nature of this
conception, it will be useful to compare it with a still
more important one, designed to produce an analogous
effect either in its algebraic, or, still more, in its arithmetical
relations—the admirable theory of logarithms.
In examining in a philosophical manner the influence
of this theory, we see in fact that its general result is
to decompose all imaginable arithmetical operations into
two distinct parts. The first and most complicated of
these is capable of being executed in advance once for
all (since it depends only upon the numbers to be considered,
and not at all upon the infinitely different combinations
into which they can enter), and consists in considering
all numbers as assignable powers of a constant
number. The second part of the calculation, which must
of necessity be recommenced for each new formula which
is to have its value determined, is thenceforth reduced
to executing upon these exponents correlative operations
which are infinitely more simple. I confine myself here
to merely indicating this resemblance, which any one can
carry out for himself.

We must besides observe, as a property (secondary
at the present day, but all-important at its origin) of the
trigonometrical system adopted, the very remarkable circumstance
that the determination of angles by their trigonometrical
lines, or the converse, admits of an arithmetical
solution (the only one which is directly indispensable for
the special destination of trigonometry) without the previous
resolution of the corresponding algebraic question.
It is doubtless to such a peculiarity that the ancients
owed the possibility of knowing trigonometry. The investigation
conceived in this way was so much the more
easy, inasmuch as tables of chords (which the ancients
naturally took as the trigonometrical lines) had been previously
constructed for quite a different object, in the
course of the labours of Archimedes on the rectification
of the circle, from which resulted the actual determination
of a certain series of chords; so that when Hipparchus
subsequently invented trigonometry, he could
confine himself to completing that operation by suitable
intercalations; which shows clearly the connexion of ideas
in that matter.

The Increase of such Trigonometrical Lines. To
complete this philosophical sketch of trigonometry, it is
proper now to observe that the extension of the same considerations
which lead us to replace angles or arcs of circles
by straight lines, with the view of simplifying our
equations, must also lead us to employ concurrently several
trigonometrical lines, instead of confining ourselves
to one only (as did the ancients), so as to perfect this
system by choosing that one which will be algebraically
the most convenient on each occasion. In this point of
view, it is clear that the number of these lines is in itself
no ways limited; provided that they are determined by
the arc, and that they determine it, whatever may be the
law according to which they are derived from it, they are
suitable to be substituted for it in the equations. The
Arabians, and subsequently the moderns, in confining
themselves to the most simple constructions, have carried
to four or five the number of direct trigonometrical
lines, which might be extended much farther.

But instead of recurring to geometrical formations,
which would finally become very complicated, we conceive
with the utmost facility as many new trigonometrical
lines as the analytical transformations may require,
by means of a remarkable artifice, which is not
usually apprehended in a sufficiently general manner.
It consists in not directly multiplying the trigonometrical
lines appropriate to each arc considered, but in introducing
new ones, by considering this arc as indirectly
determined by all lines relating to an arc which is a very
simple function of the first. It is thus, for example, that,
in order to calculate an angle with more facility, we will
determine, instead of its sine, the sine of its half, or of
its double, &c. Such a creation of indirect trigonometrical
lines is evidently much more fruitful than all
the direct geometrical methods for obtaining new ones.
We may accordingly say that the number of trigonometrical
lines actually employed at the present day by
geometers is in reality unlimited, since at every instant,
so to say, the transformations of analysis may lead us to
augment it by the method which I have just indicated.
Special names, however, have been given to those only
of these indirect lines which refer to the complement of
the primitive arc, the others not occurring sufficiently
often to render such denominations necessary; a circumstance
which has caused a common misconception
of the true extent of the system of trigonometry.

Study of their Mutual Relations. This multiplicity
of trigonometrical lines evidently gives rise to a third
fundamental question in trigonometry, the study of the
relations which exist between these different lines; since,
without such a knowledge, we could not make use, for
our analytical necessities, of this variety of auxiliary
magnitudes, which, however, have no other destination.
It is clear, besides, from the consideration just indicated,
that this essential part of trigonometry, although simply
preparatory, is, by its nature, susceptible of an indefinite
extension when we view it in its entire generality, while
the two others are circumscribed within rigorously defined
limits.

It is needless to add that these three principal parts
of trigonometry have to be studied in precisely the inverse
order from that in which we have seen them necessarily
derived from the general nature of the subject;
for the third is evidently independent of the two others,
and the second, of that which was first presented—the
resolution of triangles, properly so called—which must
for that reason be treated in the last place; which rendered
so much the more important the consideration of
their natural succession and logical relations to one another.


It is useless to consider here separately spherical trigonometry,
which cannot give rise to any special philosophical
consideration; since, essential as it is by the importance
and the multiplicity of its uses, it can be treated
at the present day only as a simple application of rectilinear
trigonometry, which furnishes directly its fundamental
equations, by substituting for the spherical triangle
the corresponding trihedral angle.

This summary exposition of the philosophy of trigonometry
has been here given in order to render apparent,
by an important example, that rigorous dependence and
those successive ramifications which are presented by
what are apparently the most simple questions of elementary
geometry.





Having thus examined the peculiar character of special
geometry reduced to its only dogmatic destination,
that of furnishing to general geometry an indispensable
preliminary basis, we have now to give all our attention
to the true science of geometry, considered as a whole,
in the most rational manner. For that purpose, it is
necessary to carefully examine the great original idea of
Descartes, upon which it is entirely founded. This will
be the object of the following chapter.

CHAPTER III.

MODERN OR ANALYTICAL GEOMETRY.

General (or Analytical) geometry being entirely
founded upon the transformation of geometrical considerations
into equivalent analytical considerations, we
must begin with examining directly and in a thorough
manner the beautiful conception by which Descartes has
established in a uniform manner the constant possibility
of such a co-relation. Besides its own extreme importance
as a means of highly perfecting geometrical science,
or, rather, of establishing the whole of it on rational
bases, the philosophical study of this admirable conception
must have so much the greater interest in our eyes
from its characterizing with perfect clearness the general
method to be employed in organizing the relations of the
abstract to the concrete in mathematics, by the analytical
representation of natural phenomena. There is no
conception, in the whole philosophy of mathematics
which better deserves to fix all our attention.

ANALYTICAL REPRESENTATION OF FIGURES.

In order to succeed in expressing all imaginable geometrical
phenomena by simple analytical relations, we
must evidently, in the first place, establish a general
method for representing analytically the subjects themselves
in which these phenomena are found, that is, the
lines or the surfaces to be considered. The subject being
thus habitually considered in a purely analytical
point of view, we see how it is thenceforth possible to
conceive in the same manner the various accidents of
which it is susceptible.

In order to organize the representation of geometrical
figures by analytical equations, we must previously surmount
a fundamental difficulty; that of reducing the
general elements of the various conceptions of geometry
to simply numerical ideas; in a word, that of substituting
in geometry pure considerations of quantity for all
considerations of quality.

Reduction of Figure to Position. For this purpose
let us observe, in the first place, that all geometrical
ideas relate necessarily to these three universal categories:
the magnitude, the figure, and the position of the
extensions to be considered. As to the first, there is
evidently no difficulty; it enters at once into the ideas
of numbers. With relation to the second, it must be
remarked that it will always admit of being reduced to
the third. For the figure of a body evidently results
from the mutual position of the different points of which
it is composed, so that the idea of position necessarily
comprehends that of figure, and every circumstance of
figure can be translated by a circumstance of position.
It is in this way, in fact, that the human mind has proceeded
in order to arrive at the analytical representation
of geometrical figures, their conception relating directly
only to positions. All the elementary difficulty is then
properly reduced to that of referring ideas of situation
to ideas of magnitude. Such is the direct destination
of the preliminary conception upon which Descartes has
established the general system of analytical geometry.


His philosophical labour, in this relation, has consisted
simply in the entire generalization of an elementary operation,
which we may regard as natural to the human mind,
since it is performed spontaneously, so to say, in all
minds, even the most uncultivated. Thus, when we
have to indicate the situation of an object without directly
pointing it out, the method which we always adopt,
and evidently the only one which can be employed, consists
in referring that object to others which are known,
by assigning the magnitude of the various geometrical
elements, by which we conceive it connected with the
known objects. These elements constitute what Descartes,
and after him all geometers, have called the co-ordinates
of each point considered. They are necessarily
two in number, if it is known in advance in what plane
the point is situated; and three, if it may be found indifferently
in any region of space. As many different
constructions as can be imagined for determining the
position of a point, whether on a plane or in space, so
many distinct systems of co-ordinates may be conceived;
they are consequently susceptible of being multiplied to
infinity. But, whatever may be the system adopted, we
shall always have reduced the ideas of situation to simple
ideas of magnitude, so that we will consider the change
in the position of a point as produced by mere numerical
variations in the values of its co-ordinates.

Determination of the Position of a Point. Considering
at first only the least complicated case, that of plane
geometry, it is in this way that we usually determine
the position of a point on a plane, by its distances from
two fixed right lines considered as known, which are
called axes, and which are commonly supposed to be
perpendicular to each other. This system is that most
frequently adopted, because of its simplicity; but geometers
employ occasionally an infinity of others. Thus
the position of a point on a plane may be determined, 1°,
by its distances from two fixed points; or, 2°, by its distance
from a single fixed point, and the direction of that
distance, estimated by the greater or less angle which it
makes with a fixed right line, which constitutes the system
of what are called polar co-ordinates, the most frequently
used after the system first mentioned; or, 3°, by
the angles which the right lines drawn from the variable
point to two fixed points make with the right line which
joins these last; or, 4°, by the distances from that point
to a fixed right line and a fixed point, &c. In a word,
there is no geometrical figure whatever from which it is
not possible to deduce a certain system of co-ordinates
more or less susceptible of being employed.

A general observation, which it is important to make
in this connexion, is, that every system of co-ordinates is
equivalent to determining a point, in plane geometry, by
the intersection of two lines, each of which is subjected
to certain fixed conditions of determination; a single
one of these conditions remaining variable, sometimes
the one, sometimes the other, according to the system
considered. We could not, indeed, conceive any other
means of constructing a point than to mark it by the
meeting of two lines. Thus, in the most common system,
that of rectilinear co-ordinates, properly so called,
the point is determined by the intersection of two right
lines, each of which remains constantly parallel to a
fixed axis, at a greater or less distance from it; in the
polar system, the position of the point is marked by the
meeting of a circle, of variable radius and fixed centre,
with a movable right line compelled to turn about this
centre: in other systems, the required point might be
designated by the intersection of two circles, or of any
other two lines, &c. In a word, to assign the value of
one of the co-ordinates of a point in any system whatever,
is always necessarily equivalent to determining a
certain line on which that point must be situated. The
geometers of antiquity had already made this essential
remark, which served as the base of their method of
geometrical loci, of which they made so happy a use to
direct their researches in the resolution of determinate
problems, in considering separately the influence of each
of the two conditions by which was defined each point
constituting the object, direct or indirect, of the proposed
question. It was the general systematization of this
method which was the immediate motive of the labours
of Descartes, which led him to create analytical geometry.

After having clearly established this preliminary conception—by
means of which ideas of position, and thence,
implicitly, all elementary geometrical conceptions are capable
of being reduced to simple numerical considerations—it
is easy to form a direct conception, in its entire
generality, of the great original idea of Descartes, relative
to the analytical representation of geometrical figures:
it is this which forms the special object of this
chapter. I will continue to consider at first, for more
facility, only geometry of two dimensions, which alone
was treated by Descartes; and will afterwards examine
separately, under the same point of view, the theory of
surfaces and curves of double curvature.



PLANE CURVES.

Expression of Lines by Equations. In accordance
with the manner of expressing analytically the position
of a point on a plane, it can be easily established that,
by whatever property any line may be defined, that definition
always admits of being replaced by a corresponding
equation between the two variable co-ordinates of the
point which describes this line; an equation which will
be thenceforth the analytical representation of the proposed
line, every phenomenon of which will be translated
by a certain algebraic modification of its equation. Thus,
if we suppose that a point moves on a plane without its
course being in any manner determined, we shall evidently
have to regard its co-ordinates, to whatever system
they may belong, as two variables entirely independent
of one another. But if, on the contrary, this point is
compelled to describe a certain line, we shall necessarily
be compelled to conceive that its co-ordinates, in all the
positions which it can take, retain a certain permanent
and precise relation to each other, which is consequently
susceptible of being expressed by a suitable equation;
which will become the very clear and very rigorous analytical
definition of the line under consideration, since
it will express an algebraical property belonging exclusively
to the co-ordinates of all the points of this line.
It is clear, indeed, that when a point is not subjected to
any condition, its situation is not determined except in
giving at once its two co-ordinates, independently of each
other; while, when the point must continue upon a defined
line, a single co-ordinate is sufficient for completely
fixing its position. The second co-ordinate is then a
determinate function of the first; or, in other words,
there must exist between them a certain equation, of a
nature corresponding to that of the line on which the
point is compelled to remain. In a word, each of the
co-ordinates of a point requiring it to be situated on a
certain line, we conceive reciprocally that the condition,
on the part of a point, of having to belong to a line defined
in any manner whatever, is equivalent to assigning
the value of one of the two co-ordinates; which is found
in that case to be entirely dependent on the other. The
analytical relation which expresses this dependence may
be more or less difficult to discover, but it must evidently
be always conceived to exist, even in the cases in
which our present means may be insufficient to make it
known. It is by this simple consideration that we may
demonstrate, in an entirely general manner—independently
of the particular verifications on which this fundamental
conception is ordinarily established for each special
definition of a line—the necessity of the analytical
representation of lines by equations.

Expression of Equations by Lines. Taking up again
the same reflections in the inverse direction, we could
show as easily the geometrical necessity of the representation
of every equation of two variables, in a determinate
system of co-ordinates, by a certain line; of which such
a relation would be, in the absence of any other known
property, a very characteristic definition, the scientific
destination of which will be to fix the attention directly
upon the general course of the solutions of the equation,
which will thus be noted in the most striking and the
most simple manner. This picturing of equations is one
of the most important fundamental advantages of analytical
geometry, which has thereby reacted in the highest
degree upon the general perfecting of analysis itself;
not only by assigning to purely abstract researches a
clearly determined object and an inexhaustible career,
but, in a still more direct relation, by furnishing a new
philosophical medium for analytical meditation which
could not be replaced by any other. In fact, the purely
algebraic discussion of an equation undoubtedly makes
known its solutions in the most precise manner, but in
considering them only one by one, so that in this way
no general view of them could be obtained, except as the
final result of a long and laborious series of numerical
comparisons. On the other hand, the geometrical locus
of the equation, being only designed to represent distinctly
and with perfect clearness the summing up of all these
comparisons, permits it to be directly considered, without
paying any attention to the details which have furnished
it. It can thereby suggest to our mind general analytical
views, which we should have arrived at with much
difficulty in any other manner, for want of a means of
clearly characterizing their object. It is evident, for example,
that the simple inspection of the logarithmic
curve, or of the curve y = sin. x, makes us perceive
much more distinctly the general manner of the variations
of logarithms with respect to their numbers, or of
sines with respect to their arcs, than could the most attentive
study of a table of logarithms or of natural sines.
It is well known that this method has become entirely
elementary at the present day, and that it is employed
whenever it is desired to get a clear idea of the general
character of the law which reigns in a series of precise
observations of any kind whatever.


Any Change in the Line causes a Change in the
Equation. Returning to the representation of lines by
equations, which is our principal object, we see that this
representation is, by its nature, so faithful, that the line
could not experience any modification, however slight it
might be, without causing a corresponding change in the
equation. This perfect exactitude even gives rise oftentimes
to special difficulties; for since, in our system of
analytical geometry, the mere displacements of lines affect
the equations, as well as their real variations in magnitude
or form, we should be liable to confound them
with one another in our analytical expressions, if geometers
had not discovered an ingenious method designed
expressly to always distinguish them. This method is
founded on this principle, that although it is impossible
to change analytically at will the position of a line with
respect to the axes of the co-ordinates, we can change in
any manner whatever the situation of the axes themselves,
which evidently amounts to the same; then, by
the aid of the very simple general formula by which this
transformation of the axes is produced, it becomes easy
to discover whether two different equations are the analytical
expressions of only the same line differently situated,
or refer to truly distinct geometrical loci; since, in
the former case, one of them will pass into the other by
suitably changing the axes or the other constants of the
system of co-ordinates employed. It must, moreover, be
remarked on this subject, that general inconveniences of
this nature seem to be absolutely inevitable in analytical
geometry; for, since the ideas of position are, as we have
seen, the only geometrical ideas immediately reducible to
numerical considerations, and the conceptions of figure
cannot be thus reduced, except by seeing in them relations
of situation, it is impossible for analysis to escape
confounding, at first, the phenomena of figure with simple
phenomena of position, which alone are directly expressed
by the equations.

Every Definition of a Line is an Equation. In order
to complete the philosophical explanation of the fundamental
conception which serves as the base of analytical
geometry, I think that I should here indicate a new
general consideration, which seems to me particularly
well adapted for putting in the clearest point of view this
necessary representation of lines by equations with two
variables. It consists in this, that not only, as we have
shown, must every defined line necessarily give rise to a
certain equation between the two co-ordinates of any one
of its points, but, still farther, every definition of a line
may be regarded as being already of itself an equation of
that line in a suitable system of co-ordinates.

It is easy to establish this principle, first making a
preliminary logical distinction with respect to different
kinds of definitions. The rigorously indispensable condition
of every definition is that of distinguishing the object
defined from all others, by assigning to it a property
which belongs to it exclusively. But this end may be
generally attained in two very different ways; either by
a definition which is simply characteristic, that is, indicative
of a property which, although truly exclusive,
does not make known the mode of generation of the object;
or by a definition which is really explanatory, that
is, which characterizes the object by a property which expresses
one of its modes of generation. For example, in
considering the circle as the line, which, under the same
contour, contains the greatest area, we have evidently a
definition of the first kind; while in choosing the property
of its having all its points equally distant from a fixed
point, we have a definition of the second kind. It is, besides,
evident, as a general principle, that even when any
object whatever is known at first only by a characteristic
definition, we ought, nevertheless, to regard it as susceptible
of explanatory definitions, which the farther study
of the object would necessarily lead us to discover.

This being premised, it is clear that the general observation
above made, which represents every definition
of a line as being necessarily an equation of that line in
a certain system of co-ordinates, cannot apply to definitions
which are simply characteristic; it is to be understood
only of definitions which are truly explanatory.
But, in considering only this class, the principle is easy
to prove. In fact, it is evidently impossible to define the
generation of a line without specifying a certain relation
between the two simple motions of translation or of rotation,
into which the motion of the point which describes it
will be decomposed at each instant. Now if we form the
most general conception of what constitutes a system of
co-ordinates, and admit all possible systems, it is clear
that such a relation will be nothing else but the equation
of the proposed line, in a system of co-ordinates of a nature
corresponding to that of the mode of generation considered.
Thus, for example, the common definition of
the circle may evidently be regarded as being immediately
the polar equation of this curve, taking the centre
of the circle for the pole. In the same way, the elementary
definition of the ellipse or of the hyperbola—as
being the curve generated by a point which moves in
such a manner that the sum or the difference of its distances
from two fixed points remains constant—gives at
once, for either the one or the other curve, the equation
y + x = c, taking for the system of co-ordinates that in
which the position of a point would be determined by its
distances from two fixed points, and choosing for these
poles the two given foci. In like manner, the common
definition of any cycloid would furnish directly, for that
curve, the equation y = mx; adopting as the co-ordinates
of each point the arc which it marks upon a circle of invariable
radius, measuring from the point of contact of that
circle with a fixed line, and the rectilinear distance from
that point of contact to a certain origin taken on that
right line. We can make analogous and equally easy verifications
with respect to the customary definitions of spirals,
of epicycloids, &c. We shall constantly find that
there exists a certain system of co-ordinates, in which we
immediately obtain a very simple equation of the proposed
line, by merely writing algebraically the condition
imposed by the mode of generation considered.

Besides its direct importance as a means of rendering
perfectly apparent the necessary representation of every
line by an equation, the preceding consideration seems to
me to possess a true scientific utility, in characterizing
with precision the principal general difficulty which occurs
in the actual establishment of these equations, and in
consequently furnishing an interesting indication with respect
to the course to be pursued in inquiries of this kind,
which, by their nature, could not admit of complete and
invariable rules. In fact, since any definition whatever
of a line, at least among those which indicate a mode of
generation, furnishes directly the equation of that line in
a certain system of co-ordinates, or, rather, of itself constitutes
that equation, it follows that the difficulty which
we often experience in discovering the equation of a
curve, by means of certain of its characteristic properties,
a difficulty which is sometimes very great, must proceed
essentially only from the commonly imposed condition of
expressing this curve analytically by the aid of a designated
system of co-ordinates, instead of admitting indifferently
all possible systems. These different systems
cannot be regarded in analytical geometry as being all
equally suitable; for various reasons, the most important
of which will be hereafter discussed, geometers think
that curves should almost always be referred, as far as is
possible, to rectilinear co-ordinates, properly so called.
Now we see, from what precedes, that in many cases these
particular co-ordinates will not be those with reference to
which the equation of the curve will be found to be directly
established by the proposed definition. The principal
difficulty presented by the formation of the equation
of a line really consists, then, in general, in a certain
transformation of co-ordinates. It is undoubtedly true
that this consideration does not subject the establishment
of these equations to a truly complete general method, the
success of which is always certain; which, from the very
nature of the subject, is evidently chimerical: but such a
view may throw much useful light upon the course which
it is proper to adopt, in order to arrive at the end proposed.
Thus, after having in the first place formed the
preparatory equation, which is spontaneously derived
from the definition which we are considering, it will be
necessary, in order to obtain the equation belonging to
the system of co-ordinates which must be finally admitted,
to endeavour to express in a function of these last co-ordinates
those which naturally correspond to the given
mode of generation. It is upon this last labour that it
is evidently impossible to give invariable and precise precepts.
We can only say that we shall have so many
more resources in this matter as we shall know more of
true analytical geometry, that is, as we shall know the
algebraical expression of a greater number of different algebraical
phenomena.

CHOICE OF CO-ORDINATES.

In order to complete the philosophical exposition of the
conception which serves as the base of analytical geometry,
I have yet to notice the considerations relating to
the choice of the system of co-ordinates which is in general
the most suitable. They will give the rational explanation
of the preference unanimously accorded to the
ordinary rectilinear system; a preference which has hitherto
been rather the effect of an empirical sentiment of
the superiority of this system, than the exact result of a
direct and thorough analysis.

Two different Points of View. In order to decide
clearly between all the different systems of co-ordinates,
it is indispensable to distinguish with care the two general
points of view, the converse of one another, which
belong to analytical geometry; namely, the relation of
algebra to geometry, founded upon the representation of
lines by equations; and, reciprocally, the relation of geometry
to algebra, founded on the representation of equations
by lines.

It is evident that in every investigation of general geometry
these two fundamental points of view are of necessity
always found combined, since we have always to
pass alternately, and at insensible intervals, so to say,
from geometrical to analytical considerations, and from
analytical to geometrical considerations. But the necessity
of here temporarily separating them is none the
less real; for the answer to the question of method which
we are examining is, in fact, as we shall see presently,
very far from being the same in both these relations, so
that without this distinction we could not form any clear
idea of it.

1. Representation of Lines by Equations. Under the
first point of view—the representation of lines by equations—the
only reason which could lead us to prefer one
system of co-ordinates to another would be the greater
simplicity of the equation of each line, and greater facility
in arriving at it. Now it is easy to see that there does
not exist, and could not be expected to exist, any system
of co-ordinates deserving in that respect a constant preference
over all others. In fact, we have above remarked
that for each geometrical definition proposed we can conceive
a system of co-ordinates in which the equation of
the line is obtained at once, and is necessarily found to
be also very simple; and this system, moreover, inevitably
varies with the nature of the characteristic property
under consideration. The rectilinear system could not,
therefore, be constantly the most advantageous for this object,
although it may often be very favourable; there is
probably no system which, in certain particular cases,
should not be preferred to it, as well as to every other.

2. Representation of Equations by Lines. It is by no
means so, however, under the second point of view. We
can, indeed, easily establish, as a general principle, that
the ordinary rectilinear system must necessarily be better
adapted than any other to the representation of equations
by the corresponding geometrical loci; that is to
say, that this representation is constantly more simple
and more faithful in it than in any other.

Let us consider, for this object, that, since every system
of co-ordinates consists in determining a point by the
intersection of two lines, the system adapted to furnish
the most suitable geometrical loci must be that in which
these two lines are the simplest possible; a consideration
which confines our choice to the rectilinear system. In
truth, there is evidently an infinite number of systems
which deserve that name, that is to say, which employ
only right lines to determine points, besides the ordinary
system which assigns the distances from two fixed lines
as co-ordinates; such, for example, would be that in
which the co-ordinates of each point should be the two
angles which the right lines, which go from that point to
two fixed points, make with the right line, which joins
these last points: so that this first consideration is not
rigorously sufficient to explain the preference unanimously
given to the common system. But in examining in a
more thorough manner the nature of every system of co-ordinates,
we also perceive that each of the two lines,
whose meeting determines the point considered, must
necessarily offer at every instant, among its different conditions
of determination, a single variable condition, which
gives rise to the corresponding co-ordinate, all the rest
being fixed, and constituting the axes of the system,
taking this term in its most extended mathematical acceptation.
The variation is indispensable, in order that
we may be able to consider all possible positions; and
the fixity is no less so, in order that there may exist
means of comparison. Thus, in all rectilinear systems,
each of the two right lines will be subjected to a fixed
condition, and the ordinate will result from the variable
condition.

Superiority of rectilinear Co-ordinates. From these
considerations it is evident, as a general principle, that
the most favourable system for the construction of geometrical
loci will necessarily be that in which the variable
condition of each right line shall be the simplest
possible; the fixed condition being left free to be made
complex, if necessary to attain that object. Now, of
all possible manners of determining two movable right
lines, the easiest to follow geometrically is certainly that
in which, the direction of each right line remaining invariable,
it only approaches or recedes, more or less, to
or from a constant axis. It would be, for example, evidently
more difficult to figure to one's self clearly the
changes of place of a point which is determined by the
intersection of two right lines, which each turn around
a fixed point, making a greater or smaller angle with a
certain axis, as in the system of co-ordinates previously
noticed. Such is the true general explanation of the
fundamental property possessed by the common rectilinear
system, of being better adapted than any other to the
geometrical representation of equations, inasmuch as it
is that one in which it is the easiest to conceive the
change of place of a point resulting from the change in
the value of its co-ordinates. In order to feel clearly all
the force of this consideration, it would be sufficient to
carefully compare this system with the polar system, in
which this geometrical image, so simple and so easy to
follow, of two right lines moving parallel, each one of
them, to its corresponding axis, is replaced by the complicated
picture of an infinite series of concentric circles,
cut by a right line compelled to turn about a fixed
point. It is, moreover, easy to conceive in advance what
must be the extreme importance to analytical geometry
of a property so profoundly elementary, which, for that
reason, must be recurring at every instant, and take a
progressively increasing value in all labours of this kind.

Perpendicularity of the Axes. In pursuing farther
the consideration which demonstrates the superiority of
the ordinary system of co-ordinates over any other as to
the representation of equations, we may also take notice
of the utility for this object of the common usage of taking
the two axes perpendicular to each other, whenever
possible, rather than with any other inclination. As regards
the representation of lines by equations, this secondary
circumstance is no more universally proper than
we have seen the general nature of the system to be;
since, according to the particular occasion, any other inclination
of the axes may deserve our preference in that
respect. But, in the inverse point of view, it is easy to
see that rectangular axes constantly permit us to represent
equations in a more simple and even more faithful
manner; for, with oblique axes, space being divided by
them into regions which no longer have a perfect identity,
it follows that, if the geometrical locus of the equation
extends into all these regions at once, there will be presented,
by reason merely of this inequality of the angles,
differences of figure which do not correspond to any
analytical diversity, and will necessarily alter the rigorous
exactness of the representation, by being confounded
with the proper results of the algebraic comparisons.
For example, an equation like: xm + ym = c, which, by its
perfect symmetry, should evidently give a curve composed
of four identical quarters, will be represented, on
the contrary, if we take axes not rectangular, by a geometric
locus, the four parts of which will be unequal.
It is plain that the only means of avoiding all inconveniences
of this kind is to suppose the angle of the two
axes to be a right angle.

The preceding discussion clearly shows that, although
the ordinary system of rectilinear co-ordinates has no constant
superiority over all others in one of the two fundamental
points of view which are continually combined in
analytical geometry, yet as, on the other hand, it is not
constantly inferior, its necessary and absolute greater
aptitude for the representation of equations must cause
it to generally receive the preference; although it may
evidently happen, in some particular cases, that the necessity
of simplifying equations and of obtaining them
more easily may determine geometers to adopt a less
perfect system. The rectilinear system is, therefore, the
one by means of which are ordinarily constructed the
most essential theories of general geometry, intended to
express analytically the most important geometrical phenomena.
When it is thought necessary to choose some
other, the polar system is almost always the one which
is fixed upon, this system being of a nature sufficiently
opposite to that of the rectilinear system to cause the
equations, which are too complicated with respect to the
latter, to become, in general, sufficiently simple with respect
to the other. Polar co-ordinates, moreover, have
often the advantage of admitting of a more direct and
natural concrete signification; as is the case in mechanics,
for the geometrical questions to which the theory of
circular movement gives rise, and in almost all the cases
of celestial geometry.



In order to simplify the exposition, we have thus far
considered the fundamental conception of analytical geometry
only with respect to plane curves, the general
study of which was the only object of the great philosophical
renovation produced by Descartes. To complete
this important explanation, we have now to show
summarily how this elementary idea was extended by
Clairaut, about a century afterwards, to the general
study of surfaces and curves of double curvature. The
considerations which have been already given will permit
me to limit myself on this subject to the rapid examination
of what is strictly peculiar to this new case.

SURFACES.

Determination of a Point in Space. The complete
analytical determination of a point in space evidently requires
the values of three co-ordinates to be assigned; as,
for example, in the system which is generally adopted,
and which corresponds to the rectilinear system of plane
geometry, distances from the point to three fixed planes,
usually perpendicular to one another; which presents the
point as the intersection of three planes whose direction
is invariable. We might also employ the distances from
the movable point to three fixed points, which would
determine it by the intersection of three spheres with a
common centre. In like manner, the position of a point
would be defined by giving its distance from a fixed point,
and the direction of that distance, by means of the two
angles which this right line makes with two invariable
axes; this is the polar system of geometry of three dimensions;
the point is then constructed by the intersection
of a sphere having a fixed centre, with two right
cones with circular bases, whose axes and common summit
do not change. In a word, there is evidently, in this
case at least, the same infinite variety among the various
possible systems of co-ordinates which we have already
observed in geometry of two dimensions. In general,
we have to conceive a point as being always determined
by the intersection of any three surfaces whatever,
as it was in the former case by that of two lines: each
of these three surfaces has, in like manner, all its conditions
of determination constant, excepting one, which
gives rise to the corresponding co-ordinates, whose peculiar
geometrical influence is thus to constrain the point
to be situated upon that surface.

This being premised, it is clear that if the three co-ordinates
of a point are entirely independent of one another,
that point can take successively all possible positions
in space. But if the point is compelled to remain
upon a certain surface defined in any manner whatever,
then two co-ordinates are evidently sufficient for determining
its situation at each instant, since the proposed
surface will take the place of the condition imposed by
the third co-ordinate. We must then, in this case, under
the analytical point of view, necessarily conceive this
last co-ordinate as a determinate function of the two
others, these latter remaining perfectly independent of
each other. Thus there will be a certain equation between
the three variable co-ordinates, which will be permanent,
and which will be the only one, in order to correspond
to the precise degree of indetermination in the
position of the point.

Expression of Surfaces by Equations. This equation,
more or less easy to be discovered, but always possible,
will be the analytical definition of the proposed surface,
since it must be verified for all the points of that surface,
and for them alone. If the surface undergoes any change
whatever, even a simple change of place, the equation
must undergo a more or less serious corresponding modification.
In a word, all geometrical phenomena relating
to surfaces will admit of being translated by certain equivalent
analytical conditions appropriate to equations of
three variables; and in the establishment and interpretation
of this general and necessary harmony will essentially
consist the science of analytical geometry of three
dimensions.

Expression of Equations by Surfaces. Considering
next this fundamental conception in the inverse point of
view, we see in the same manner that every equation of
three variables may, in general, be represented geometrically
by a determinate surface, primitively defined by
the very characteristic property, that the co-ordinates of
all its points always retain the mutual relation enunciated
in this equation. This geometrical locus will evidently
change, for the same equation, according to the
system of co-ordinates which may serve for the construction
of this representation. In adopting, for example,
the rectilinear system, it is clear that in the equation between
the three variables, x, y, z, every particular value
attributed to z will give an equation between at x and y, the
geometrical locus of which will be a certain line situated
in a plane parallel to the plane of x and y, and at a distance
from this last equal to the value of z; so that the
complete geometrical locus will present itself as composed
of an infinite series of lines superimposed in a series
of parallel planes (excepting the interruptions which
may exist), and will consequently form a veritable surface.
It would be the same in considering any other system
of co-ordinates, although the geometrical construction
of the equation becomes more difficult to follow.

Such is the elementary conception, the complement of
the original idea of Descartes, on which is founded general
geometry relative to surfaces. It would be useless
to take up here directly the other considerations which
have been above indicated, with respect to lines, and
which any one can easily extend to surfaces; whether
to show that every definition of a surface by any method
of generation whatever is really a direct equation of that
surface in a certain system of co-ordinates, or to determine
among all the different systems of possible co-ordinates
that one which is generally the most convenient.
I will only add, on this last point, that the necessary superiority
of the ordinary rectilinear system, as to the representation
of equations, is evidently still more marked in
analytical geometry of three dimensions than in that of
two, because of the incomparably greater geometrical
complication which would result from the choice of any
other system. This can be verified in the most striking
manner by considering the polar system in particular,
which is the most employed after the ordinary rectilinear
system, for surfaces as well as for plane curves, and for
the same reasons.

In order to complete the general exposition of the fundamental
conception relative to the analytical study of
surfaces, a philosophical examination should be made of
a final improvement of the highest importance, which
Monge has introduced into the very elements of this theory,
for the classification of surfaces in natural families,
established according to the mode of generation, and expressed
algebraically by common differential equations, or
by finite equations containing arbitrary functions.

CURVES OF DOUBLE CURVATURE.

Let us now consider the last elementary point of view
of analytical geometry of three dimensions; that relating
to the algebraic representation of curves considered in
space, in the most general manner. In continuing to
follow the principle which has been constantly employed,
that of the degree of indetermination of the geometrical
locus, corresponding to the degree of independence of the
variables, it is evident, as a general principle, that when
a point is required to be situated upon some certain curve,
a single co-ordinate is enough for completely determining
its position, by the intersection of this curve with the surface
which results from this co-ordinate. Thus, in this
case, the two other co-ordinates of the point must be conceived
as functions necessarily determinate and distinct
from the first. It follows that every line, considered in
space, is then represented analytically, no longer by a
single equation, but by the system of two equations between
the three co-ordinates of any one of its points. It
is clear, indeed, from another point of view, that since
each of these equations, considered separately, expresses
a certain surface, their combination presents the proposed
line as the intersection of two determinate surfaces.
Such is the most general manner of conceiving the algebraic
representation of a line in analytical geometry of
three dimensions. This conception is commonly considered
in too restricted a manner, when we confine ourselves
to considering a line as determined by the system
of its two projections upon two of the co-ordinate planes;
a system characterized, analytically, by this peculiarity,
that each of the two equations of the line then contains
only two of the three co-ordinates, instead of simultaneously
including the three variables. This consideration,
which consists in regarding the line as the intersection
of two cylindrical surfaces parallel to two of the
three axes of the co-ordinates, besides the inconvenience
of being confined to the ordinary rectilinear system, has
the fault, if we strictly confine ourselves to it, of introducing
useless difficulties into the analytical representation
of lines, since the combination of these two cylinders
would evidently not be always the most suitable for
forming the equations of a line. Thus, considering this
fundamental notion in its entire generality, it will be
necessary in each case to choose, from among the infinite
number of couples of surfaces, the intersection of which
might produce the proposed curve, that one which will
lend itself the best to the establishment of equations, as
being composed of the best known surfaces. Thus, if
the problem is to express analytically a circle in space,
it will evidently be preferable to consider it as the intersection
of a sphere and a plane, rather than as proceeding
from any other combination of surfaces which could
equally produce it.

In truth, this manner of conceiving the representation
of lines by equations, in analytical geometry of three dimensions,
produces, by its nature, a necessary inconvenience,
that of a certain analytical confusion, consisting
in this: that the same line may thus be expressed, with
the same system of co-ordinates, by an infinite number
of different couples of equations, on account of the infinite
number of couples of surfaces which can form it;
a circumstance which may cause some difficulties in recognizing
this line under all the algebraical disguises of
which it admits. But there exists a very simple method
for causing this inconvenience to disappear; it consists
in giving up the facilities which result from this variety
of geometrical constructions. It suffices, in fact, whatever
may be the analytical system primitively established
for a certain line, to be able to deduce from it the
system corresponding to a single couple of surfaces uniformly
generated; as, for example, to that of the two
cylindrical surfaces which project the proposed line upon
two of the co-ordinate planes; surfaces which will evidently
be always identical, in whatever manner the line
may have been obtained, and which will not vary except
when that line itself shall change. Now, in choosing
this fixed system, which is actually the most simple, we
shall generally be able to deduce from the primitive equations
those which correspond to them in this special construction,
by transforming them, by two successive eliminations,
into two equations, each containing only two of
the variable co-ordinates, and thereby corresponding to
the two surfaces of projection. Such is really the principal
destination of this sort of geometrical combination,
which thus offers to us an invariable and certain means
of recognizing the identity of lines in spite of the diversity
of their equations, which is sometimes very great.



IMPERFECTIONS OF ANALYTICAL GEOMETRY.

Having now considered the fundamental conception of
analytical geometry under its principal elementary aspects,
it is proper, in order to make the sketch complete,
to notice here the general imperfections yet presented by
this conception with respect to both geometry and to
analysis.

Relatively to geometry, we must remark that the
equations are as yet adapted to represent only entire
geometrical loci, and not at all determinate portions of
those loci. It would, however, be necessary, in some circumstances,
to be able to express analytically a part of
a line or of a surface, or even a discontinuous line or
surface, composed of a series of sections belonging to distinct
geometrical figures, such as the contour of a polygon,
or the surface of a polyhedron. Thermology, especially,
often gives rise to such considerations, to which
our present analytical geometry is necessarily inapplicable.
The labours of M. Fourier on discontinuous functions
have, however, begun to fill up this great gap, and
have thereby introduced a new and essential improvement
into the fundamental conception of Descartes. But
this manner of representing heterogeneous or partial figures,
being founded on the employment of trigonometrical
series proceeding according to the sines of an infinite
series of multiple arcs, or on the use of certain definite
integrals equivalent to those series, and the general integral
of which is unknown, presents as yet too much
complication to admit of being immediately introduced
into the system of analytical geometry.

Relatively to analysis, we must begin by observing
that our inability to conceive a geometrical representation
of equations containing four, five, or more variables, analogous
to those representations which all equations of two
or of three variables admit, must not be viewed as an imperfection
of our system of analytical geometry, for it
evidently belongs to the very nature of the subject.
Analysis being necessarily more general than geometry,
since it relates to all possible phenomena, it would be
very unphilosophical to desire always to find among geometrical
phenomena alone a concrete representation of
all the laws which analysis can express.

There exists, however, another imperfection of less
importance, which must really be viewed as proceeding
from the manner in which we conceive analytical geometry.
It consists in the evident incompleteness of our
present representation of equations of two or of three variables
by lines or surfaces, inasmuch as in the construction
of the geometric locus we pay regard only to the
real solutions of equations, without at all noticing any
imaginary solutions. The general course of these last
should, however, by its nature, be quite as susceptible as
that of the others of a geometrical representation. It
follows from this omission that the graphic picture of the
equation is constantly imperfect, and sometimes even so
much so that there is no geometric representation at all
when the equation admits of only imaginary solutions.
But, even in this last case, we evidently ought to be
able to distinguish between equations as different in
themselves as these, for example,


x2 + y2 + 1 = 0, x6 + y4 + 1 = 0, y2 + ex = 0.



We know, moreover, that this principal imperfection often
brings with it, in analytical geometry of two or of
three dimensions, a number of secondary inconveniences,
arising from several analytical modifications not corresponding
to any geometrical phenomena.



Our philosophical exposition of the fundamental conception
of analytical geometry shows us clearly that this
science consists essentially in determining what is the
general analytical expression of such or such a geometrical
phenomenon belonging to lines or to surfaces; and,
reciprocally, in discovering the geometrical interpretation
of such or such an analytical consideration. A detailed
examination of the most important general questions
would show us how geometers have succeeded in actually
establishing this beautiful harmony, and in thus imprinting
on geometrical science, regarded as a whole, its present
eminently perfect character of rationality and of
simplicity.

Note.—The author devotes the two following chapters of his course to
the more detailed examination of Analytical Geometry of two and of three
dimensions; but his subsequent publication of a separate work upon this
branch of mathematics has been thought to render unnecessary the reproduction
of these two chapters in the present volume.


THE END.


FOOTNOTES:

[1] The investigation of the mathematical phenomena of the laws of heat
by Baron Fourier has led to the establishment, in an entirely direct manner,
of Thermological equations. This great discovery tends to elevate our philosophical
hopes as to the future extensions of the legitimate applications of
mathematical analysis, and renders it proper, in the opinion of author,
to regard Thermology as a third principal branch of concrete mathematics.


[2] The translator has felt justified in employing this very convenient word
(for which our language has no precise equivalent) as an English one, in its
most extended sense, in spite of its being often popularly confounded with
its Differential and Integral department.


[3] With the view of increasing as much as possible the resources and the
extent (now so insufficient) of mathematical analysis, geometers count this
last couple of functions among the analytical elements. Although this inscription
is strictly legitimate, it is important to remark that circular functions
are not exactly in the same situation as the other abstract elementary
functions. There is this very essential difference, that the functions of the
four first couples are at the same time simple and abstract, while the circular
functions, which may manifest each character in succession, according
to the point of view under which they are considered and the manner in
which they are employed, never present these two properties simultaneously.



Some other concrete functions may be usefully introduced into the number
of analytical elements, certain conditions being fulfilled. It is thus, for
example, that the labours of M. Legendre and of M. Jacobi on elliptical
functions have truly enlarged the field of analysis; and the same is true of
some definite integrals obtained by M. Fourier in the theory of heat.


[4] Suppose, for example, that a question gives the following equation between
an unknown magnitude x, and two known magnitudes, a and b,




x3 + 3ax = 2b,




as is the case in the problem of the trisection of an angle. We see at once
that the dependence between x on the one side, and ab on the other, is
completely determined; but, so long as the equation preserves its primitive
form, we do not at all perceive in what manner the unknown quantity is
derived from the data. This must be discovered, however, before we can
think of determining its value. Such is the object of the algebraic part of
the solution. When, by a series of transformations which have successively
rendered that derivation more and more apparent, we have arrived at presenting
the proposed equation under the form




x = ∛(b + √(b2 + a3)) + ∛(b - √(b2 + a3)),




the work of algebra is finished; and even if we could not perform the arithmetical
operations indicated by that formula, we would nevertheless have
obtained a knowledge very real, and often very important. The work of
arithmetic will now consist in taking that formula for its starting point, and
finding the number x when the values of the numbers a and b are given.


[5] I have thought that I ought to specially notice this definition, because
it serves as the basis of the opinion which many intelligent persons, unacquainted
with mathematical science, form of its abstract part, without considering
that at the time of this definition mathematical analysis was not
sufficiently developed to enable the general character of each of its principal
parts to be properly apprehended, which explains why Newton could
at that time propose a definition which at the present day he would certainly
reject.


[6] This is less strictly true in the English system of numeration than in
the French, since "twenty-one" is our more usual mode of expressing this
number.


[7] Simple as may seem, for example, the equation




ax + bx = cx,




we do not yet know how to resolve it, which may give some idea of the
extreme imperfection of this part of algebra.


[8] The same error was afterward committed, in the infancy of the infinitesimal
calculus, in relation to the integration of differential equations.


[9] The fundamental principle on which reposes the theory of equations,
and which is so frequently applied in all mathematical analysis—the decomposition
of algebraic, rational, and entire functions, of any degree whatever,
into factors of the first degree—is never employed except for functions
of a single variable, without any one having examined if it ought to be extended
to functions of several variables. The general impossibility of such
a decomposition is demonstrated by the author in detail, but more properly
belongs to a special treatise.


[10] The only important case of this class which has thus far been completely
treated is the general integration of linear equations of any order
whatever, with constant coefficients. Even this case finally depends on
the algebraic resolution of equations of a degree equal to the order of differentiation.


[11] Leibnitz had already considered the comparison of one curve with an
other infinitely near to it, calling it "Differentiatio de curva in curvam."
But this comparison had no analogy with the conception of Lagrange, the
curves of Leibnitz being embraced in the same general equation, from which
they were deduced by the simple change of an arbitrary constant.


[12] I propose hereafter to develop this new consideration, in a special work
upon the Calculus of Variations, intended to present this hyper-transcendental
analysis in a new point of view, which I think adapted to extend its
general range.


[13] Lacroix has justly criticised the expression of solid, commonly used by
geometers to designate a volume. It is certain, in fact, that when we wish
to consider separately a certain portion of indefinite space, conceived as gaseous,
we mentally solidify its exterior envelope, so that a line and a surface
are habitually, to our minds, just as solid as a volume. It may also be remarked
that most generally, in order that bodies may penetrate one another
with more facility, we are obliged to imagine the interior of the volumes to
be hollow, which renders still more sensible the impropriety of the word
solid.
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