
    
      [image: ]
      
    

  The Project Gutenberg eBook of Relativity: The Special and General Theory

    
This ebook is for the use of anyone anywhere in the United States and
most other parts of the world at no cost and with almost no restrictions
whatsoever. You may copy it, give it away or re-use it under the terms
of the Project Gutenberg License included with this ebook or online
at www.gutenberg.org. If you are not located in the United States,
you will have to check the laws of the country where you are located
before using this eBook.


Title: Relativity: The Special and General Theory


Author: Albert Einstein


Translator: Robert W. Lawson



Release date: October 1, 2009 [eBook #30155]

                Most recently updated: May 2, 2023


Language: English


Original publication: Methuen & Co Ltd,, 1924


Credits: Robert Hux




*** START OF THE PROJECT GUTENBERG EBOOK RELATIVITY: THE SPECIAL AND GENERAL THEORY ***











Relativity: The Special and General Theory

by Albert Einstein

Authorised Translation by Robert W. Lawson



ALBERT EINSTEIN REFERENCE ARCHIVE

RELATIVITY: THE SPECIAL AND GENERAL THEORY

BY ALBERT EINSTEIN





Written: 1916 (this revised edition: 1924)

Source: Relativity: The Special and General Theory (1920)

Publisher: Methuen & Co Ltd

First Published: December, 1916

Translated: Robert W. Lawson (Authorised translation)

Transcription/Markup: Brian Basgen

Transcription to text: Gregory B. Newby

Thanks to: Einstein Reference Archive (marxists.org)

The Einstein Reference Archive is online at:

http://www.marxists.org/reference/archive/einstein/index.htm





Contents



	 Preface







	 Part I: The Special Theory of Relativity



	 I. Physical Meaning of Geometrical Propositions



	 II. The System of Co-ordinates



	 III. Space and Time in Classical Mechanics



	 IV. The Galileian System of Co-ordinates



	 V. The Principle of Relativity (in the Restricted Sense)



	 VI. The Theorem of the Addition of Velocities employed in Classical Mechanics



	 VII. The Apparent Incompatability of the Law of Propagation of Light with the Principle of Relativity



	 VIII. On the Idea of Time in Physics



	 IX. The Relativity of Simultaneity



	 X. On the Relativity of the Conception of Distance



	 XI. The Lorentz Transformation



	 XII. The Behaviour of Measuring-Rods and Clocks in Motion



	 XIII. Theorem of the Addition of Velocities. The Experiment of Fizeau



	 XIV. The Heuristic Value of the Theory of Relativity



	 XV. General Results of the Theory



	 XVI. Experience and the Special Theory of Relativity



	 XVII. Minkowski’s Four-dimensional Space







	 Part II: The General Theory of Relativity



	 XVIII. Special and General Principle of Relativity



	 XIX. The Gravitational Field



	 XX. The Equality of Inertial and Gravitational Mass as an Argument for the General Postulate of Relativity



	 XXI. In What Respects are the Foundations of Classical Mechanics and of the Special Theory of Relativity Unsatisfactory?



	 XXII. A Few Inferences from the General Principle of Relativity



	 XXIII. Behaviour of Clocks and Measuring-Rods on a Rotating Body of Reference



	 XXIV. Euclidean and non-Euclidean Continuum



	 XXV. Gaussian Co-ordinates



	 XXVI. The Space-Time Continuum of the Special Theory of Relativity Considered as a Euclidean Continuum



	 XXVII. The Space-Time Continuum of the General Theory of Relativity is Not a Euclidean Continuum



	 XXVIII. Exact Formulation of the General Principle of Relativity



	 XXIX. The Solution of the Problem of Gravitation on the Basis of the General Principle of Relativity







	 Part III: Considerations on the Universe as a Whole



	 XXX. Cosmological Difficulties of Newton’s Theory



	 XXXI. The Possibility of a “Finite” and yet “Unbounded” Universe



	 XXXII. The Structure of Space According to the General Theory of Relativity







	 Appendices:



	 I. Simple Derivation of the Lorentz Transformation (supplementary to section XI)



	 II. Minkowski’s Four-Dimensional Space (“World”) (supplementary to section XVII)



	 III. The Experimental Confirmation of the General Theory of Relativity



	 IV. The Structure of Space According to the General Theory of Relativity (supplementary to section XXXII)



	 V. Relativity and the Problem of Space





Note: The fifth Appendix was added by Einstein at the time of the fifteenth
re-printing of this book; and as a result is still under copyright restrictions
so cannot be added without the permission of the publisher.



PREFACE


The present book is intended, as far as possible, to give an exact insight into
the theory of Relativity to those readers who, from a general scientific and
philosophical point of view, are interested in the theory, but who are not
conversant with the mathematical apparatus of theoretical physics. The work
presumes a standard of education corresponding to that of a university
matriculation examination, and, despite the shortness of the book, a fair
amount of patience and force of will on the part of the reader. The author has
spared himself no pains in his endeavour to present the main ideas in the
simplest and most intelligible form, and on the whole, in the sequence and
connection in which they actually originated. In the interest of clearness, it
appeared to me inevitable that I should repeat myself frequently, without
paying the slightest attention to the elegance of the presentation. I adhered
scrupulously to the precept of that brilliant theoretical physicist L.
Boltzmann, according to whom matters of elegance ought to be left to the tailor
and to the cobbler. I make no pretence of having withheld from the reader
difficulties which are inherent to the subject. On the other hand, I have
purposely treated the empirical physical foundations of the theory in a
“step-motherly” fashion, so that readers unfamiliar with physics may
not feel like the wanderer who was unable to see the forest for the trees. May
the book bring some one a few happy hours of suggestive thought!



December, 1916


 A. EINSTEIN




PART I: THE SPECIAL THEORY OF RELATIVITY



I.

PHYSICAL MEANING OF GEOMETRICAL PROPOSITIONS


In your schooldays most of you who read this book made acquaintance with the
noble building of Euclid’s geometry, and you remember—perhaps with more
respect than love—the magnificent structure, on the lofty staircase of which
you were chased about for uncounted hours by conscientious teachers. By reason
of our past experience, you would certainly regard everyone with disdain who
should pronounce even the most out-of-the-way proposition of this science to be
untrue. But perhaps this feeling of proud certainty would leave you immediately
if some one were to ask you: “What, then, do you mean by the assertion
that these propositions are true?” Let us proceed to give this question a
little consideration.



Geometry sets out from certain conceptions such as “plane,”
“point,” and “straight line,” with which we are able to
associate more or less definite ideas, and from certain simple propositions
(axioms) which, in virtue of these ideas, we are inclined to accept as
“true.” Then, on the basis of a logical process, the justification of
which we feel ourselves compelled to admit, all remaining propositions are
shown to follow from those axioms, i.e. they are proven. A proposition is then
correct (“true”) when it has been derived in the recognised manner
from the axioms. The question of “truth” of the individual
geometrical propositions is thus reduced to one of the “truth” of the
axioms. Now it has long been known that the last question is not only
unanswerable by the methods of geometry, but that it is in itself entirely
without meaning. We cannot ask whether it is true that only one straight line
goes through two points. We can only say that Euclidean geometry deals with
things called “straight lines,” to each of which is ascribed the
property of being uniquely determined by two points situated on it. The concept
“true” does not tally with the assertions of pure geometry, because
by the word “true” we are eventually in the habit of designating
always the correspondence with a “real” object; geometry, however, is
not concerned with the relation of the ideas involved in it to objects of
experience, but only with the logical connection of these ideas among
themselves.



It is not difficult to understand why, in spite of this, we feel constrained to
call the propositions of geometry “true.” Geometrical ideas
correspond to more or less exact objects in nature, and these last are
undoubtedly the exclusive cause of the genesis of those ideas. Geometry ought
to refrain from such a course, in order to give to its structure the largest
possible logical unity. The practice, for example, of seeing in a
“distance” two marked positions on a practically rigid body is
something which is lodged deeply in our habit of thought. We are accustomed
further to regard three points as being situated on a straight line, if their
apparent positions can be made to coincide for observation with one eye, under
suitable choice of our place of observation.



If, in pursuance of our habit of thought, we now supplement the propositions of
Euclidean geometry by the single proposition that two points on a practically
rigid body always correspond to the same distance (line-interval),
independently of any changes in position to which we may subject the body, the
propositions of Euclidean geometry then resolve themselves into propositions on
the possible relative position of practically rigid bodies.[1] Geometry
which has been supplemented in this way is then to be treated as a branch of
physics. We can now legitimately ask as to the “truth” of
geometrical propositions interpreted in this way, since we are justified in
asking whether these propositions are satisfied for those real things we have
associated with the geometrical ideas. In less exact terms we can express this
by saying that by the “truth” of a geometrical proposition in this
sense we understand its validity for a construction with rule and compasses.




 



 [1]
 It follows that a natural object is
associated also with a straight line. Three points A, B and C on a rigid body
thus lie in a straight line when the points A and C being given, B is chosen
such that the sum of the distances AB and BC is as short as possible. This
incomplete suggestion will suffice for the present purpose.



Of course the conviction of the “truth” of geometrical propositions
in this sense is founded exclusively on rather incomplete experience. For the
present we shall assume the “truth” of the geometrical propositions,
then at a later stage (in the general theory of relativity) we shall see that
this “truth” is limited, and we shall consider the extent of its
limitation.




II.

THE SYSTEM OF CO-ORDINATES


On the basis of the physical interpretation of distance which has been
indicated, we are also in a position to establish the distance between two
points on a rigid body by means of measurements. For this purpose we require a
“distance” (rod S) which is to be used once and for all, and
which we employ as a standard measure. If, now, A and B are two
points on a rigid body, we can construct the line joining them according to the
rules of geometry; then, starting from A, we can mark off the distance
S time after time until we reach B. The number of these
operations required is the numerical measure of the distance AB. This is
the basis of all measurement of length.[2]




 



 [2]
 Here we have assumed that there is
nothing left over i.e. that the measurement gives a whole number. This
difficulty is got over by the use of divided measuring-rods, the introduction
of which does not demand any fundamentally new method.



Every description of the scene of an event or of the position of an object in
space is based on the specification of the point on a rigid body (body of
reference) with which that event or object coincides. This applies not only to
scientific description, but also to everyday life. If I analyse the place
specification “Trafalgar Square, London”[3] I arrive at
the following result. The earth is the rigid body to which the specification of
place refers; “Trafalgar Square, London” is a well-defined point, to
which a name has been assigned, and with which the event coincides in
space.[4]




 



 [3]
 
I have chosen this as being more familiar to the English reader than the
“Potzdammer Platz, Berlin,” which is referred to in the original.
(R. W. L.)




 



 [4]
 It is not necessary here to investigate
further the significance of the expression “coincidence in space.”
This conception is sufficiently obvious to ensure that differences of opinion
are scarcely likely to arise as to its applicability in practice.



This primitive method of place specification deals only with places on the
surface of rigid bodies, and is dependent on the existence of points on this
surface which are distinguishable from each other. But we can free ourselves
from both of these limitations without altering the nature of our specification
of position. If, for instance, a cloud is hovering over Trafalgar Square, then we
can determine its position relative to the surface of the earth by erecting a
pole perpendicularly on the Square, so that it reaches the cloud. The length of
the pole measured with the standard measuring-rod, combined with the
specification of the position of the foot of the pole, supplies us with a
complete place specification. On the basis of this illustration, we are able to
see the manner in which a refinement of the conception of position has been
developed.



(a) We imagine the rigid body, to which the place specification is referred,
supplemented in such a manner that the object whose position we require is
reached by the completed rigid body.



(b) In locating the position of the object, we make use of a number (here the
length of the pole measured with the measuring-rod) instead of designated
points of reference.



(c) We speak of the height of the cloud even when the pole which reaches the
cloud has not been erected. By means of optical observations of the cloud from
different positions on the ground, and taking into account the properties of
the propagation of light, we determine the length of the pole we should have
required in order to reach the cloud.



From this consideration we see that it will be advantageous if, in the
description of position, it should be possible by means of numerical measures
to make ourselves independent of the existence of marked positions (possessing
names) on the rigid body of reference. In the physics of measurement this is
attained by the application of the Cartesian system of co-ordinates.



This consists of three plane surfaces perpendicular to each other and rigidly
attached to a rigid body. Referred to a system of co-ordinates, the scene of
any event will be determined (for the main part) by the specification of the
lengths of the three perpendiculars or co-ordinates (x, y, z) which can be
dropped from the scene of the event to those three plane surfaces. The lengths
of these three perpendiculars can be determined by a series of manipulations
with rigid measuring-rods performed according to the rules and methods laid
down by Euclidean geometry.



In practice, the rigid surfaces which constitute the system of co-ordinates are
generally not available; furthermore, the magnitudes of the co-ordinates are
not actually determined by constructions with rigid rods, but by indirect
means. If the results of physics and astronomy are to maintain their clearness,
the physical meaning of specifications of position must always be sought in
accordance with the above considerations.[5]




 



 [5]
 A refinement and modification of these
views does not become necessary until we come to deal with the general theory
of relativity, treated in the second part of this book.



We thus obtain the following result: Every description of events in space
involves the use of a rigid body to which such events have to be referred. The
resulting relationship takes for granted that the laws of Euclidean geometry
hold for “distances;” the “distance” being represented
physically by means of the convention of two marks on a rigid body.




III.

SPACE AND TIME IN CLASSICAL MECHANICS


The purpose of mechanics is to describe how bodies change their position in
space with “time.” I should load my conscience with grave sins
against the sacred spirit of lucidity were I to formulate the aims of mechanics
in this way, without serious reflection and detailed explanations. Let us
proceed to disclose these sins.



It is not clear what is to be understood here by “position” and
“space.” I stand at the window of a railway carriage which is
travelling uniformly, and drop a stone on the embankment, without throwing it.
Then, disregarding the influence of the air resistance, I see the stone descend
in a straight line. A pedestrian who observes the misdeed from the footpath
notices that the stone falls to earth in a parabolic curve. I now ask: Do the
“positions” traversed by the stone lie “in reality” on a
straight line or on a parabola? Moreover, what is meant here by motion “in
space”? From the considerations of the previous section the answer is
self-evident. In the first place we entirely shun the vague word
“space,” of which, we must honestly acknowledge, we cannot form the
slightest conception, and we replace it by “motion relative to a
practically rigid body of reference.” The positions relative to the body
of reference (railway carriage or embankment) have already been defined in
detail in the preceding section. If instead of “body of reference” we
insert “system of co-ordinates,” which is a useful idea for
mathematical description, we are in a position to say: The stone traverses a
straight line relative to a system of co-ordinates rigidly attached to the
carriage, but relative to a system of co-ordinates rigidly attached to the
ground (embankment) it describes a parabola. With the aid of this example it is
clearly seen that there is no such thing as an independently existing
trajectory (lit. “path-curve”[6], but only a trajectory
relative to a particular body of reference.




 



 [6]
 That is, a curve along which the body
moves.



In order to have a complete description of the motion, we must specify how the
body alters its position with time; i.e. for every point on the trajectory it
must be stated at what time the body is situated there. These data must be
supplemented by such a definition of time that, in virtue of this definition,
these time-values can be regarded essentially as magnitudes (results of
measurements) capable of observation. If we take our stand on the ground of
classical mechanics, we can satisfy this requirement for our illustration in
the following manner. We imagine two clocks of identical construction; the man
at the railway-carriage window is holding one of them, and the man on the
footpath the other. Each of the observers determines the position on his own
reference-body occupied by the stone at each tick of the clock he is holding in
his hand. In this connection we have not taken account of the inaccuracy
involved by the finiteness of the velocity of propagation of light. With this
and with a second difficulty prevailing here we shall have to deal in detail
later.




IV.

THE GALILEIAN SYSTEM OF CO-ORDINATES


As is well known, the fundamental law of the mechanics of Galilei-Newton, which
is known as the law of inertia, can be stated thus: A body removed sufficiently
far from other bodies continues in a state of rest or of uniform motion in a
straight line. This law not only says something about the motion of the bodies,
but it also indicates the reference-bodies or systems of coordinates,
permissible in mechanics, which can be used in mechanical description. The
visible fixed stars are bodies for which the law of inertia certainly holds to
a high degree of approximation. Now if we use a system of co-ordinates which is
rigidly attached to the earth, then, relative to this system, every fixed star
describes a circle of immense radius in the course of an astronomical day, a
result which is opposed to the statement of the law of inertia. So that if we
adhere to this law we must refer these motions only to systems of coordinates
relative to which the fixed stars do not move in a circle. A system of
co-ordinates of which the state of motion is such that the law of inertia holds
relative to it is called a “Galileian system of co-ordinates.” The
laws of the mechanics of Galilei-Newton can be regarded as valid only for a
Galileian system of co-ordinates.




V.

THE PRINCIPLE OF RELATIVITY (IN THE RESTRICTED SENSE)


In order to attain the greatest possible clearness, let us return to our
example of the railway carriage supposed to be travelling uniformly. We call
its motion a uniform translation (“uniform” because it is of constant
velocity and direction, “translation” because although the carriage
changes its position relative to the embankment yet it does not rotate in so
doing). Let us imagine a raven flying through the air in such a manner that its
motion, as observed from the embankment, is uniform and in a straight line. If
we were to observe the flying raven from the moving railway carriage. we should
find that the motion of the raven would be one of different velocity and
direction, but that it would still be uniform and in a straight line. Expressed
in an abstract manner we may say: If a mass m is moving uniformly in a
straight line with respect to a co-ordinate system K, then it will also be
moving uniformly and in a straight line relative to a second co-ordinate system
K′ provided that the latter is executing a uniform translatory motion with
respect to K. In accordance with the discussion contained in the preceding
section, it follows that:



If K is a Galileian co-ordinate system. then every other co-ordinate system K′
is a Galileian one, when, in relation to K, it is in a condition of uniform
motion of translation. Relative to K′ the mechanical laws of Galilei-Newton
hold good exactly as they do with respect to K.



We advance a step farther in our generalisation when we express the tenet thus:
If, relative to K, K′ is a uniformly moving co-ordinate system devoid of
rotation, then natural phenomena run their course with respect to K′ according
to exactly the same general laws as with respect to K. This statement is called
the principle of relativity (in the restricted sense).



As long as one was convinced that all natural phenomena were capable of
representation with the help of classical mechanics, there was no need to doubt
the validity of this principle of relativity. But in view of the more recent
development of electrodynamics and optics it became more and more evident that
classical mechanics affords an insufficient foundation for the physical
description of all natural phenomena. At this juncture the question of the
validity of the principle of relativity became ripe for discussion, and it did
not appear impossible that the answer to this question might be in the
negative.



Nevertheless, there are two general facts which at the outset speak very much
in favour of the validity of the principle of relativity. Even though classical
mechanics does not supply us with a sufficiently broad basis for the
theoretical presentation of all physical phenomena, still we must grant it a
considerable measure of “truth,” since it supplies us with the actual
motions of the heavenly bodies with a delicacy of detail little short of
wonderful. The principle of relativity must therefore apply with great accuracy
in the domain of mechanics. But that a principle of such broad generality
should hold with such exactness in one domain of phenomena, and yet should be
invalid for another, is a priori not very probable.



We now proceed to the second argument, to which, moreover, we shall return
later. If the principle of relativity (in the restricted sense) does not hold,
then the Galileian co-ordinate systems K, K′, K″, etc., which are moving
uniformly relative to each other, will not be equivalent for the description of
natural phenomena. In this case we should be constrained to believe that
natural laws are capable of being formulated in a particularly simple manner,
and of course only on condition that, from amongst all possible Galileian
co-ordinate systems, we should have chosen one (K0) of a particular
state of motion as our body of reference. We should then be justified (because
of its merits for the description of natural phenomena) in calling this system
“absolutely at rest,” and all other Galileian systems K
“in motion.” If, for instance, our embankment were the system
K0 then our railway carriage would be a system K, relative to which
less simple laws would hold than with respect to K0. This diminished
simplicity would be due to the fact that the carriage K would be in motion
(i.e. “really”)with respect to K0. In the general laws of
nature which have been formulated with reference to K, the magnitude and
direction of the velocity of the carriage would necessarily play a part. We
should expect, for instance, that the note emitted by an organpipe placed with
its axis parallel to the direction of travel would be different from that
emitted if the axis of the pipe were placed perpendicular to this direction.



Now in virtue of its motion in an orbit round the sun, our earth is comparable
with a railway carriage travelling with a velocity of about 30 kilometres per
second. If the principle of relativity were not valid we should therefore
expect that the direction of motion of the earth at any moment would enter into
the laws of nature, and also that physical systems in their behaviour would be
dependent on the orientation in space with respect to the earth. For owing to
the alteration in direction of the velocity of revolution of the earth in the
course of a year, the earth cannot be at rest relative to the hypothetical
system K0 throughout the whole year. However, the most careful
observations have never revealed such anisotropic properties in terrestrial
physical space, i.e. a physical non-equivalence of different directions. This
is very powerful argument in favour of the principle of relativity.




VI.

THE THEOREM OF THE ADDITION OF VELOCITIES EMPLOYED IN CLASSICAL MECHANICS


Let us suppose our old friend the railway carriage to be travelling along the
rails with a constant velocity v, and that a man traverses the length of the
carriage in the direction of travel with a velocity w. How quickly or, in other
words, with what velocity W does the man advance relative to the embankment
during the process? The only possible answer seems to result from the following
consideration: If the man were to stand still for a second, he would advance
relative to the embankment through a distance v equal numerically to the
velocity of the carriage. As a consequence of his walking, however, he
traverses an additional distance w relative to the carriage, and hence also
relative to the embankment, in this second, the distance w being numerically
equal to the velocity with which he is walking. Thus in total he covers the
distance W = v + w relative to the embankment in the second considered. We shall
see later that this result, which expresses the theorem of the addition of
velocities employed in classical mechanics, cannot be maintained; in other
words, the law that we have just written down does not hold in reality. For the
time being, however, we shall assume its correctness.




VII.

THE APPARENT INCOMPATIBILITY OF THE LAW OF PROPAGATION OF LIGHT WITH THE
PRINCIPLE OF RELATIVITY


There is hardly a simpler law in physics than that according to which light is
propagated in empty space. Every child at school knows, or believes he knows,
that this propagation takes place in straight lines with a velocity c = 300,000
km./sec. At all events we know with great exactness that this velocity is the
same for all colours, because if this were not the case, the minimum of
emission would not be observed simultaneously for different colours during the
eclipse of a fixed star by its dark neighbour. By means of similar
considerations based on observations of double stars, the Dutch astronomer De
Sitter was also able to show that the velocity of propagation of light cannot
depend on the velocity of motion of the body emitting the light. The assumption
that this velocity of propagation is dependent on the direction “in
space” is in itself improbable.



In short, let us assume that the simple law of the constancy of the velocity of
light c (in vacuum) is justifiably believed by the child at school. Who would
imagine that this simple law has plunged the conscientiously thoughtful
physicist into the greatest intellectual difficulties? Let us consider how
these difficulties arise.



Of course we must refer the process of the propagation of light (and indeed
every other process) to a rigid reference-body (co-ordinate system). As such a
system let us again choose our embankment. We shall imagine the air above it to
have been removed. If a ray of light be sent along the embankment, we see from
the above that the tip of the ray will be transmitted with the velocity c
relative to the embankment. Now let us suppose that our railway carriage is
again travelling along the railway lines with the velocity v, and that its
direction is the same as that of the ray of light, but its velocity of course
much less. Let us inquire about the velocity of propagation of the ray of light
relative to the carriage. It is obvious that we can here apply the
consideration of the previous section, since the ray of light plays the part of
the man walking along relatively to the carriage. The velocity W of the man
relative to the embankment is here replaced by the velocity of light relative
to the embankment. w is the required velocity of light with respect to the
carriage, and we have



w = c – v.



The velocity of propagation ot a ray of light relative to the carriage thus
comes out smaller than c.



But this result comes into conflict with the principle of relativity set forth
in Section V. For, like every other general law of nature, the law of the
transmission of light in vacuo [in vacuum] must, according to the principle of
relativity, be the same for the railway carriage as reference-body as when the
rails are the body of reference. But, from our above consideration, this would
appear to be impossible. If every ray of light is propagated relative to the
embankment with the velocity c, then for this reason it would appear that
another law of propagation of light must necessarily hold with respect to the
carriage—a result contradictory to the principle of relativity.



In view of this dilemma there appears to be nothing else for it than to abandon
either the principle of relativity or the simple law of the propagation of
light in vacuo. Those of you who have carefully followed the preceding
discussion are almost sure to expect that we should retain the principle of
relativity, which appeals so convincingly to the intellect because it is so
natural and simple. The law of the propagation of light in vacuo would then
have to be replaced by a more complicated law conformable to the principle of
relativity. The development of theoretical physics shows, however, that we
cannot pursue this course. The epoch-making theoretical investigations of H. A.
Lorentz on the electrodynamical and optical phenomena connected with moving
bodies show that experience in this domain leads conclusively to a theory of
electromagnetic phenomena, of which the law of the constancy of the velocity of
light in vacuo is a necessary consequence. Prominent theoretical physicists
were therefore more inclined to reject the principle of relativity, in spite of
the fact that no empirical data had been found which were contradictory to this
principle.



At this juncture the theory of relativity entered the arena. As a result of an
analysis of the physical conceptions of time and space, it became evident that
in reality there is not the least incompatibilitiy between the principle of
relativity and the law of propagation of light, and that by systematically
holding fast to both these laws a logically rigid theory could be arrived at.
This theory has been called the special theory of relativity to distinguish it
from the extended theory, with which we shall deal later. In the following
pages we shall present the fundamental ideas of the special theory of
relativity.




VIII.

ON THE IDEA OF TIME IN PHYSICS


Lightning has struck the rails on our railway embankment at two places A and B
far distant from each other. I make the additional assertion that these two
lightning flashes occurred simultaneously. If I ask you whether there is sense
in this statement, you will answer my question with a decided “Yes.”
But if I now approach you with the request to explain to me the sense of the
statement more precisely, you find after some consideration that the answer to
this question is not so easy as it appears at first sight.



After some time perhaps the following answer would occur to you: “The
significance of the statement is clear in itself and needs no further
explanation; of course it would require some consideration if I were to be
commissioned to determine by observations whether in the actual case the two
events took place simultaneously or not.” I cannot be satisfied with this
answer for the following reason. Supposing that as a result of ingenious
considerations an able meteorologist were to discover that the lightning must
always strike the places A and B simultaneously, then we should be faced with
the task of testing whether or not this theoretical result is in accordance
with the reality. We encounter the same difficulty with all physical statements
in which the conception “simultaneous” plays a part. The concept does
not exist for the physicist until he has the possibility of discovering whether
or not it is fulfilled in an actual case. We thus require a definition of
simultaneity such that this definition supplies us with the method by means of
which, in the present case, he can decide by experiment whether or not both the
lightning strokes occurred simultaneously. As long as this requirement is not
satisfied, I allow myself to be deceived as a physicist (and of course the same
applies if I am not a physicist), when I imagine that I am able to attach a
meaning to the statement of simultaneity. (I would ask the reader not to
proceed farther until he is fully convinced on this point.)



After thinking the matter over for some time you then offer the following
suggestion with which to test simultaneity. By measuring along the rails, the
connecting line AB should be measured up and an observer placed at the
mid-point M of the distance AB. This observer should be supplied with an
arrangement (e.g. two mirrors inclined at 90°) which allows him visually to
observe both places A and B at the same time. If the observer perceives the two
flashes of lightning at the same time, then they are simultaneous.



I am very pleased with this suggestion, but for all that I cannot regard the
matter as quite settled, because I feel constrained to raise the following
objection:
“Your definition would certainly be right, if only I knew that the light
by means of which the observer at M perceives the lightning flashes travels
along the length A → M with the same velocity as along the length B
→ M. But an examination of this supposition would only be possible if we
already had at our disposal the means of measuring time. It would thus appear
as though we were moving here in a logical circle.”



After further consideration you cast a somewhat disdainful glance at me—and
rightly so—and you declare:
“I maintain my previous definition nevertheless, because in reality it
assumes absolutely nothing about light. There is only one demand to be made of
the definition of simultaneity, namely, that in every real case it must supply
us with an empirical decision as to whether or not the conception that has to
be defined is fulfilled. That my definition satisfies this demand is
indisputable. That light requires the same time to traverse the path A →
M as for the path B → M is in reality neither a supposition nor a
hypothesis about the physical nature of light, but a stipulation which I can
make of my own freewill in order to arrive at a definition of
simultaneity.”



It is clear that this definition can be used to give an exact meaning not only
to two events, but to as many events as we care to choose, and
independently of the positions of the scenes of the events with respect to the
body of reference[7] (here the railway embankment). We are thus led also
to a definition of “time” in physics. For this purpose we suppose
that clocks of identical construction are placed at the points A, B and
C of the railway line (co-ordinate system) and that they are set in such
a manner that the positions of their pointers are simultaneously (in the above
sense) the same. Under these conditions we understand by the “time”
of an event the reading (position of the hands) of that one of these clocks
which is in the immediate vicinity (in space) of the event. In this manner a
time-value is associated with every event which is essentially capable of
observation.




 



 [7]
 We suppose further that, when three
events A, B and C occur in different places in such a manner
that, if A is simultaneous with B, and B is simultaneous
with C (simultaneous in the sense of the above definition), then the
criterion for the simultaneity of the pair of events A, C is also
satisfied. This assumption is a physical hypothesis about the law of
propagation of light; it must certainly be fulfilled if we are to maintain the
law of the constancy of the velocity of light in vacuo.



This stipulation contains a further physical hypothesis, the validity of which
will hardly be doubted without empirical evidence to the contrary. It has been
assumed that all these clocks go at the same rate if they are of identical
construction. Stated more exactly: When two clocks arranged at rest in
different places of a reference-body are set in such a manner that a particular
position of the pointers of the one clock is simultaneous (in the above sense)
with the same position, of the pointers of the other clock, then identical
“settings” are always simultaneous (in the sense of the above
definition).




IX.

THE RELATIVITY OF SIMULTANEITY


Up to now our considerations have been referred to a particular body of
reference, which we have styled a “railway embankment.” We suppose a
very long train travelling along the rails with the constant velocity v and in
the direction indicated in Fig 1. People travelling in this train will with a
vantage view the train as a rigid reference-body (co-ordinate system); they
regard all events in reference to the train. Then every event which takes place
along the line also takes place at a particular point of the train. Also the
definition of simultaneity can be given relative to the train in exactly the
same way as with respect to the embankment. As a natural consequence, however,
the following question arises:
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Are two events (e.g. the two strokes of lightning A and B) which are
simultaneous with reference to the railway embankment also simultaneous
relatively to the train? We shall show directly that the answer must be in the
negative.



When we say that the lightning strokes A and B are simultaneous with respect to
be embankment, we mean: the rays of light emitted at the places A and B, where
the lightning occurs, meet each other at the mid-point M of the length
A → B of the embankment. But the events A and B also correspond
to positions A and B on the train. Let M′ be the mid-point of the distance A
→ B on the travelling train. Just when the flashes (as judged from the
embankment) of lightning occur, this point M′ naturally coincides with the
point M but it moves towards the right in the diagram with the velocity v of
the train. If an observer sitting in the position M′ in the train did not
possess this velocity, then he would remain permanently at M, and the light
rays emitted by the flashes of lightning A and B would reach him
simultaneously, i.e. they would meet just where he is situated. Now in reality
(considered with reference to the railway embankment) he is hastening towards
the beam of light coming from B, whilst he is riding on ahead of the beam of
light coming from A. Hence the observer will see the beam of light emitted from
B earlier than he will see that emitted from A. Observers who take the railway
train as their reference-body must therefore come to the conclusion that the
lightning flash B took place earlier than the lightning flash A. We thus arrive
at the important result:



Events which are simultaneous with reference to the embankment are not
simultaneous with respect to the train, and vice versa (relativity of
simultaneity). Every reference-body (co-ordinate system) has its own particular
time; unless we are told the reference-body to which the statement of time
refers, there is no meaning in a statement of the time of an event.



Now before the advent of the theory of relativity it had always tacitly been
assumed in physics that the statement of time had an absolute significance,
i.e. that it is independent of the state of motion of the body of reference.
But we have just seen that this assumption is incompatible with the most
natural definition of simultaneity; if we discard this assumption, then the
conflict between the law of the propagation of light in vacuo and the principle
of relativity (developed in Section VII) disappears.



We were led to that conflict by the considerations of Section VI, which are now
no longer tenable. In that section we concluded that the man in the carriage,
who traverses the distance w per second relative to the carriage, traverses the
same distance also with respect to the embankment in each second of time. But,
according to the foregoing considerations, the time required by a particular
occurrence with respect to the carriage must not be considered equal to the
duration of the same occurrence as judged from the embankment (as
reference-body). Hence it cannot be contended that the man in walking travels
the distance w relative to the railway line in a time which is equal to one
second as judged from the embankment.



Moreover, the considerations of Section VI are based on yet a second assumption,
which, in the light of a strict consideration, appears to be arbitrary,
although it was always tacitly made even before the introduction of the theory
of relativity.




X.

ON THE RELATIVITY OF THE CONCEPTION OF DISTANCE


Let us consider two particular points on the train [8] travelling
along the embankment with the velocity v, and inquire as to their distance
apart. We already know that it is necessary to have a body of reference for the
measurement of a distance, with respect to which body the distance can be
measured up. It is the simplest plan to use the train itself as reference-body
(co-ordinate system). An observer in the train measures the interval by marking
off his measuring-rod in a straight line (e.g. along the floor of the carriage)
as many times as is necessary to take him from the one marked point to the
other. Then the number which tells us how often the rod has to be laid down is
the required distance.




 



 [8]
 e.g. the middle of the first and
of the hundredth carriage.



It is a different matter when the distance has to be judged from the railway
line. Here the following method suggests itself. If we call A′ and B′ the two
points on the train whose distance apart is required, then both of these points
are moving with the velocity v along the embankment. In the first place we
require to determine the points A and B of the embankment which are just being
passed by the two points A′ and B′ at a particular time t—judged from the
embankment. These points A and B of the embankment can be determined by
applying the definition of time given in Section VIII. The distance between these
points A and B is then measured by repeated application of the measuring-rod
along the embankment.



A priori it is by no means certain that this last measurement will supply us
with the same result as the first. Thus the length of the train as measured
from the embankment may be different from that obtained by measuring in the
train itself. This circumstance leads us to a second objection which must be
raised against the apparently obvious consideration of Section VI. Namely, if
the man in the carriage covers the distance w in a unit of time—measured from
the train,—then this distance—as measured from the embankment is not
necessarily also equal to w.




XI.

THE LORENTZ TRANSFORMATION


The results of the last three sections show that the apparent incompatibility
of the law of propagation of light with the principle of relativity (Section VII)
has been derived by means of a consideration which borrowed two unjustifiable
hypotheses from classical mechanics; these are as follows:



(1) The time-interval (time) between two events is independent of the condition
of motion of the body of reference.



(2) The space-interval (distance) between two points of a rigid body is
independent of the condition of motion of the body of reference.



If we drop these hypotheses, then the dilemma of Section VII disappears, because
the theorem of the addition of velocities derived in Section VI becomes invalid.
The possibility presents itself that the law of the propagation of light in
vacuo may be compatible with the principle of relativity, and the question
arises: How have we to modify the considerations of Section VI in order to
remove the apparent disagreement between these two fundamental results of
experience? This question leads to a general one. In the discussion of Section
VI we have to do with places and times relative both to the train and to the
embankment. How are we to find the place and time of an event in relation to
the train, when we know the place and time of the event with respect to the
railway embankment? Is there a thinkable answer to this question of such a
nature that the law of transmission of light in vacuo does not contradict the
principle of relativity? In other words: Can we conceive of a relation between
place and time of the individual events relative to both reference-bodies, such
that every ray of light possesses the velocity of transmission c relative to
the embankment and relative to the train? This question leads to a quite
definite positive answer, and to a perfectly definite transformation law for
the space-time magnitudes of an event when changing over from one body of
reference to another.



Before we deal with this, we shall introduce the following incidental
consideration. Up to the present we have only considered events taking place
along the embankment, which had mathematically to assume the function of a
straight line. In the manner indicated in Section II we can imagine this
reference-body supplemented laterally and in a vertical direction by means of a
framework of rods, so that an event which takes place anywhere can be localised
with reference to this framework.
Similarly, we can imagine the train travelling with the velocity v to be
continued across the whole of space, so that every event, no matter how far off
it may be, could also be localised with respect to the second framework.
Without committing any fundamental error, we can disregard the fact that in
reality these frameworks would continually interfere with each other, owing to
the impenetrability of solid bodies. In every such framework we imagine three
surfaces perpendicular to each other marked out, and designated as
“co-ordinate planes” (“co-ordinate system”). A co-ordinate
system K then corresponds to the embankment, and a co-ordinate system K′ to the
train. An event, wherever it may have taken place, would be fixed in space with
respect to K by the three perpendiculars x, y, z on the co-ordinate planes, and
with regard to time by a time value t. Relative to K′, the same event would be
fixed in respect of space and time by corresponding values x′, y′, z′, t′,
which of course are not identical with x, y, z, t. It has already been set
forth in detail how these magnitudes are to be regarded as results of physical
measurements.
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Obviously our problem can be exactly formulated in the following manner. What
are the values x′, y′, z′, t′, of an event with respect to K′, when the
magnitudes x, y, z, t, of the same event with respect to K are given? The
relations must be so chosen that the law of the transmission of light in vacuo
is satisfied for one and the same ray of light (and of course for every ray)
with respect to K and K′. For the relative orientation in space of the
co-ordinate systems indicated in the diagram (Fig. 2), this problem is solved
by means of the equations:
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y′ = y



z′ = z
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This system of equations is known as the “Lorentz
transformation.”[9]




 



 [9]
 A simple derivation of the Lorentz
transformation is given in Appendix I.



If in place of the law of transmission of light we had taken as our basis the
tacit assumptions of the older mechanics as to the absolute character of times
and lengths, then instead of the above we should have obtained the following
equations:



x′ = x – vt



y′ = y



z′ = z



t′ = t



This system of equations is often termed the “Galilei
transformation.” The Galilei transformation can be obtained from the
Lorentz transformation by substituting an infinitely large value for the
velocity of light c in the latter transformation.



Aided by the following illustration, we can readily see that, in accordance
with the Lorentz transformation, the law of the transmission of light in vacuo
is satisfied both for the reference-body K and for the reference-body K′. A
light-signal is sent along the positive x-axis, and this light-stimulus
advances in accordance with the equation



x = ct,



i.e. with the velocity c. According to the equations of the Lorentz
transformation, this simple relation between x and t involves a relation
between x′ and t′. In point of fact, if we substitute for x the value ct in the
first and fourth equations of the Lorentz transformation, we obtain:
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from which, by division, the expression



x′ = ct′



immediately follows. If referred to the system K′, the propagation of light
takes place according to this equation. We thus see that the velocity of
transmission relative to the reference-body K′ is also equal to c. The same
result is obtained for rays of light advancing in any other direction
whatsoever. Of cause this is not surprising, since the equations of the Lorentz
transformation were derived conformably to this point of view.




XII.

THE BEHAVIOUR OF MEASURING-RODS AND CLOCKS IN MOTION


Place a metre-rod in the x′-axis of K′ in such a manner that one end (the
beginning) coincides with the point x′ = 0 whilst the other end (the end of the
rod) coincides with the point x′ = 1. What is the length of the metre-rod
relatively to the system K? In order to learn this, we need only ask where the
beginning of the rod and the end of the rod lie with respect to K at a
particular time t of the system K. By means of the first equation of the
Lorentz transformation the values of these two points at the time t = 0 can be
shown to be
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the distance between the points being
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But the metre-rod is moving with the velocity v relative to K. It therefore
follows that the length of a rigid metre-rod moving in the direction of its
length with a velocity v is
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of a metre. The rigid rod is thus shorter when in motion than when at rest, and
the more quickly it is moving, the shorter is the rod. For the velocity v = c we
should have
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and for still greater velocities the square-root becomes imaginary. From this
we conclude that in the theory of relativity the velocity c plays the
part of a limiting velocity, which can neither be reached nor exceeded by any
real body.



Of course this feature of the velocity c as a limiting velocity also clearly
follows from the equations of the Lorentz transformation, for these became
meaningless if we choose values of v greater than c.



If, on the contrary, we had considered a metre-rod at rest in the x-axis with
respect to K, then we should have found that the length of the rod as judged
from K′ would have been
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this is quite in accordance with the principle of relativity which forms the
basis of our considerations.



A priori it is quite clear that we must be able to learn something about the
physical behaviour of measuring-rods and clocks from the equations of
transformation, for the magnitudes z, y, x, t, are nothing more nor less than
the results of measurements obtainable by means of measuring-rods and clocks.
If we had based our considerations on the Galileian transformation we should
not have obtained a contraction of the rod as a consequence of its motion.



Let us now consider a seconds-clock which is permanently situated at the origin
(x′ = 0) of K′. t′ = 0 and t′ = 1 are two successive ticks of this clock. The first
and fourth equations of the Lorentz transformation give for these two ticks:



t = 0



and



image011






As judged from K, the clock is moving with the velocity v; as judged from this
reference-body, the time which elapses between two strokes of the clock is not
one second, but
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seconds, i.e. a somewhat larger time. As a consequence of its motion the clock
goes more slowly than when at rest. Here also the velocity c plays the part of
an unattainable limiting velocity.




XIII.

THEOREM OF THE ADDITION OF VELOCITIES. THE EXPERIMENT OF FIZEAU


Now in practice we can move clocks and measuring-rods only with velocities that
are small compared with the velocity of light; hence we shall hardly be able to
compare the results of the previous section directly with the reality. But, on
the other hand, these results must strike you as being very singular, and for
that reason I shall now draw another conclusion from the theory, one which can
easily be derived from the foregoing considerations, and which has been most
elegantly confirmed by experiment.



In Section VI we derived the theorem of the addition of velocities in one
direction in the form which also results from the hypotheses of classical
mechanics. This theorem can also be deduced readily from the Galilei
transformation (Section XI). In place of the man walking inside the carriage,
we introduce a point moving relatively to the co-ordinate system K′ in
accordance with the equation



x′ = wt′



By means of the first and fourth equations of the Galilei transformation we can
express x′ and t′ in terms of x and t, and we then obtain



x = (v + w)t



This equation expresses nothing else than the law of motion of the point with
reference to the system K (of the man with reference to the embankment). We
denote this velocity by the symbol W, and we then obtain, as in Section VI,



W = v + w . . . . . . . (A).



But we can carry out this consideration just as well on the basis of the theory
of relativity. In the equation



x′ = wt′



we must then express x′ and t′ in terms of x and t, making use of the first and
fourth equations of the Lorentz transformation. Instead of the equation (A) we
then obtain the equation
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which corresponds to the theorem of addition for velocities in one direction
according to the theory of relativity. The question now arises as to which of
these two theorems is the better in accord with experience. On this point we
are enlightened by a most important experiment which the brilliant physicist
Fizeau performed more than half a century ago, and which has been repeated
since then by some of the best experimental physicists, so that there can be no
doubt about its result. The experiment is concerned with the following
question. Light travels in a motionless liquid with a particular velocity
w. How quickly does it travel in the direction of the arrow in the tube
T (see the accompanying diagram, Fig. 3) when the liquid above mentioned
is flowing through the tube with a velocity v?
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In accordance with the principle of relativity we shall certainly have to take
for granted that the propagation of light always takes place with the same
velocity w with respect to the liquid, whether the latter is in motion with
reference to other bodies or not. The velocity of light relative to the liquid
and the velocity of the latter relative to the tube are thus known, and we
require the velocity of light relative to the tube.



It is clear that we have the problem of Section VI again before us. The tube
plays the part of the railway embankment or of the co-ordinate system K,
the liquid plays the part of the carriage or of the co-ordinate system
K′, and finally, the light plays the part of the man walking
along the carriage, or of the moving point in the present section. If we denote
the velocity of the light relative to the tube by W, then this is given
by the equation (A) or (B), according as the Galilei transformation or the
Lorentz transformation corresponds to the facts. Experiment[10] decides
in favour of equation (B) derived from the theory of relativity, and the
agreement is, indeed, very exact. According to recent and most excellent
measurements by Zeeman, the influence of the velocity of flow v on the
propagation of light is represented by formula (B) to within one per cent.




 



 [10]
 Fizeau found
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where
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is the index of refraction of the liquid. On the other hand, owing to the
smallness of
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as compared with 1, we can replace (B) in the first place by
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or to the same order of approximation by
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which agrees with Fizeau’s result.



Nevertheless we must now draw attention to the fact that a theory of this
phenomenon was given by H. A. Lorentz long before the statement of the theory
of relativity. This theory was of a purely electrodynamical nature, and was
obtained by the use of particular hypotheses as to the electromagnetic
structure of matter. This circumstance, however, does not in the least diminish
the conclusiveness of the experiment as a crucial test in favour of the theory
of relativity, for the electrodynamics of Maxwell-Lorentz, on which the
original theory was based, in no way opposes the theory of relativity. Rather
has the latter been developed trom electrodynamics as an astoundingly simple
combination and generalisation of the hypotheses, formerly independent of each
other, on which electrodynamics was built.




XIV.

THE HEURISTIC VALUE OF THE THEORY OF RELATIVITY


Our train of thought in the foregoing pages can be epitomised in the following
manner. Experience has led to the conviction that, on the one hand, the
principle of relativity holds true and that on the other hand the velocity of
transmission of light in vacuo has to be considered equal to a constant c. By
uniting these two postulates we obtained the law of transformation for the
rectangular co-ordinates x, y, z and the time t of the events which constitute
the processes of nature. In this connection we did not obtain the Galilei
transformation, but, differing from classical mechanics, the Lorentz
transformation.



The law of transmission of light, the acceptance of which is justified by our
actual knowledge, played an important part in this process of thought. Once in
possession of the Lorentz transformation, however, we can combine this with the
principle of relativity, and sum up the theory thus:



Every general law of nature must be so constituted that it is transformed into
a law of exactly the same form when, instead of the space-time variables x, y,
z, t of the original coordinate system K, we introduce new space-time variables
x′, y′, z′, t′ of a co-ordinate system K′. In this connection the relation
between the ordinary and the accented magnitudes is given by the Lorentz
transformation. Or in brief: General laws of nature are co-variant with
respect to Lorentz transformations.



This is a definite mathematical condition that the theory of relativity demands
of a natural law, and in virtue of this, the theory becomes a valuable
heuristic aid in the search for general laws of nature. If a general law of
nature were to be found which did not satisfy this condition, then at least one
of the two fundamental assumptions of the theory would have been disproved. Let
us now examine what general results the latter theory has hitherto evinced.




XV.

GENERAL RESULTS OF THE THEORY


It is clear from our previous considerations that the (special) theory of
relativity has grown out of electrodynamics and optics. In these fields it has
not appreciably altered the predictions of theory, but it has considerably
simplified the theoretical structure, i.e. the derivation of laws, and—what is
incomparably more important—it has considerably reduced the number of
independent hypotheses forming the basis of theory. The special theory of
relativity has rendered the Maxwell-Lorentz theory so plausible, that the
latter would have been generally accepted by physicists even if experiment had
decided less unequivocally in its favour.



Classical mechanics required to be modified before it could come into line with
the demands of the special theory of relativity. For the main part, however,
this modification affects only the laws for rapid motions, in which the
velocities of matter v are not very small as compared with the velocity of
light. We have experience of such rapid motions only in the case of electrons
and ions; for other motions the variations from the laws of classical mechanics
are too small to make themselves evident in practice. We shall not consider the
motion of stars until we come to speak of the general theory of relativity. In
accordance with the theory of relativity the kinetic energy of a material point
of mass m is no longer given by the well-known expression
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but by the expression
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This expression approaches infinity as the velocity v approaches the velocity
of light c. The velocity must therefore always remain less than c, however
great may be the energies used to produce the acceleration. If we develop the
expression for the kinetic energy in the form of a series, we obtain
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When
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is small compared with unity, the third of these terms is always small in
comparison with the second, which last is alone considered in classical
mechanics. The first term mc2 does not contain the velocity, and
requires no consideration if we are only dealing with the question as to how
the energy of a point-mass; depends on the velocity. We shall speak of its
essential significance later.



The most important result of a general character to which the special theory of
relativity has led is concerned with the conception of mass. Before the advent
of relativity, physics recognised two conservation laws of fundamental
importance, namely, the law of the conservation of energy and the law of the
conservation of mass these two fundamental laws appeared to be quite
independent of each other. By means of the theory of relativity they have been
united into one law. We shall now briefly consider how this unification came
about, and what meaning is to be attached to it.



The principle of relativity requires that the law of the conservation of energy
should hold not only with reference to a co-ordinate system K, but also with
respect to every co-ordinate system K′ which is in a state of uniform motion of
translation relative to K, or, briefly, relative to every “Galileian”
system of co-ordinates. In contrast to classical mechanics; the Lorentz
transformation is the deciding factor in the transition from one such system to
another.



By means of comparatively simple considerations we are led to draw the
following conclusion from these premises, in conjunction with the fundamental
equations of the electrodynamics of Maxwell: A body moving with the velocity v,
which absorbs[11] an amount of energy E0 in the form of
radiation without suffering an alteration in velocity in the process, has, as a
consequence, its energy increased by an amount
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 [11]
 E0 is the energy
taken up, as judged from a co-ordinate system moving with the body.



In consideration of the expression given above for the kinetic energy of the
body, the required energy of the body comes out to be
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Thus the body has the same energy as a body of mass
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moving with the velocity v. Hence we can say: If a body takes up an amount of
energy E0, then its inertial mass increases by an amount
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the inertial mass of a body is not a constant but varies according to the
change in the energy of the body. The inertial mass of a system of bodies can
even be regarded as a measure of its energy. The law of the conservation of the
mass of a system becomes identical with the law of the conservation of energy,
and is only valid provided that the system neither takes up nor sends out
energy. Writing the expression for the energy in the form
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we see that the term mc2, which has hitherto attracted our
attention, is nothing else than the energy possessed by the body[12]
before it absorbed the energy E0.




 



 [12]
 As judged from a co-ordinate system
moving with the body.



A direct comparison of this relation with experiment is not possible at the
present time (1920; see[Note], p. 48), owing to the fact that the
changes in energy E0 to which we can subject a system are not large
enough to make themselves perceptible as a change in the inertial mass of the
system.
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is too small in comparison with the mass m, which was present before the
alteration of the energy. It is owing to this circumstance that classical
mechanics was able to establish successfully the conservation of mass as a law
of independent validity.




 



 [Note]
 The equation E = mc2
has been thoroughly proved time and again since this time.



Let me add a final remark of a fundamental nature. The success of the
Faraday-Maxwell interpretation of electromagnetic action at a distance resulted
in physicists becoming convinced that there are no such things as instantaneous
actions at a distance (not involving an intermediary medium) of the type of
Newton’s law of gravitation.



According to the theory of relativity, action at a distance with the velocity
of light always takes the place of instantaneous action at a distance or of
action at a distance with an infinite velocity of transmission. This is
connected with the fact that the velocity c plays a fundamental role in this
theory. In Part II we shall see in what way this result becomes modified in the
general theory of relativity.




XVI.

EXPERIENCE AND THE SPECIAL THEORY OF RELATIVITY


To what extent is the special theory of relativity supported by experience?
This question is not easily answered for the reason already mentioned in
connection with the fundamental experiment of Fizeau. The special theory of
relativity has crystallised out from the Maxwell-Lorentz theory of
electromagnetic phenomena. Thus all facts of experience which support the
electromagnetic theory also support the theory of relativity. As being of
particular importance, I mention here the fact that the theory of relativity
enables us to predict the effects produced on the light reaching us from the
fixed stars. These results are obtained in an exceedingly simple manner, and
the effects indicated, which are due to the relative motion of the earth with
reference to those fixed stars are found to be in accord with experience. We
refer to the yearly movement of the apparent position of the fixed stars
resulting from the motion of the earth round the sun (aberration), and to the
influence of the radial components of the relative motions of the fixed stars
with respect to the earth on the colour of the light reaching us from them. The
latter effect manifests itself in a slight displacement of the spectral lines
of the light transmitted to us from a fixed star, as compared with the position
of the same spectral lines when they are produced by a terrestrial source of
light (Doppler principle). The experimental arguments in favour of the
Maxwell-Lorentz theory, which are at the same time arguments in favour of the
theory of relativity, are too numerous to be set forth here. In reality they
limit the theoretical possibilities to such an extent, that no other theory
than that of Maxwell and Lorentz has been able to hold its own when tested by
experience.



But there are two classes of experimental facts hitherto obtained which can be
represented in the Maxwell-Lorentz theory only by the introduction of an
auxiliary hypothesis, which in itself—i.e. without making use of the theory of
relativity—appears extraneous.



It is known that cathode rays and the so-called β-rays emitted by
radioactive substances consist of negatively electrified particles (electrons)
of very small inertia and large velocity. By examining the deflection of these
rays under the influence of electric and magnetic fields, we can study the law
of motion of these particles very exactly.



In the theoretical treatment of these electrons, we are faced with the
difficulty that electrodynamic theory of itself is unable to give an account of
their nature. For since electrical masses of one sign repel each other, the
negative electrical masses constituting the electron would necessarily be
scattered under the influence of their mutual repulsions, unless there are
forces of another kind operating between them, the nature of which has hitherto
remained obscure to us.[13] If we now assume that the relative
distances between the electrical masses constituting the electron remain
unchanged during the motion of the electron (rigid connection in the sense of
classical mechanics), we arrive at a law of motion of the electron which does
not agree with experience. Guided by purely formal points of view, H. A.
Lorentz was the first to introduce the hypothesis that the form of the electron
experiences a contraction in the direction of motion in consequence of that
motion. the contracted length being proportional to the expression
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This, hypothesis, which is not justifiable by any electrodynamical facts,
supplies us then with that particular law of motion which has been confirmed
with great precision in recent years.




 



 [13]
 The general theory of relativity
renders it likely that the electrical masses of an electron are held together
by gravitational forces.



The theory of relativity leads to the same law of motion, without requiring any
special hypothesis whatsoever as to the structure and the behaviour of the
electron. We arrived at a similar conclusion in Section XIII in connection with
the experiment of Fizeau, the result of which is foretold by the theory of
relativity without the necessity of drawing on hypotheses as to the physical
nature of the liquid.



The second class of facts to which we have alluded has reference to the
question whether or not the motion of the earth in space can be made
perceptible in terrestrial experiments. We have already remarked in Section V
that all attempts of this nature led to a negative result. Before the theory of
relativity was put forward, it was difficult to become reconciled to this
negative result, for reasons now to be discussed. The inherited prejudices
about time and space did not allow any doubt to arise as to the prime
importance of the Galileian transformation for changing over from one body of
reference to another. Now assuming that the Maxwell-Lorentz equations hold for
a reference-body K, we then find that they do not hold for a reference-body K′
moving uniformly with respect to K, if we assume that the relations of the
Galileian transformation exist between the co-ordinates of K and K′. It thus
appears that, of all Galileian co-ordinate systems, one (K) corresponding to a
particular state of motion is physically unique. This result was interpreted
physically by regarding K as at rest with respect to a hypothetical æther of
space. On the other hand, all coordinate systems K′ moving relatively to K were
to be regarded as in motion with respect to the æther. To this motion of K′
against the æther (“æther-drift” relative to K′) were attributed the
more complicated laws which were supposed to hold relative to K′. Strictly
speaking, such an æther-drift ought also to be assumed relative to the earth,
and for a long time the efforts of physicists were devoted to attempts to
detect the existence of an æther-drift at the earth’s surface.



In one of the most notable of these attempts Michelson devised a method which
appears as though it must be decisive. Imagine two mirrors so arranged on a
rigid body that the reflecting surfaces face each other. A ray of light
requires a perfectly definite time T to pass from one mirror to the other and
back again, if the whole system be at rest with respect to the æther. It is
found by calculation, however, that a slightly different time T′ is required
for this process, if the body, together with the mirrors, be moving relatively
to the æther. And yet another point: it is shown by calculation that for a
given velocity v with reference to the æther, this time T′ is different when
the body is moving perpendicularly to the planes of the mirrors from that
resulting when the motion is parallel to these planes. Although the estimated
difference between these two times is exceedingly small, Michelson and Morley
performed an experiment involving interference in which this difference should
have been clearly detectable. But the experiment gave a negative result—a fact
very perplexing to physicists. Lorentz and FitzGerald rescued the theory from
this difficulty by assuming that the motion of the body relative to the æther
produces a contraction of the body in the direction of motion, the amount of
contraction being just sufficient to compensate for the difference in time
mentioned above. Comparison with the discussion in Section XII shows that also
from the standpoint of the theory of relativity this solution of the difficulty
was the right one. But on the basis of the theory of relativity the method of
interpretation is incomparably more satisfactory. According to this theory
there is no such thing as a “specially favoured” (unique) co-ordinate
system to occasion the introduction of the æther-idea, and hence there can be
no æther-drift, nor any experiment with which to demonstrate it. Here the
contraction of moving bodies follows from the two fundamental principles of the
theory, without the introduction of particular hypotheses; and as the prime
factor involved in this contraction we find, not the motion in itself, to which
we cannot attach any meaning, but the motion with respect to the body of
reference chosen in the particular case in point. Thus for a co-ordinate system
moving with the earth the mirror system of Michelson and Morley is not
shortened, but it is shortened for a co-ordinate system which is at rest
relatively to the sun.




XVII.

MINKOWSKI’S FOUR-DIMENSIONAL SPACE


The non-mathematician is seized by a mysterious shuddering when he hears of
“four-dimensional” things, by a feeling not unlike that awakened by
thoughts of the occult. And yet there is no more common-place statement than
that the world in which we live is a four-dimensional space-time continuum.



Space is a three-dimensional continuum. By this we mean that it is possible to
describe the position of a point (at rest) by means of three numbers
(co-ordinates) x, y, z, and that there is an indefinite number of points in the
neighbourhood of this one, the position of which can be described by
co-ordinates such as x1, y1, z1, which may be
as near as we choose to the respective values of the co-ordinates x, y, z, of
the first point. In virtue of the latter property we speak of a
“continuum,” and owing to the fact that there are three co-ordinates
we speak of it as being “three-dimensional.”



Similarly, the world of physical phenomena which was briefly called
“world” by Minkowski is naturally four dimensional in the space-time
sense. For it is composed of individual events, each of which is described by
four numbers, namely, three space co-ordinates x, y, z, and a time co-ordinate,
the time value t. The “world” is in this sense
also a continuum; for to every event there are as many “neighbouring”
events (realised or at least thinkable) as we care to choose, the co-ordinates
x1, y1, z1, t1 of which differ by
an indefinitely small amount from those of the event x, y, z, t originally
considered. That we have not been accustomed to regard the world in this sense
as a four-dimensional continuum is due to the fact that in physics, before the
advent of the theory of relativity, time played a different and more
independent rôle, as compared with the space coordinates. It is for this reason
that we have been in the habit of treating time as an independent continuum. As
a matter of fact, according to classical mechanics, time is absolute, i.e. it
is independent of the position and the condition of motion of the system of
co-ordinates. We see this expressed in the last equation of the Galileian
transformation (t′ = t).



The four-dimensional mode of consideration of the “world” is natural
on the theory of relativity, since according to this theory time is robbed of
its independence. This is shown by the fourth equation of the Lorentz
transformation:
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Moreover, according to this equation the time difference Δt′ of two events
with respect to K′ does not in general vanish, even when the time difference
Δt of the same events with reference to K vanishes. Pure
“space-distance” of two events with respect to K results in
“time-distance ” of the same events with respect to K. But the
discovery of Minkowski, which was of importance for the formal development of
the theory of relativity, does not lie here. It is to be found rather in the
fact of his recognition that the four-dimensional space-time continuum of the
theory of relativity, in its most essential formal properties, shows a
pronounced relationship to the three-dimensional continuum of Euclidean
geometrical space.[14] In order to give due prominence to this
relationship, however, we must replace the usual time co-ordinate t by an
imaginary magnitude
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proportional to it. Under these conditions, the natural laws satisfying the
demands of the (special) theory of relativity assume mathematical forms, in
which the time co-ordinate plays exactly the same role as the three space
co-ordinates. Formally, these four co-ordinates correspond exactly to the
three space co-ordinates in Euclidean geometry. It must be clear even to the
non-mathematician that, as a consequence of this purely formal addition to our
knowledge, the theory perforce gained clearness in no mean measure.




 



 [14]
 Cf. the somewhat more detailed
discussion in Appendix II.



These inadequate remarks can give the reader only a vague notion of the
important idea contributed by Minkowski. Without it the general theory of
relativity, of which the fundamental ideas are developed in the following
pages, would perhaps have got no farther than its long clothes. Minkowski’s
work is doubtless difficult of access to anyone inexperienced in mathematics,
but since it is not necessary to have a very exact grasp of this work in order
to understand the fundamental ideas of either the special or the general theory
of relativity, I shall leave it here at present, and revert to it only towards
the end of Part II.




PART II: THE GENERAL THEORY OF RELATIVITY



XVIII.

SPECIAL AND GENERAL PRINCIPLE OF RELATIVITY


The basal principle, which was the pivot of all our previous considerations,
was the special principle of relativity, i.e. the principle of the physical
relativity of all uniform motion. Let as once more analyse its meaning
carefully.



It was at all times clear that, from the point of view of the idea it conveys
to us, every motion must be considered only as a relative motion. Returning to
the illustration we have frequently used of the embankment and the railway
carriage, we can express the fact of the motion here taking place in the
following two forms, both of which are equally justifiable:



(a) The carriage is in motion relative to the embankment,



(b) The embankment is in motion relative to the carriage.



In (a) the embankment, in (b) the carriage, serves as the body of reference in
our statement of the motion taking place. If it is simply a question of
detecting or of describing the motion involved, it is in principle immaterial
to what reference-body we refer the motion. As already mentioned, this is
self-evident, but it must not be confused with the much more comprehensive
statement called “the principle of relativity,” which we have taken
as the basis of our investigations.



The principle we have made use of not only maintains that we may equally well
choose the carriage or the embankment as our reference-body for the description
of any event (for this, too, is self-evident). Our principle rather asserts
what follows: If we formulate the general laws of nature as they are obtained
from experience, by making use of



(a) the embankment as reference-body,



(b) the railway carriage as reference-body,



then these general laws of nature (e.g. the laws of mechanics or the law of the
propagation of light in vacuo) have exactly the same form in both cases. This
can also be expressed as follows: For the physical description of natural
processes, neither of the reference bodies K, K′ is unique (lit.
“specially marked out”) as compared with the other. Unlike the first,
this latter statement need not of necessity hold a priori; it is not contained
in the conceptions of “motion” and “reference-body” and
derivable from them; only experience can decide as to its correctness or
incorrectness.



Up to the present, however, we have by no means maintained the equivalence of
all bodies of reference K in connection with the formulation of natural laws.
Our course was more on the following Iines. In the first place, we started out
from the assumption that there exists a reference-body K, whose condition of
motion is such that the Galileian law holds with respect to it: A particle
left to itself and sufficiently far removed from all other particles moves
uniformly in a straight line. With reference to K (Galileian reference-body)
the laws of nature were to be as simple as possible. But in addition to K, all
bodies of reference K′ should be given preference in this sense, and they
should be exactly equivalent to K for the formulation of natural laws, provided
that they are in a state of uniform rectilinear and non-rotary motion with
respect to K; all these bodies of reference are to be regarded as Galileian
reference-bodies. The validity of the principle of relativity was assumed only
for these reference-bodies, but not for others (e.g. those possessing motion of
a different kind). In this sense we speak of the special principle of
relativity, or special theory of relativity.



In contrast to this we wish to understand by the “general principle of
relativity” the following statement: All bodies of reference K, K′, etc.,
are equivalent for the description of natural phenomena (formulation of the
general laws of nature), whatever may be their state of motion. But before
proceeding farther, it ought to be pointed out that this formulation must be
replaced later by a more abstract one, for reasons which will become evident at
a later stage.



Since the introduction of the special principle of relativity has been
justified, every intellect which strives after generalisation must feel the
temptation to venture the step towards the general principle of relativity. But
a simple and apparently quite reliable consideration seems to suggest that, for
the present at any rate, there is little hope of success in such an attempt;
Let us imagine ourselves transferred to our old friend the railway carriage,
which is travelling at a uniform rate. As long as it is moving uniformly, the
occupant of the carriage is not sensible of its motion, and it is for this
reason that he can without reluctance interpret the facts of the case as
indicating that the carriage is at rest, but the embankment in motion.
Moreover, according to the special principle of relativity, this interpretation
is quite justified also from a physical point of view. If the motion of the
carriage is now changed into a non-uniform motion, as for instance by a
powerful application of the brakes, then the occupant of the carriage
experiences a correspondingly powerful jerk forwards. The retarded motion is
manifested in the mechanical behaviour of bodies relative to the person in the
railway carriage. The mechanical behaviour is different from that of the case
previously considered, and for this reason it would appear to be impossible
that the same mechanical laws hold relatively to the non-uniformly moving
carriage, as hold with reference to the carriage when at rest or in uniform
motion. At all events it is clear that the Galileian law does not hold with
respect to the non-uniformly moving carriage. Because of this, we feel
compelled at the present juncture to grant a kind of absolute physical reality
to non-uniform motion, in opposition to the general principle of relativity.
But in what follows we shall soon see that this conclusion cannot be
maintained.




XIX.

THE GRAVITATIONAL FIELD


“If we pick up a stone and then let it go, why does it fall to the
ground?” The usual answer to this question is: “Because it is
attracted by the earth.” Modern physics formulates the answer rather
differently for the following reason. As a result of the more careful study of
electromagnetic phenomena, we have come to regard action at a distance as a
process impossible without the intervention of some intermediary medium. If,
for instance, a magnet attracts a piece of iron, we cannot be content to regard
this as meaning that the magnet acts directly on the iron through the
intermediate empty space, but we are constrained to imagine—after the
manner of Faraday—that the magnet always calls into being something
physically real in the space around it, that something being what we call a
“magnetic field.” In its turn this magnetic field operates on the
piece of iron, so that the latter strives to move towards the magnet. We shall
not discuss here the justification for this incidental conception, which is
indeed a somewhat arbitrary one. We shall only mention that with its aid
electromagnetic phenomena can be theoretically represented much more
satisfactorily than without it, and this applies particularly to the
transmission of electromagnetic waves. The effects of gravitation also are
regarded in an analogous manner.



The action of the earth on the stone takes place indirectly. The earth produces
in its surrounding a gravitational field, which acts on the stone and produces
its motion of fall. As we know from experience, the intensity of the action on
a body dimishes according to a quite definite law, as we proceed farther and
farther away from the earth. From our point of view this means: The law
governing the properties of the gravitational field in space must be a
perfectly definite one, in order correctly to represent the diminution of
gravitational action with the distance from operative bodies. It is something
like this: The body (e.g. the earth) produces a field in its immediate
neighbourhood directly; the intensity and direction of the field at points
farther removed from the body are thence determined by the law which governs
the properties in space of the gravitational fields themselves.



In contrast to electric and magnetic fields, the gravitational field exhibits a
most remarkable property, which is of fundamental importance for what follows.
Bodies which are moving under the sole influence of a gravitational field
receive an acceleration, which does not in the least depend either on the
material or on the physical state of the body. For instance, a piece of lead
and a piece of wood fall in exactly the same manner in a gravitational field
(in vacuo), when they start off from rest or with the same initial velocity.
This law, which holds most accurately, can be expressed in a different form in
the light of the following consideration.



According to Newton’s law of motion, we have



(Force) = (inertial mass) x (acceleration),



where the “inertial mass” is a characteristic constant of the
accelerated body. If now gravitation is the cause of the acceleration, we then
have



(Force) = (gravitational mass) x (intensity of the gravitational field),



where the “gravitational mass” is likewise a characteristic constant
for the body. From these two relations follows:
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If now, as we find from experience, the acceleration is to be independent of
the nature and the condition of the body and always the same for a given
gravitational field, then the ratio of the gravitational to the inertial mass
must likewise be the same for all bodies. By a suitable choice of units we can
thus make this ratio equal to unity. We then have the following law: The
gravitational mass of a body is equal to its inertial mass.



It is true that this important law had hitherto been recorded in mechanics, but
it had not been interpreted. A satisfactory interpretation can be obtained only
if we recognise the following fact: The same quality of a body manifests
itself according to circumstances as “inertia” or as
“weight” (lit. “heaviness”). In the following section we
shall show to what extent this is actually the case, and how this question is
connected with the general postulate of relativity.




XX.

THE EQUALITY OF INERTIAL AND GRAVITATIONAL MASS AS AN ARGUMENT FOR THE GENERAL
POSTULATE OF RELATIVITY


We imagine a large portion of empty space, so far removed from stars and other
appreciable masses, that we have before us approximately the conditions
required by the fundamental law of Galilei. It is then possible to choose a
Galileian reference-body for this part of space (world), relative to which
points at rest remain at rest and points in motion continue permanently in
uniform rectilinear motion. As reference-body let us imagine a spacious chest
resembling a room with an observer inside who is equipped with apparatus.
Gravitation naturally does not exist for this observer. He must fasten himself
with strings to the floor, otherwise the slightest impact against the floor
will cause him to rise slowly towards the ceiling of the room.



To the middle of the lid of the chest is fixed externally a hook with rope
attached, and now a “being” (what kind of a being is immaterial to
us) begins pulling at this with a constant force. The chest together with the
observer then begin to move “upwards” with a uniformly accelerated
motion. In course of time their velocity will reach unheard-of values—provided
that we are viewing all this from another reference-body which is not being
pulled with a rope.



But how does the man in the chest regard the Process? The acceleration of the
chest will be transmitted to him by the reaction of the floor of the chest. He
must therefore take up this pressure by means of his legs if he does not wish
to be laid out full length on the floor. He is then standing in the chest in
exactly the same way as anyone stands in a room of a home on our earth. If he
releases a body which he previously had in his land, the accelertion of the
chest will no longer be transmitted to this body, and for this reason the body
will approach the floor of the chest with an accelerated relative motion. The
observer will further convince himself that the acceleration of the body
towards the floor of the chest is always of the same magnitude, whatever kind
of body he may happen to use for the experiment.



Relying on his knowledge of the gravitational field (as it was discussed in the
preceding section), the man in the chest will thus come to the conclusion that
he and the chest are in a gravitational field which is constant with regard to
time. Of course he will be puzzled for a moment as to why the chest does not
fall in this gravitational field. just then, however, he discovers the hook in
the middle of the lid of the chest and the rope which is attached to it, and he
consequently comes to the conclusion that the chest is suspended at rest in the
gravitational field.



Ought we to smile at the man and say that he errs in his conclusion? I do not
believe we ought to if we wish to remain consistent; we must rather admit that
his mode of grasping the situation violates neither reason nor known mechanical
laws. Even though it is being accelerated with respect to the “Galileian
space” first considered, we can nevertheless regard the chest as being at
rest. We have thus good grounds for extending the principle of relativity to
include bodies of reference which are accelerated with respect to each other,
and as a result we have gained a powerful argument for a generalised postulate
of relativity.



We must note carefully that the possibility of this mode of interpretation
rests on the fundamental property of the gravitational field of giving all
bodies the same acceleration, or, what comes to the same thing, on the law of
the equality of inertial and gravitational mass. If this natural law did not
exist, the man in the accelerated chest would not be able to interpret the
behaviour of the bodies around him on the supposition of a gravitational field,
and he would not be justified on the grounds of experience in supposing his
reference-body to be “at rest.”



Suppose that the man in the chest fixes a rope to the inner side of the lid,
and that he attaches a body to the free end of the rope. The result of this
will be to stretch the rope so that it will hang “vertically”
downwards. If we ask for an opinion of the cause of tension in the rope, the
man in the chest will say: “The suspended body experiences a downward
force in the gravitational field, and this is neutralised by the tension of the
rope; what determines the magnitude of the tension of the rope is the
gravitational mass of the suspended body.” On the other hand, an observer
who is poised freely in space will interpret the condition of things thus:
“The rope must perforce take part in the accelerated motion of the chest,
and it transmits this motion to the body attached to it. The tension of the
rope is just large enough to effect the acceleration of the body. That which
determines the magnitude of the tension of the rope is the inertial mass of the
body.” Guided by this example, we see that our extension of the principle
of relativity implies the necessity of the law of the equality of inertial and
gravitational mass. Thus we have obtained a physical interpretation of this
law.



From our consideration of the accelerated chest we see that a general theory of
relativity must yield important results on the laws of gravitation. In point of
fact, the systematic pursuit of the general idea of relativity has supplied the
laws satisfied by the gravitational field. Before proceeding farther, however,
I must warn the reader against a misconception suggested by these
considerations. A gravitational field exists for the man in the chest, despite
the fact that there was no such field for the co-ordinate system first chosen.
Now we might easily suppose that the existence of a gravitational field is
always only an apparent one. We might also think that, regardless of the kind
of gravitational field which may be present, we could always choose another
reference-body such that no gravitational field exists with reference to it.
This is by no means true for all gravitational fields, but only for those of
quite special form. It is, for instance, impossible to choose a body of
reference such that, as judged from it, the gravitational field of the earth
(in its entirety) vanishes.



We can now appreciate why that argument is not convincing, which we brought
forward against the general principle of relativity at the end of Section XVIII.
It is certainly true that the observer in the railway carriage experiences a
jerk forwards as a result of the application of the brake, and that he
recognises, in this the non-uniformity of motion (retardation) of the carriage.
But he is compelled by nobody to refer this jerk to a “real”
acceleration (retardation) of the carriage. He might also interpret his
experience thus: “My body of reference (the carriage) remains permanently
at rest. With reference to it, however, there exists (during the period of
application of the brakes) a gravitational field which is directed forwards and
which is variable with respect to time. Under the influence of this field, the
embankment together with the earth moves non-uniformly in such a manner that
their original velocity in the backwards direction is continuously
reduced.”




XXI.

IN WHAT RESPECTS ARE THE FOUNDATIONS OF CLASSICAL MECHANICS AND OF THE SPECIAL
THEORY OF RELATIVITY UNSATISFACTORY?


We have already stated several times that classical mechanics starts out from
the following law: Material particles sufficiently far removed from other
material particles continue to move uniformly in a straight line or continue in
a state of rest. We have also repeatedly emphasised that this fundamental law
can only be valid for bodies of reference K which possess certain unique states
of motion, and which are in uniform translational motion relative to each
other. Relative to other reference-bodies K the law is not valid. Both in
classical mechanics and in the special theory of relativity we therefore
differentiate between reference-bodies K relative to which the recognised
“laws of nature” can be said to hold, and reference-bodies K relative
to which these laws do not hold.



But no person whose mode of thought is logical can rest satisfied with this
condition of things. He asks: “How does it come that certain
reference-bodies (or their states of motion) are given priority over other
reference-bodies (or their states of motion)? What is the reason for this
preference?” In order to show clearly what I mean by this question, I
shall make use of a comparison.



I am standing in front of a gas range. Standing alongside of each other on the
range are two pans so much alike that one may be mistaken for the other. Both
are half full of water. I notice that steam is being emitted continuously from
the one pan, but not from the other. I am surprised at this, even if I have
never seen either a gas range or a pan before. But if I now notice a luminous
something of bluish colour under the first pan but not under the other, I cease
to be astonished, even if I have never before seen a gas flame. For I can only
say that this bluish something will cause the emission of the steam, or at
least possibly it may do so. If, however, I notice the bluish something in
neither case, and if I observe that the one continuously emits steam whilst the
other does not, then I shall remain astonished and dissatisfied until I have
discovered some circumstance to which I can attribute the different behaviour
of the two pans.



Analogously, I seek in vain for a real something in classical mechanics (or in
the special theory of relativity) to which I can attribute the different
behaviour of bodies considered with respect to the reference systems K and K′.[15] Newton saw this objection and attempted to invalidate it, but
without success. But E. Mach recognised it most clearly of all, and because of
this objection he claimed that mechanics must be placed on a new basis. It can
only be got rid of by means of a physics which is conformable to the general
principle of relativity, since the equations of such a theory hold for every
body of reference, whatever may be its state of motion.




 



 [15]
 The objection is of importance more
especially when the state of motion of the reference-body is of such a nature
that it does not require any external agency for its maintenance, e.g. in the
case when the reference-body is rotating uniformly.




XXII.

A FEW INFERENCES FROM THE GENERAL PRINCIPLE OF RELATIVITY


The considerations of Section XX show that the general principle of relativity
puts us in a position to derive properties of the gravitational field in a
purely theoretical manner. Let us suppose, for instance, that we know the
space-time “course” for any natural process whatsoever, as regards
the manner in which it takes place in the Galileian domain relative to a
Galileian body of reference K. By means of purely theoretical operations
(i.e. simply by calculation) we are then able to find how this known
natural process appears, as seen from a reference-body K′ which is
accelerated relatively to K. But since a gravitational field exists with
respect to this new body of reference K′, our consideration also teaches
us how the gravitational field influences the process studied.



For example, we learn that a body which is in a state of uniform rectilinear
motion with respect to K (in accordance with the law of Galilei) is executing
an accelerated and in general curvilinear motion with respect to the
accelerated reference-body K′ (chest). This acceleration or curvature
corresponds to the influence on the moving body of the gravitational field
prevailing relatively to K. It is known that a gravitational field influences
the movement of bodies in this way, so that our consideration supplies us with
nothing essentially new.



However, we obtain a new result of fundamental importance when we carry out the
analogous consideration for a ray of light. With respect to the Galileian
reference-body K, such a ray of light is transmitted rectilinearly with the
velocity c. It can easily be shown that the path of the same ray of light is no
longer a straight line when we consider it with reference to the accelerated
chest (reference-body K′). From this we conclude, that, in general, rays of
light are propagated curvilinearly in gravitational fields. In two respects
this result is of great importance.



In the first place, it can be compared with the reality. Although a detailed
examination of the question shows that the curvature of light rays required by
the general theory of relativity is only exceedingly small for the
gravitational fields at our disposal in practice, its estimated magnitude for
light rays passing the sun at grazing incidence is nevertheless 1.7 seconds of
arc. This ought to manifest itself in the following way. As seen from the
earth, certain fixed stars appear to be in the neighbourhood of the sun, and
are thus capable of observation during a total eclipse of the sun. At such
times, these stars ought to appear to be displaced outwards from the sun by an
amount indicated above, as compared with their apparent position in the sky
when the sun is situated at another part of the heavens. The examination of the
correctness or otherwise of this deduction is a problem of the greatest
importance, the early solution of which is to be expected of astronomers.[16]




 



 [16]
 By means of the star photographs of
two expeditions equipped by a Joint Committee of the Royal and Royal
Astronomical Societies, the existence of the deflection of light demanded by
theory was first confirmed during the solar eclipse of 29th May, 1919. (Cf.
Appendix III.)



In the second place our result shows that, according to the general theory of
relativity, the law of the constancy of the velocity of light in vacuo, which
constitutes one of the two fundamental assumptions in the special theory of
relativity and to which we have already frequently referred, cannot claim any
unlimited validity. A curvature of rays of light can only take place when the
velocity of propagation of light varies with position. Now we might think that
as a consequence of this, the special theory of relativity and with it the
whole theory of relativity would be laid in the dust. But in reality this is
not the case. We can only conclude that the special theory of relativity cannot
claim an unlimited domain of validity; its results hold only so long as we are
able to disregard the influences of gravitational fields on the phenomena (e.g.
of light).



Since it has often been contended by opponents of the theory of relativity that
the special theory of relativity is overthrown by the general theory of
relativity, it is perhaps advisable to make the facts of the case clearer by
means of an appropriate comparison. Before the development of electrodynamics
the laws of electrostatics were looked upon as the laws of electricity. At the
present time we know that electric fields can be derived correctly from
electrostatic considerations only for the case, which is never strictly
realised, in which the electrical masses are quite at rest relatively to each
other, and to the co-ordinate system. Should we be justified in saying that for
this reason electrostatics is overthrown by the field-equations of Maxwell in
electrodynamics? Not in the least. Electrostatics is contained in
electrodynamics as a limiting case; the laws of the latter lead directly to
those of the former for the case in which the fields are invariable with regard
to time. No fairer destiny could be allotted to any physical theory, than that
it should of itself point out the way to the introduction of a more
comprehensive theory, in which it lives on as a limiting case.



In the example of the transmission of light just dealt with, we have seen that
the general theory of relativity enables us to derive theoretically the
influence of a gravitational field on the course of natural processes, the laws
of which are already known when a gravitational field is absent. But the most
attractive problem, to the solution of which the general theory of relativity
supplies the key, concerns the investigation of the laws satisfied by the
gravitational field itself. Let us consider this for a moment.



We are acquainted with space-time domains which behave (approximately) in a
“Galileian” fashion under suitable choice of reference-body, i.e.
domains in which gravitational fields are absent. If we now refer such a domain
to a reference-body K′ possessing any kind of motion, then relative to K′ there
exists a gravitational field which is variable with respect to space and time.[17] The character of this field will of course depend on the motion
chosen for K′. According to the general theory of relativity, the general law
of the gravitational field must be satisfied for all gravitational fields
obtainable in this way. Even though by no means all gravitationial fields can
be produced in this way, yet we may entertain the hope that the general law of
gravitation will be derivable from such gravitational fields of a special kind.
This hope has been realised in the most beautiful manner. But between the clear
vision of this goal and its actual realisation it was necessary to surmount a
serious difficulty, and as this lies deep at the root of things, I dare not
withhold it from the reader. We require to extend our ideas of the space-time
continuum still farther.




 



 [17]
 This follows from a generalisation of
the discussion in Section XX.




XXIII.

BEHAVIOUR OF CLOCKS AND MEASURING-RODS ON A ROTATING BODY OF REFERENCE


Hitherto I have purposely refrained from speaking about the physical
interpretation of space- and time-data in the case of the general theory of
relativity. As a consequence, I am guilty of a certain slovenliness of
treatment, which, as we know from the special theory of relativity, is far from
being unimportant and pardonable. It is now high time that we remedy this
defect; but I would mention at the outset, that this matter lays no small
claims on the patience and on the power of abstraction of the reader.



We start off again from quite special cases, which we have frequently used
before. Let us consider a space time domain in which no gravitational field
exists relative to a reference-body K whose state of motion has been
suitably chosen. K is then a Galileian reference-body as regards the
domain considered, and the results of the special theory of relativity hold
relative to K. Let us suppose the same domain referred to a second body
of reference K′, which is rotating uniformly with respect to K.
In order to fix our ideas, we shall imagine K′ to be in the form of a
plane circular disc, which rotates uniformly in its own plane about its centre.
An observer who is sitting eccentrically on the disc K′ is sensible of a
force which acts outwards in a radial direction, and which would be interpreted
as an effect of inertia (centrifugal force) by an observer who was at rest with
respect to the original reference-body K. But the observer on the disc
may regard his disc as a reference-body which is “at rest”; on the
basis of the general principle of relativity he is justified in doing this. The
force acting on himself, and in fact on all other bodies which are at rest
relative to the disc, he regards as the effect of a gravitational field.
Nevertheless, the space-distribution of this gravitational field is of a kind
that would not be possible on Newton’s theory of gravitation.[18] But
since the observer believes in the general theory of relativity, this does not
disturb him; he is quite in the right when he believes that a general law of
gravitation can be formulated—a law which not only explains the motion of
the stars correctly, but also the field of force experienced by himself.




 



 [18]
 The field disappears at the centre of
the disc and increases proportionally to the distance from the centre as we
proceed outwards.



The observer performs experiments on his circular disc with clocks and
measuring-rods. In doing so, it is his intention to arrive at exact definitions
for the signification of time- and space-data with reference to the circular
disc K′, these definitions being based on his observations. What will be his
experience in this enterprise?



To start with, he places one of two identically constructed clocks at the
centre of the circular disc, and the other on the edge of the disc, so that
they are at rest relative to it. We now ask ourselves whether both clocks go at
the same rate from the standpoint of the non-rotating Galileian reference-body
K. As judged from this body, the clock at the centre of the disc has no
velocity, whereas the clock at the edge of the disc is in motion relative to K
in consequence of the rotation. According to a result obtained in Section XII,
it follows that the latter clock goes at a rate permanently slower than that of
the clock at the centre of the circular disc, i.e. as observed from K. It is
obvious that the same effect would be noted by an observer whom we will imagine
sitting alongside his clock at the centre of the circular disc. Thus on our
circular disc, or, to make the case more general, in every gravitational field,
a clock will go more quickly or less quickly, according to the position in
which the clock is situated (at rest). For this reason it is not possible to
obtain a reasonable definition of time with the aid of clocks which are
arranged at rest with respect to the body of reference. A similar difficulty
presents itself when we attempt to apply our earlier definition of simultaneity
in such a case, but I do not wish to go any farther into this question.



Moreover, at this stage the definition of the space co-ordinates also presents
insurmountable difficulties. If the observer applies his standard measuring-rod
(a rod which is short as compared with the radius of the disc) tangentially to
the edge of the disc, then, as judged from the Galileian system, the length of
this rod will be less than 1, since, according to Section XII, moving bodies
suffer a shortening in the direction of the motion. On the other hand, the
measuring-rod will not experience a shortening in length, as judged from K, if
it is applied to the disc in the direction of the radius. If, then, the
observer first measures the circumference of the disc with his measuring-rod
and then the diameter of the disc, on dividing the one by the other, he will
not obtain as quotient the familiar number π = 3.14 . . ., but a larger
number,[19] whereas of course, for a disc which is at rest with
respect to K, this operation would yield π exactly. This proves that the
propositions of Euclidean geometry cannot hold exactly on the rotating disc,
nor in general in a gravitational field, at least if we attribute the length 1
to the rod in all positions and in every orientation. Hence the idea of a
straight line also loses its meaning. We are therefore not in a position to
define exactly the co-ordinates x, y, z relative to the disc by means of the
method used in discussing the special theory, and as long as the co-ordinates
and times of events have not been defined, we cannot assign an exact meaning to
the natural laws in which these occur.




 



 [19]
 Throughout this consideration we have
to use the Galileian (non-rotating) system K as reference-body, since we
may only assume the validity of the results of the special theory of relativity
relative to K (relative to K′ a gravitational field prevails).



Thus all our previous conclusions based on general relativity would appear to
be called in question. In reality we must make a subtle detour in order to be
able to apply the postulate of general relativity exactly. I shall prepare the
reader for this in the following paragraphs.




XXIV.

EUCLIDEAN AND NON-EUCLIDEAN CONTINUUM


The surface of a marble table is spread out in front of me. I can get from any
one point on this table to any other point by passing continuously from one
point to a “neighbouring” one, and repeating this process a (large)
number of times, or, in other words, by going from point to point without
executing “jumps.” I am sure the reader will appreciate with
sufficient clearness what I mean here by “neighbouring” and by
“jumps” (if he is not too pedantic). We express this property of the
surface by describing the latter as a continuum.



Let us now imagine that a large number of little rods of equal length have been
made, their lengths being small compared with the dimensions of the marble
slab. When I say they are of equal length, I mean that one can be laid on any
other without the ends overlapping. We next lay four of these little rods on
the marble slab so that they constitute a quadrilateral figure (a square), the
diagonals of which are equally long. To ensure the equality of the diagonals,
we make use of a little testing-rod. To this square we add similar ones, each
of which has one rod in common with the first. We proceed in like manner with
each of these squares until finally the whole marble slab is laid out with
squares. The arrangement is such, that each side of a square belongs to two
squares and each corner to four squares.



It is a veritable wonder that we can carry out this business without getting
into the greatest difficulties. We only need to think of the following. If at
any moment three squares meet at a corner, then two sides of the fourth square
are already laid, and, as a consequence, the arrangement of the remaining two
sides of the square is already completely determined. But I am now no longer
able to adjust the quadrilateral so that its diagonals may be equal. If they
are equal of their own accord, then this is an especial favour of the marble
slab and of the little rods, about which I can only be thankfully surprised. We
must experience many such surprises if the construction is to be successful.



If everything has really gone smoothly, then I say that the points of the
marble slab constitute a Euclidean continuum with respect to the little rod,
which has been used as a “distance” (line-interval). By choosing one
corner of a square as “origin” I can characterise every other corner
of a square with reference to this origin by means of two numbers. I only need
state how many rods I must pass over when, starting from the origin, I proceed
towards the “right” and then “upwards,” in order to arrive
at the corner of the square under consideration. These two numbers are then the
“Cartesian co-ordinates” of this corner with reference to the
“Cartesian co-ordinate system” which is determined by the arrangement
of little rods.



By making use of the following modification of this abstract experiment, we
recognise that there must also be cases in which the experiment would be
unsuccessful. We shall suppose that the rods “expand” by in amount
proportional to the increase of temperature. We heat the central part of the
marble slab, but not the periphery, in which case two of our little rods can
still be brought into coincidence at every position on the table. But our
construction of squares must necessarily come into disorder during the heating,
because the little rods on the central region of the table expand, whereas
those on the outer part do not.



With reference to our little rods—defined as unit lengths—the marble slab is
no longer a Euclidean continuum, and we are also no longer in the position of
defining Cartesian co-ordinates directly with their aid, since the above
construction can no longer be carried out. But since there are other things
which are not influenced in a similar manner to the little rods (or perhaps not
at all) by the temperature of the table, it is possible quite naturally to
maintain the point of view that the marble slab is a “Euclidean
continuum.” This can be done in a satisfactory manner by making a more
subtle stipulation about the measurement or the comparison of lengths.



But if rods of every kind (i.e. of every material) were to behave in
the same way as regards the influence of temperature when they are on the
variably heated marble slab, and if we had no other means of detecting the
effect of temperature than the geometrical behaviour of our rods in experiments
analogous to the one described above, then our best plan would be to assign the
distance one to two points on the slab, provided that the ends of one of our
rods could be made to coincide with these two points; for how else should we
define the distance without our proceeding being in the highest measure grossly
arbitrary? The method of Cartesian coordinates must then be discarded, and
replaced by another which does not assume the validity of Euclidean geometry
for rigid bodies.[20] The reader will notice that the situation depicted
here corresponds to the one brought about by the general postulate of
relativity (Section XXIII).




 



 [20]
 Mathematicians have been confronted
with our problem in the following form. If we are given a surface (e.g. an
ellipsoid) in Euclidean three-dimensional space, then there exists for this
surface a two-dimensional geometry, just as much as for a plane surface. Gauss
undertook the task of treating this two-dimensional geometry from first
principles, without making use of the fact that the surface belongs to a
Euclidean continuum of three dimensions. If we imagine constructions to be made
with rigid rods in the surface (similar to that above with the marble
slab), we should find that different laws hold for these from those resulting
on the basis of Euclidean plane geometry. The surface is not a Euclidean
continuum with respect to the rods, and we cannot define Cartesian co-ordinates
in the surface. Gauss indicated the principles according to which we can
treat the geometrical relationships in the surface, and thus pointed out the
way to the method of Riemann of treating multi-dimensional, non-Euclidean
continuum. Thus it is that mathematicians long ago solved the formal
problems to which we are led by the general postulate of relativity.




XXV.

GAUSSIAN CO-ORDINATES
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According to Gauss, this combined analytical and geometrical mode of handling
the problem can be arrived at in the following way. We imagine a system of
arbitrary curves (see Fig. 4) drawn on the surface of the table. These we
designate as u-curves, and we indicate each of them by means of a number. The
Curves u = 1, u = 2 and u = 3 are drawn in the diagram. Between the curves u =
1 and u = 2 we must imagine an infinitely large number to be drawn, all of
which correspond to real numbers lying between 1 and 2. We have then a
system of u-curves, and this “infinitely dense” system covers the
whole surface of the table. These u-curves must not intersect each other, and
through each point of the surface one and only one curve must pass. Thus a
perfectly definite value of u belongs to every point on the surface of the
marble slab. In like manner we imagine a system of v-curves drawn on the
surface. These satisfy the same conditions as the u-curves, they are provided
with numbers in a corresponding manner, and they may likewise be of arbitrary
shape. It follows that a value of u and a value of v belong to every point on
the surface of the table. We call these two numbers the co-ordinates of the
surface of the table (Gaussian co-ordinates). For example, the point P in the
diagram has the Gaussian co-ordinates u = 3, v = 1. Two neighbouring points P
and P′ on the surface then correspond to the co-ordinates



P: u, v



P′: u + du, v + dv,



where du and dv signify very small numbers. In a similar manner we may indicate
the distance (line-interval) between P and P′, as measured with a
little rod, by means of the very small number ds. Then according to Gauss we
have



ds2 = g11du2 + 2g12du dv +
g22dv2,



where g11, g12, g22, are magnitudes which
depend in a perfectly definite way on u and v. The magnitudes g11,
g12 and g22, determine the behaviour of the rods relative
to the u-curves and v-curves, and thus also relative to the surface of the
table. For the case in which the points of the surface considered form a
Euclidean continuum with reference to the measuring-rods, but only in this
case, it is possible to draw the u-curves and v-curves and to attach numbers to
them, in such a manner, that we simply have:



ds2 = du2 + dv2



Under these conditions, the u-curves and v-curves are straight lines in the
sense of Euclidean geometry, and they are perpendicular to each other. Here the
Gaussian coordinates are simply Cartesian ones. It is clear that Gauss
co-ordinates are nothing more than an association of two sets of numbers with
the points of the surface considered, of such a nature that numerical values
differing very slightly from each other are associated with neighbouring points
“in space.”



So far, these considerations hold for a continuum of two dimensions. But the
Gaussian method can be applied also to a continuum of three, four or more
dimensions. If, for instance, a continuum of four dimensions be supposed
available, we may represent it in the following way. With every point of the
continuum, we associate arbitrarily four numbers, x1, x2,
x3, x4, which are known as “co-ordinates.”
Adjacent points correspond to adjacent values of the coordinates. If a distance
ds is associated with the adjacent points P and P′, this distance
being measurable and well defined from a physical point of view, then the
following formula holds:



ds2 = g11dx12
+ 2g12dx1dx2 . . . . +
g44dx42,



where the magnitudes g11, etc., have values which vary with the
position in the continuum. Only when the continuum is a Euclidean one is it
possible to associate the co-ordinates x1 . . x4. with
the points of the continuum so that we have simply



ds2 = dx12 +
dx22 + dx32 +
dx42.



In this case relations hold in the four-dimensional continuum which are
analogous to those holding in our three-dimensional measurements.



However, the Gauss treatment for ds2 which we have given above is
not always possible. It is only possible when sufficiently small regions of the
continuum under consideration may be regarded as Euclidean continua. For
example, this obviously holds in the case of the marble slab of the table and
local variation of temperature. The temperature is practically constant for a
small part of the slab, and thus the geometrical behaviour of the rods is
almost as it ought to be according to the rules of Euclidean geometry. Hence
the imperfections of the construction of squares in the previous section do not
show themselves clearly until this construction is extended over a considerable
portion of the surface of the table.



We can sum this up as follows: Gauss invented a method for the mathematical
treatment of continua in general, in which “size-relations”
(“distances” between neighbouring points) are defined. To every point
of a continuum are assigned as many numbers (Gaussian coordinates) as the
continuum has dimensions. This is done in such a way, that only one meaning can
be attached to the assignment, and that numbers (Gaussian coordinates) which
differ by an indefinitely small amount are assigned to adjacent points. The
Gaussian coordinate system is a logical generalisation of the Cartesian
co-ordinate system. It is also applicable to non-Euclidean continua, but only
when, with respect to the defined “size” or “distance,”
small parts of the continuum under consideration behave more nearly like a
Euclidean system, the smaller the part of the continuum under our notice.




XXVI.

THE SPACE-TIME CONTINUUM OF THE SPECIAL THEORY OF RELATIVITY CONSIDERED AS A
EUCLIDEAN CONTINUUM


We are now in a position to formulate more exactly the idea of Minkowski, which
was only vaguely indicated in Section XVII. In accordance with the special theory
of relativity, certain co-ordinate systems are given preference for the
description of the four-dimensional, space-time continuum. We called these
“Galileian co-ordinate systems.” For these systems, the four
co-ordinates x, y, z, t, which determine an event or—in other words—a point
of the four-dimensional continuum, are defined physically in a simple manner, as
set forth in detail in the first part of this book. For the transition from one
Galileian system to another, which is moving uniformly with reference to the
first, the equations of the Lorentz transformation are valid. These last form
the basis for the derivation of deductions from the special theory of
relativity, and in themselves they are nothing more than the expression of the
universal validity of the law of transmission of light for all Galileian
systems of reference.



Minkowski found that the Lorentz transformations satisfy the following simple
conditions. Let us consider two neighbouring events, the relative position of
which in the four-dimensional continuum is given with respect to a Galileian
reference-body K by the space co-ordinate differences dx, dy, dz
and the time-difference dt. With reference to a second Galileian system
we shall suppose that the corresponding differences for these two events are
dx′, dy′, dz′, dt′. Then these magnitudes always fulfill the condition.[21]




 



 [21]
 Cf. Appendixes I and II. The relations
which are derived there for the co-ordinates themselves are valid also for
co-ordinate differences, and thus also for co-ordinate differentials
(indefinitely small differences).



dx2 + dy2 + dz2 –
c2dt2 = dx′2 +
dy′2 + dz′2 –
c2dt′2.



The validity of the Lorentz transformation follows from this condition. We can
express this as follows: The magnitude



ds2 = dx2 + dy2 + dz2 –
c2 dt2,



which belongs to two adjacent points of the four-dimensional space-time
continuum, has the same value for all selected (Galileian) reference-bodies. If
we replace x, y, z,
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by x1, x2, x3, x4, we also obtain
the result that



ds2 = dx12 + dx22 +
dx32 + dx42.



is independent of the choice of the body of reference. We call the magnitude ds
the “distance” apart of the two events or four-dimensional points.



Thus, if we choose as time-variable the imaginary variable
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instead of the real quantity t, we can regard the space-time
contintium—accordance with the special theory of relativity—as a
“Euclidean” four-dimensional continuum, a result which follows from
the considerations of the preceding section.




XXVII.

THE SPACE-TIME CONTINUUM OF THE GENERAL THEORY OF RELATIVITY IS NOT A EUCLIDEAN
CONTINUUM


In the first part of this book we were able to make use of space-time
co-ordinates which allowed of a simple and direct physical interpretation, and
which, according to Section XXVI, can be regarded as four-dimensional Cartesian
co-ordinates. This was possible on the basis of the law of the constancy of the
velocity of light. But according to Section XXI the general theory of relativity
cannot retain this law. On the contrary, we arrived at the result that
according to this latter theory the velocity of light must always depend on the
co-ordinates when a gravitational field is present. In connection with a
specific illustration in Section XXIII, we found that the presence of a
gravitational field invalidates the definition of the coordinates and the time,
which led us to our objective in the special theory of relativity.



In view of the resuIts of these considerations we are led to the conviction
that, according to the general principle of relativity, the space-time
continuum cannot be regarded as a Euclidean one, but that here we have the
general case, corresponding to the marble slab with local variations of
temperature, and with which we made acquaintance as an example of a
two-dimensional continuum. Just as it was there impossible to construct a
Cartesian co-ordinate system from equal rods, so here it is impossible to build
up a system (reference-body) from rigid bodies and clocks, which shall be of
such a nature that measuring-rods and clocks, arranged rigidly with respect to
one another, shall indicate position and time directly. Such was the essence of
the difficulty with which we were confronted in Section XXIII.



But the considerations of Sections XXV and XXVI show us the way to surmount this
difficulty. We refer the four-dimensional space-time continuum in an arbitrary
manner to Gauss co-ordinates. We assign to every point of the continuum (event)
four numbers, x1, x2, x3, x4
(co-ordinates), which have not the least direct physical significance, but only
serve the purpose of numbering the points of the continuum in a definite but
arbitrary manner. This arrangement does not even need to be of such a kind that
we must regard x1, x2, x3, as
“space” co-ordinates and x4, as a “time”
co-ordinate.



The reader may think that such a description of the world would be quite
inadequate. What does it mean to assign to an event the particular co-ordinates
x1, x2, x3, x4, if in themselves
these co-ordinates have no significance? More careful consideration shows,
however, that this anxiety is unfounded. Let us consider, for instance, a
material point with any kind of motion. If this point had only a momentary
existence without duration, then it would to described in space-time by a
single system of values x1, x2, x3,
x4. Thus its permanent existence must be characterised by an
infinitely large number of such systems of values, the co-ordinate values of
which are so close together as to give continuity; corresponding to the
material point, we thus have a (uni-dimensional) line in the four-dimensional
continuum. In the same way, any such lines in our continuum correspond to many
points in motion. The only statements having regard to these points which can
claim a physical existence are in reality the statements about their
encounters. In our mathematical treatment, such an encounter is expressed in
the fact that the two lines which represent the motions of the points in
question have a particular system of co-ordinate values, x1,
x2, x3, x4, in common. After mature
consideration the reader will doubtless admit that in reality such encounters
constitute the only actual evidence of a time-space nature with which we meet
in physical statements.



When we were describing the motion of a material point relative to a body of
reference, we stated nothing more than the encounters of this point with
particular points of the reference-body. We can also determine the
corresponding values of the time by the observation of encounters of the body
with clocks, in conjunction with the observation of the encounter of the hands
of clocks with particular points on the dials. It is just the same in the case
of space-measurements by means of measuring-rods, as a little consideration
will show.



The following statements hold generally: Every physical description resolves
itself into a number of statements, each of which refers to the space-time
coincidence of two events A and B. In terms of Gaussian co-ordinates, every
such statement is expressed by the agreement of their four co-ordinates
x1, x2, x3, x4. Thus in reality,
the description of the time-space continuum by means of Gauss co-ordinates
completely replaces the description with the aid of a body of reference,
without suffering from the defects of the latter mode of description; it is not
tied down to the Euclidean character of the continuum which has to be
represented.




XXVIII.

EXACT FORMULATION OF THE GENERAL PRINCIPLE OF RELATIVITY


We are now in a position to replace the provisional formulation of the general
principle of relativity given in Section XVIII by an exact formulation. The form
there used, “All bodies of reference K, K′, etc., are equivalent for the
description of natural phenomena (formulation of the general laws of nature),
whatever may be their state of motion,” cannot be maintained, because the
use of rigid reference-bodies, in the sense of the method followed in the
special theory of relativity, is in general not possible in space-time
description. The Gauss co-ordinate system has to take the place of the body of
reference. The following statement corresponds to the fundamental idea of the
general principle of relativity: “All Gaussian co-ordinate systems are
essentially equivalent for the formulation of the general laws of nature.”



We can state this general principle of relativity in still another form, which
renders it yet more clearly intelligible than it is when in the form of the
natural extension of the special principle of relativity. According to the
special theory of relativity, the equations which express the general laws of
nature pass over into equations of the same form when, by making use of the
Lorentz transformation, we replace the space-time variables x, y, z, t, of a
(Galileian) reference-body K by the space-time variables x′, y′, z′, t′, of a
new reference-body K′. According to the general theory of relativity, on the
other hand, by application of arbitrary substitutions of the Gauss variables
x1, x2, x3, x4, the equations must
pass over into equations of the same form; for every transformation (not only
the Lorentz transformation) corresponds to the transition of one Gauss
co-ordinate system into another.



If we desire to adhere to our “old-time” three-dimensional view of
things, then we can characterise the development which is being undergone by
the fundamental idea of the general theory of relativity as follows: The
special theory of relativity has reference to Galileian domains, i.e. to those
in which no gravitational field exists. In this connection a Galileian
reference-body serves as body of reference, i.e. a rigid body the state of
motion of which is so chosen that the Galileian law of the uniform rectilinear
motion of “isolated” material points holds relatively to it.



Certain considerations suggest that we should refer the same Galileian domains
to non-Galileian reference-bodies also. A gravitational field of a special kind
is then present with respect to these bodies (cf. Sections XX and XXIII).



In gravitational fields there are no such things as rigid bodies with Euclidean
properties; thus the fictitious rigid body of reference is of no avail in the
general theory of relativity. The motion of clocks is also influenced by
gravitational fields, and in such a way that a physical definition of time
which is made directly with the aid of clocks has by no means the same degree
of plausibility as in the special theory of relativity.



For this reason non-rigid reference-bodies are used, which are as a whole not
only moving in any way whatsoever, but which also suffer alterations in form ad
lib. during their motion. Clocks, for which the law of motion is of any kind,
however irregular, serve for the definition of time. We have to imagine each of
these clocks fixed at a point on the non-rigid reference-body. These clocks
satisfy only the one condition, that the “readings” which are
observed simultaneously on adjacent clocks (in space) differ from each other by
an indefinitely small amount. This non-rigid reference-body, which might
appropriately be termed a “reference-mollusc”, is in the main
equivalent to a Gaussian four-dimensional co-ordinate system chosen
arbitrarily. That which gives the “mollusc” a certain
comprehensibility as compared with the Gauss co-ordinate system is the (really
unjustified) formal retention of the separate existence of the



space co-ordinates as opposed to the time co-ordinate. Every point on the
mollusc is treated as a space-point, and every material point which is at rest
relatively to it as at rest, so long as the mollusc is considered as
reference-body. The general principle of relativity requires that all these
molluscs can be used as reference-bodies with equal right and equal success in
the formulation of the general laws of nature; the laws themselves must be
quite independent of the choice of mollusc.



The great power possessed by the general principle of relativity lies in the
comprehensive limitation which is imposed on the laws of nature in consequence
of what we have seen above.




XXIX.

THE SOLUTION OF THE PROBLEM OF GRAVITATION ON THE BASIS OF THE GENERAL
PRINCIPLE OF RELATIVITY


If the reader has followed all our previous considerations, he will have no
further difficulty in understanding the methods leading to the solution of the
problem of gravitation.



We start off on a consideration of a Galileian domain, i.e. a domain in which
there is no gravitational field relative to the Galileian reference-body K. The
behaviour of measuring-rods and clocks with reference to K is known from the
special theory of relativity, likewise the behaviour of “isolated”
material points; the latter move uniformly and in straight lines.



Now let us refer this domain to a random Gauss coordinate system or to a
“mollusc” as reference-body K′. Then with respect to K′ there is a
gravitational field G (of a particular kind). We learn the behaviour of
measuring-rods and clocks and also of freely-moving material points with
reference to K′ simply by mathematical transformation. We interpret this
behaviour as the behaviour of measuring-rods, clocks and material points under
the influence of the gravitational field G. Hereupon we introduce a hypothesis:
that the influence of the gravitational field on measuring-rods, clocks and
freely-moving material points continues to take place according to the same
laws, even in the case where the prevailing gravitational field is not
derivable from the Galileian special case, simply by means of a transformation
of co-ordinates.



The next step is to investigate the space-time behaviour of the gravitational
field G, which was derived from the Galileian special case simply by
transformation of the coordinates. This behaviour is formulated in a law, which
is always valid, no matter how the reference-body (mollusc) used in the
description may be chosen.



This law is not yet the general law of the gravitational field, since the
gravitational field under consideration is of a special kind. In order to find
out the general law-of-field of gravitation we still require to obtain a
generalisation of the law as found above. This can be obtained without caprice,
however, by taking into consideration the following demands:



(a) The required generalisation must likewise satisfy the general postulate of
relativity.



(b) If there is any matter in the domain under consideration, only its inertial
mass, and thus according to Section XV only its energy is of importance for its
effect in exciting a field.



(c) Gravitational field and matter together must satisfy the law of the
conservation of energy (and of impulse).



Finally, the general principle of relativity permits us to determine the
influence of the gravitational field on the course of all those processes which
take place according to known laws when a gravitational field is absent i.e.
which have already been fitted into the frame of the special theory of
relativity. In this connection we proceed in principle according to the method
which has already been explained for measuring-rods, clocks and freely moving
material points.



The theory of gravitation derived in this way from the general postulate of
relativity excels not only in its beauty; nor in removing the defect attaching
to classical mechanics which was brought to light in Section XXI; nor in
interpreting the empirical law of the equality of inertial and gravitational
mass; but it has also already explained a result of observation in astronomy,
against which classical mechanics is powerless.



If we confine the application of the theory to the case where the gravitational
fields can be regarded as being weak, and in which all masses move with respect
to the coordinate system with velocities which are small compared with the
velocity of light, we then obtain as a first approximation the Newtonian
theory. Thus the latter theory is obtained here without any particular
assumption, whereas Newton had to introduce the hypothesis that the force of
attraction between mutually attracting material points is inversely
proportional to the square of the distance between them. If we increase the
accuracy of the calculation, deviations from the theory of Newton make their
appearance, practically all of which must nevertheless escape the test of
observation owing to their smallness.



We must draw attention here to one of these deviations. According to Newton’s
theory, a planet moves round the sun in an ellipse, which would permanently
maintain its position with respect to the fixed stars, if we could disregard
the motion of the fixed stars themselves and the action of the other planets
under consideration. Thus, if we correct the observed motion of the planets for
these two influences, and if Newton’s theory be strictly correct, we ought to
obtain for the orbit of the planet an ellipse, which is fixed with reference to
the fixed stars. This deduction, which can be tested with great accuracy, has
been confirmed for all the planets save one, with the precision that is capable
of being obtained by the delicacy of observation attainable at the present
time. The sole exception is Mercury, the planet which lies nearest the sun.
Since the time of Leverrier, it has been known that the ellipse corresponding
to the orbit of Mercury, after it has been corrected for the influences
mentioned above, is not stationary with respect to the fixed stars, but that it
rotates exceedingly slowly in the plane of the orbit and in the sense of the
orbital motion. The value obtained for this rotary movement of the orbital
ellipse was 43 seconds of arc per century, an amount ensured to be correct to
within a few seconds of arc. This effect can be explained by means of classical
mechanics only on the assumption of hypotheses which have little probability,
and which were devised solely for this purponse.



On the basis of the general theory of relativity, it is found that the ellipse
of every planet round the sun must necessarily rotate in the manner indicated
above; that for all the planets, with the exception of Mercury, this rotation
is too small to be detected with the delicacy of observation possible at the
present time; but that in the case of Mercury it must amount to 43 seconds of
arc per century, a result which is strictly in agreement with observation.



Apart from this one, it has hitherto been possible to make only two deductions
from the theory which admit of being tested by observation, to wit, the
curvature of light rays by the gravitational field of the sun,[22]
and a displacement of the spectral lines of light reaching us from large stars,
as compared with the corresponding lines for light produced in an analogous
manner terrestrially (i.e. by the same kind of atom).[23] These two
deductions from the theory have both been confirmed.




 



 [22]
 First observed by Eddington and others
in 1919. (Cf. Appendix III).




 



 [23]
 Established by Adams in 1924. (Cf. p.
132)




PART III: CONSIDERATIONS ON THE UNIVERSE AS A
WHOLE



XXX.

COSMOLOGICAL DIFFICULTIES OF NEWTON’S THEORY


Part from the difficulty discussed in Section XXI, there is a second fundamental
difficulty attending classical celestial mechanics, which, to the best of my
knowledge, was first discussed in detail by the astronomer Seeliger. If we
ponder over the question as to how the universe, considered as a whole, is to
be regarded, the first answer that suggests itself to us is surely this: As
regards space (and time) the universe is infinite. There are stars everywhere,
so that the density of matter, although very variable in detail, is
nevertheless on the average everywhere the same. In other words: However far we
might travel through space, we should find everywhere an attenuated swarm of
fixed stars of approrimately the same kind and density.



This view is not in harmony with the theory of Newton. The latter theory rather
requires that the universe should have a kind of centre in which the density of
the stars is a maximum, and that as we proceed outwards from this centre the
group-density of the stars should diminish, until finally, at great distances,
it is succeeded by an infinite region of emptiness. The stellar universe ought
to be a finite island in the infinite ocean of space.[24]




 



 [24]
 Proof—According to the
theory of Newton, the number of “lines of force” which come from
infinity and terminate in a mass m is proportional to the mass m. If, on
the average, the mass density ρ0 is constant throughout the
universe, then a sphere of volume V will enclose the average mass
ρ0V. Thus the number of lines of force passing through
the surface F of the sphere into its interior is proportional to
ρ0V. For unit area of the surface of the sphere the
number of lines of force which enters the sphere is thus proportional to
ρ0V/F or to ρ0R. Hence the
intensity of the field at the surface would ultimately become infinite with
increasing radius R of the sphere, which is impossible.



This conception is in itself not very satisfactory. It is still less
satisfactory because it leads to the result that the light emitted by the stars
and also individual stars of the stellar system are perpetually passing out
into infinite space, never to return, and without ever again coming into
interaction with other objects of nature. Such a finite material universe would
be destined to become gradually but systematically impoverished.



In order to escape this dilemma, Seeliger suggested a modification of Newton’s
law, in which he assumes that for great distances the force of attraction
between two masses diminishes more rapidly than would result from the inverse
square law. In this way it is possible for the mean density of matter to be
constant everywhere, even to infinity, without infinitely large gravitational
fields being produced. We thus free ourselves from the distasteful conception
that the material universe ought to possess something of the nature of a
centre. Of course we purchase our emancipation from the fundamental
difficulties mentioned, at the cost of a modification and complication of
Newton’s law which has neither empirical nor theoretical foundation. We can
imagine innumerable laws which would serve the same purpose, without our being
able to state a reason why one of them is to be preferred to the others; for
any one of these laws would be founded just as little on more general
theoretical principles as is the law of Newton.




XXXI.

THE POSSIBILITY OF A “FINITE” AND YET “UNBOUNDED”
UNIVERSE


But speculations on the structure of the universe also move in quite another
direction. The development of non-Euclidean geometry led to the recognition of
the fact, that we can cast doubt on the infiniteness of our space without
coming into conflict with the laws of thought or with experience (Riemann,
Helmholtz). These questions have already been treated in detail and with
unsurpassable lucidity by Helmholtz and Poincaré, whereas I can only touch on
them briefly here.



In the first place, we imagine an existence in two dimensional space. Flat
beings with flat implements, and in particular flat rigid measuring-rods, are
free to move in a plane. For them nothing exists outside of this plane: that
which they observe to happen to themselves and to their flat “things”
is the all-inclusive reality of their plane. In particular, the constructions
of plane Euclidean geometry can be carried out by means of the rods e.g. the
lattice construction, considered in Section XXIV. In contrast to ours, the
universe of these beings is two-dimensional; but, like ours, it extends to
infinity. In their universe there is room for an infinite number of identical
squares made up of rods, i.e. its volume (surface) is infinite. If these beings
say their universe is “plane,” there is sense in the statement,
because they mean that they can perform the constructions of plane Euclidean
geometry with their rods. In this connection the individual rods always
represent the same distance, independently of their position.



Let us consider now a second two-dimensional existence, but this time on a
spherical surface instead of on a plane. The flat beings with their
measuring-rods and other objects fit exactly on this surface and they are
unable to leave it. Their whole universe of observation extends exclusively
over the surface of the sphere. Are these beings able to regard the geometry of
their universe as being plane geometry and their rods withal as the realisation
of “distance”? They cannot do this. For if they attempt to realise a
straight line, they will obtain a curve, which we “three-dimensional
beings” designate as a great circle, i.e. a self-contained line of
definite finite length, which can be measured up by means of a measuring-rod.
Similarly, this universe has a finite area that can be compared with the area,
of a square constructed with rods. The great charm resulting from this
consideration lies in the recognition of the fact that the universe of these
beings is finite and yet has no limits.



But the spherical-surface beings do not need to go on a world-tour in order to
perceive that they are not living in a Euclidean universe. They can convince
themselves of this on every part of their “world,” provided they do
not use too small a piece of it. Starting from a point, they draw
“straight lines” (arcs of circles as judged in three dimensional
space) of equal length in all directions. They will call the line joining the
free ends of these lines a “circle.” For a plane surface, the ratio
of the circumference of a circle to its diameter, both lengths being measured
with the same rod, is, according to Euclidean geometry of the plane, equal to a
constant value π, which is independent of the diameter of the circle. On
their spherical surface our flat beings would find for this ratio the value
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i.e. a smaller value than π, the difference being the more considerable,
the greater is the radius of the circle in comparison with the radius R of the
“world-sphere.” By means of this relation the spherical beings can
determine the radius of their universe (“world”), even when only a
relatively small part of their worldsphere is available for their measurements.
But if this part is very small indeed, they will no longer be able to
demonstrate that they are on a spherical “world” and not on a
Euclidean plane, for a small part of a spherical surface differs only slightly
from a piece of a plane of the same size.



Thus if the spherical surface beings are living on a planet of which the solar
system occupies only a negligibly small part of the spherical universe, they
have no means of determining whether they are living in a finite or in an
infinite universe, because the “piece of universe” to which they
have access is in both cases practically plane, or Euclidean. It follows
directly from this discussion, that for our sphere-beings the circumference of
a circle first increases with the radius until the “circumference of the
universe” is reached, and that it thenceforward gradually decreases to
zero for still further increasing values of the radius. During this process the
area of the circle continues to increase more and more, until finally it
becomes equal to the total area of the whole “world-sphere.”



Perhaps the reader will wonder why we have placed our “beings” on a
sphere rather than on another closed surface. But this choice has its
justification in the fact that, of all closed surfaces, the sphere is unique in
possessing the property that all points on it are equivalent. I admit that the
ratio of the circumference c of a circle to its radius r depends
on r, but for a given value of r it is the same for all points of
the “worldsphere”; in other words, the “world-sphere”
is a “surface of constant curvature.”



To this two-dimensional sphere-universe there is a three-dimensional analogy,
namely, the three-dimensional spherical space which was discovered by Riemann.
its points are likewise all equivalent. It possesses a finite volume, which is
determined by its “radius” (2π2R3). Is it
possible to imagine a spherical space? To imagine a space means nothing else
than that we imagine an epitome of our “space” experience, i.e. of
experience that we can have in the movement of “rigid” bodies. In
this sense we can imagine a spherical space.



Suppose we draw lines or stretch strings in all directions from a point, and
mark off from each of these the distance r with a measuring-rod. All the free
end-points of these lengths lie on a spherical surface. We can specially
measure up the area (F) of this surface by means of a square made up of
measuring-rods. If the universe is Euclidean, then
F = 4πr2; if it is spherical, then F is always less
than 4πr2. With increasing values of r, F increases from zero
up to a maximum value which is determined by the “world-radius,” but
for still further increasing values of r, the area gradually diminishes to
zero. At first, the straight lines which radiate from the starting point
diverge farther and farther from one another, but later they approach each
other, and finally they run together again at a “counter-point” to
the starting point. Under such conditions they have traversed the whole
spherical space. It is easily seen that the three-dimensional spherical space
is quite analogous to the two-dimensional spherical surface. It is finite (i.e.
of finite volume), and has no bounds.



It may be mentioned that there is yet another kind of curved space:
“elliptical space.” It can be regarded as a curved space in which the
two “counter-points” are identical (indistinguishable from each
other). An elliptical universe can thus be considered to some extent as a
curved universe possessing central symmetry.



It follows from what has been said, that closed spaces without limits are
conceivable. From amongst these, the spherical space (and the elliptical)
excels in its simplicity, since all points on it are equivalent. As a result of
this discussion, a most interesting question arises for astronomers and
physicists, and that is whether the universe in which we live is infinite, or
whether it is finite in the manner of the spherical universe. Our experience is
far from being sufficient to enable us to answer this question. But the general
theory of relativity permits of our answering it with a moderate degree of
certainty, and in this connection the difficulty mentioned in Section XXX finds
its solution.




XXXII.

THE STRUCTURE OF SPACE ACCORDING TO THE GENERAL THEORY OF RELATIVITY


According to the general theory of relativity, the geometrical properties of
space are not independent, but they are determined by matter. Thus we can draw
conclusions about the geometrical structure of the universe only if we base our
considerations on the state of the matter as being something that is known. We
know from experience that, for a suitably chosen co-ordinate system, the
velocities of the stars are small as compared with the velocity of transmission
of light. We can thus as a rough approximation arrive at a conclusion as to the
nature of the universe as a whole, if we treat the matter as being at rest.



We already know from our previous discussion that the behaviour of
measuring-rods and clocks is influenced by gravitational fields, i.e. by the
distribution of matter. This in itself is sufficient to exclude the possibility
of the exact validity of Euclidean geometry in our universe. But it is
conceivable that our universe differs only slightly from a Euclidean one, and
this notion seems all the more probable, since calculations show that the
metrics of surrounding space is influenced only to an exceedingly small extent
by masses even of the magnitude of our sun. We might imagine that, as regards
geometry, our universe behaves analogously to a surface which is irregularly
curved in its individual parts, but which nowhere departs appreciably from a
plane: something like the rippled surface of a lake. Such a universe might
fittingly be called a quasi-Euclidean universe. As regards its space it would
be infinite. But calculation shows that in a quasi-Euclidean universe the
average density of matter would necessarily be nil. Thus such a universe could
not be inhabited by matter everywhere; it would present to us that
unsatisfactory picture which we portrayed in Section XXX.



If we are to have in the universe an average density of matter which differs
from zero, however small may be that difference, then the universe cannot be
quasi-Euclidean. On the contrary, the results of calculation indicate that if
matter be distributed uniformly, the universe would necessarily be spherical
(or elliptical). Since in reality the detailed distribution of matter is not
uniform, the real universe will deviate in individual parts from the spherical,
i.e. the universe will be quasi-spherical. But it will be necessarily finite.
In fact, the theory supplies us with a simple connection[25] between
the space-expanse of the universe and the average density of matter in it.




 



 [25]
 For the radius R of the
universe we obtain the equation
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The use of the C.G.S. system in this equation gives 2/k = 1.08 x
1027; ρ is the average density of the matter and k is a
constant connected with the Newtonian constant of gravitation.




APPENDICES



APPENDIX I

SIMPLE DERIVATION OF THE LORENTZ TRANSFORMATION

(SUPPLEMENTARY TO SECTION XI)


For the relative orientation of the co-ordinate systems indicated in Fig. 2,
the x-axes of both systems permanently coincide. In the present case we can
divide the problem into parts by considering first only events which are
localised on the x-axis. Any such event is represented with respect to the
co-ordinate system K by the abscissa x and the time t, and with respect to the
system K′ by the abscissa x′ and the time t′. We require to find x′ and t′ when
x and t are given.



A light-signal, which is proceeding along the positive axis of x, is
transmitted according to the equation



x = ct



or



x – ct = 0 . . . . . (1).



Since the same light-signal has to be transmitted relative to K′ with the
velocity c, the propagation relative to the system K′ will be represented by
the analogous formula



x′ – ct′ = 0 . . . . . (2)



Those space-time points (events) which satisfy (1) must also satisfy (2).
Obviously this will be the case when the relation



(x′ – ct′) = λ(x – ct) . . . (3).



is fulfilled in general, where λ indicates a constant; for, according to
(3), the disappearance of (x – ct) involves the disappearance of (x′ – ct′).



If we apply quite similar considerations to light rays which are being
transmitted along the negative x-axis, we obtain the condition



(x′ + ct′) = (x + ct) . . . (4).



By adding (or subtracting) equations (3) and (4), and introducing for
convenience the constants a and b in place of the constants λ and μ where
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and
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we obtain the equations
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We should thus have the solution of our problem, if the constants a and b were
known. These result from the following discussion.



For the origin of K′ we have permanently x′ = 0, and hence according to the
first of the equations (5)
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If we call v the velocity with which the origin of K′ is moving relative to K,
we then have
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The same value v can be obtained from equations (5), if we calculate the
velocity of another point of K′ relative to K, or the velocity (directed
towards the negative x-axis) of a point of K with respect to K′. In short, we
can designate v as the relative velocity of the two systems.



Furthermore, the principle of relativity teaches us that, as judged from K, the
length of a unit measuring-rod which is at rest with reference to K′ must be
exactly the same as the length, as judged from K′, of a unit measuring-rod
which is at rest relative to K. In order to see how the points of the x′-axis
appear as viewed from K, we only require to take a “snapshot” of K′
from K; this means that we have to insert a particular value of t (time of K),
e.g. t = 0. For this value of t we then obtain from the first of the equations
(5)



x′ = ax



Two points of the x′-axis which are separated by the distance Δx′ = 1 when
measured in the K′ system are thus separated in our instantaneous photograph by
the distance
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But if the snapshot be taken from K′(t′ = 0), and if we eliminate t from the
equations (5), taking into account the expression (6), we obtain
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From this we conclude that two points on the x-axis separated by the distance 1
(relative to K) will be represented on our snapshot by the distance
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But from what has been said, the two snapshots must be identical; hence Δx
in (7) must be equal to Δx′ in (7a), so that we obtain
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The equations (6) and (7b) determine the constants a and b. By inserting the
values of these constants in (5), we obtain the first and the fourth of the
equations given in Section XI.
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Thus we have obtained the Lorentz transformation for events on the x-axis. It
satisfies the condition



x′2 – c2t′2 = x2 –
c2t2 . . . . . . (8a).



The extension of this result, to include events which take place outside the
x-axis, is obtained by retaining equations (8) and supplementing them by the
relations
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In this way we satisfy the postulate of the constancy of the velocity of light
in vacuo for rays of light of arbitrary direction, both for the system K and
for the system K′. This may be shown in the following manner.



We suppose a light-signal sent out from the origin of K at the time t = 0. It
will be propagated according to the equation
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or, if we square this equation, according to the equation



x2 + y2 + z2 – c2t2 = 0
. . . . . (10).



It is required by the law of propagation of light, in conjunction with the
postulate of relativity, that the transmission of the signal in question should
take place—as judged from K′—in accordance with the corresponding formula



r′ = ct′



or,



x′2 + y′2 + z′2 – c2t′2
= 0 . . . . . . (10a).



In order that equation (10a) may be a consequence of equation (10), we must
have



x′2 + y′2 + z′2 – c2t′2
= σ (x2 + y2 + z2 –
c2t2) (11).



Since equation (8a) must hold for points on the x-axis, we thus have σ = 1. It
is easily seen that the Lorentz transformation really satisfies equation (11)
for σ = 1; for (11) is a consequence of (8a) and (9), and hence also of (8) and
(9). We have thus derived the Lorentz transformation.



The Lorentz transformation represented by (8) and (9) still requires to be
generalised. Obviously it is immaterial whether the axes of K′ be chosen so
that they are spatially parallel to those of K. It is also not essential that
the velocity of translation of K′ with respect to K should be in the direction
of the x-axis. A simple consideration shows that we are able to construct the
Lorentz transformation in this general sense from two kinds of transformations,
viz. from Lorentz transformations in the special sense and from purely spatial
transformations. which corresponds to the replacement of the rectangular
co-ordinate system by a new system with its axes pointing in other directions.



Mathematically, we can characterise the generalised Lorentz transformation thus:



It expresses x′, y′, x′, t′, in terms of linear homogeneous functions of x, y,
x, t, of such a kind that the relation



x′2 + y′2 + z′2 – c2t′2
= x2 + y2 + z2 – c2t2
(11a).



is satisficd identically. That is to say: If we substitute their expressions in
x, y, x, t, in place of x′, y′, x′, t′, on the left-hand side, then the
left-hand side of (11a) agrees with the right-hand side.




APPENDIX II

MINKOWSKI’S FOUR-DIMENSIONAL SPACE (“WORLD”)

(SUPPLEMENTARY TO SECTION XVII)


We can characterise the Lorentz transformation still more simply if we
introduce the imaginary
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in place of t, as time-variable. If, in accordance with this, we insert
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and similarly for the accented system K′, then the condition which is
identically satisfied by the transformation can be expressed thus:



x1′2 + x2′2 +
x3′2 + x4′2 =
x12 + x22 +
x32 + x42 (12).



That is, by the afore-mentioned choice of “coordinates,” (11a) [see
the end of Appendix II] is transformed into this equation.



We see from (12) that the imaginary time co-ordinate x4, enters into
the condition of transformation in exactly the same way as the space
co-ordinates x1, x2, x3. It is due to this
fact that, according to the theory of relativity, the “time”
x4, enters into natural laws in the same form as the space co
ordinates x1, x2, x3.



A four-dimensional continuum described by the “co-ordinates”
x1, x2, x3, x4, was called
“world” by Minkowski, who also termed a point-event a
“world-point.” From a “happening” in three-dimensional
space, physics becomes, as it were, an “existence” in the
four-dimensional “world.”



This four-dimensional “world” bears a close similarity to the
three-dimensional “space” of (Euclidean) analytical geometry. If we
introduce into the latter a new Cartesian co-ordinate system (x′1,
x′2, x′3) with the same origin, then x′1,
x′2, x′3, are linear homogeneous functions of
x1, x2, x3 which identically satisfy the
equation



x1′2 + x2′2 +
x3′2 = x12 +
x22 + x32



The analogy with (12) is a complete one. We can regard Minkowski’s
“world” in a formal manner as a four-dimensional Euclidean space
(with an imaginary time coordinate); the Lorentz transformation corresponds
to a “rotation” of the co-ordinate system in the four-dimensional
“world.”




APPENDIX III

THE EXPERIMENTAL CONFIRMATION OF THE GENERAL THEORY OF RELATIVITY


From a systematic theoretical point of view, we may imagine the process of
evolution of an empirical science to be a continuous process of induction.
Theories are evolved and are expressed in short compass as statements of a
large number of individual observations in the form of empirical laws, from
which the general laws can be ascertained by comparison. Regarded in this way,
the development of a science bears some resemblance to the compilation of a
classified catalogue. It is, as it were, a purely empirical enterprise.



But this point of view by no means embraces the whole of the actual process;
for it slurs over the important part played by intuition and deductive thought
in the development of an exact science. As soon as a science has emerged from
its initial stages, theoretical advances are no longer achieved merely by a
process of arrangement. Guided by empirical data, the investigator rather
develops a system of thought which, in general, is built up logically from a
small number of fundamental assumptions, the so-called axioms. We call such a
system of thought a theory. The theory finds the justification for its
existence in the fact that it correlates a large number of single observations,
and it is just here that the “truth” of the theory lies.



Corresponding to the same complex of empirical data, there may be several
theories, which differ from one another to a considerable extent. But as
regards the deductions from the theories which are capable of being tested, the
agreement between the theories may be so complete that it becomes difficult to
find any deductions in which the two theories differ from each other. As an
example, a case of general interest is available in the province of biology, in
the Darwinian theory of the development of species by selection in the struggle
for existence, and in the theory of development which is based on the
hypothesis of the hereditary transmission of acquired characters.



We have another instance of far-reaching agreement between the deductions from
two theories in Newtonian mechanics on the one hand, and the general theory of
relativity on the other. This agreement goes so far, that up to the present we
have been able to find only a few deductions from the general theory of
relativity which are capable of investigation, and to which the physics of
pre-relativity days does not also lead, and this despite the profound
difference in the fundamental assumptions of the two theories. In what follows,
we shall again consider these important deductions, and we shall also discuss
the empirical evidence appertaining to them which has hitherto been obtained.



(a) Motion of the Perihelion of Mercury



According to Newtonian mechanics and Newton’s law of gravitation, a planet
which is revolving round the sun would describe an ellipse round the latter,
or, more correctly, round the common centre of gravity of the sun and the
planet. In such a system, the sun, or the common centre of gravity, lies in one
of the foci of the orbital ellipse in such a manner that, in the course of a
planet-year, the distance sun-planet grows from a minimum to a maximum, and
then decreases again to a minimum. If instead of Newton’s law we insert a
somewhat different law of attraction into the calculation, we find that,
according to this new law, the motion would still take place in such a manner
that the distance sun-planet exhibits periodic variations; but in this case the
angle described by the line joining sun and planet during such a period (from
perihelion—closest proximity to the sun—to perihelion) would differ from 360°.
The line of the orbit would not then be a closed one but in the course of time
it would fill up an annular part of the orbital plane, viz. between the circle
of least and the circle of greatest distance of the planet from the sun.



According also to the general theory of relativity, which differs of course
from the theory of Newton, a small variation from the Newton-Kepler motion of a
planet in its orbit should take place, and in such away, that the angle
described by the radius sun-planet between one perhelion and the next should
exceed that corresponding to one complete revolution by an amount given by
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(N.B.—One complete revolution corresponds to the angle 2π in the absolute
angular measure customary in physics, and the above expression given the amount
by which the radius sun-planet exceeds this angle during the interval between
one perihelion and the next.) In this expression a represents the major
semi-axis of the ellipse, e its eccentricity, c the velocity of light, and T
the period of revolution of the planet. Our result may also be stated as
follows: According to the general theory of relativity, the major axis of the
ellipse rotates round the sun in the same sense as the orbital motion of the
planet. Theory requires that this rotation should amount to 43 seconds of arc
per century for the planet Mercury, but for the other Planets of our solar
system its magnitude should be so small that it would necessarily escape
detection.[26]




 



 [26]
 Especially since the next planet Venus
has an orbit that is almost an exact circle, which makes it more difficult to
locate the perihelion with precision.



In point of fact, astronomers have found that the theory of Newton does not
suffice to calculate the observed motion of Mercury with an exactness
corresponding to that of the delicacy of observation attainable at the present
time. After taking account of all the disturbing influences exerted on Mercury
by the remaining planets, it was found (Leverrier: 1859; and Newcomb: 1895)
that an unexplained perihelial movement of the orbit of Mercury remained over,
the amount of which does not differ sensibly from the above mentioned +43
seconds of arc per century. The uncertainty of the empirical result amounts to
a few seconds only.



(b) Deflection of Light by a Gravitational Field



image052






In Section XXII it has been already mentioned that according to the general
theory of relativity, a ray of light will experience a curvature of its path
when passing through a gravitational field, this curvature being similar to
that experienced by the path of a body which is projected through a
gravitational field. As a result of this theory, we should expect that a ray of
light which is passing close to a heavenly body would be deviated towards the
latter. For a ray of light which passes the sun at a distance of Δ
sun-radii from its centre, the angle of deflection (α) should amount to
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It may be added that, according to the theory, half of this deflection is
produced by the Newtonian field of attraction of the sun, and the other half by
the geometrical modification (“curvature”) of space caused by the
sun.



This result admits of an experimental test by means of the photographic
registration of stars during a total eclipse of the sun. The only reason why we
must wait for a total eclipse is because at every other time the atmosphere is
so strongly illuminated by the light from the sun that the stars situated near
the sun’s disc are invisible. The predicted effect can be seen clearly from the
accompanying diagram. If the sun (S) were not present, a star which is
practically infinitely distant would be seen in the direction D1, as
observed front the earth. But as a consequence of the deflection of light from
the star by the sun, the star will be seen in the direction D2, i.e.
at a somewhat greater distance from the centre of the sun than corresponds to
its real position.



In practice, the question is tested in the following way. The stars in the
neighbourhood of the sun are photographed during a solar eclipse.



In addition, a second photograph of the same stars is taken when the sun is
situated at another position in the sky, i.e. a few months earlier or
later. As compared with the standard photograph, the positions of the stars on
the eclipse-photograph ought to appear displaced radially outwards (away from
the centre of the sun) by an amount corresponding to the angle a.



We are indebted to the [British] Royal Society and to the Royal Astronomical
Society for the investigation of this important deduction. Undaunted by the
[first world] war and by difficulties of both a material and a psychological
nature aroused by the war, these societies equipped two expeditions—to Sobral
(Brazil), and to the island of Principe (West Africa)—and sent several of
Britain’s most celebrated astronomers (Eddington, Cottingham, Crommelin,
Davidson), in order to obtain photographs of the solar eclipse of 29th May,
1919. The relative discrepancies to be expected between the stellar photographs
obtained during the eclipse and the comparison photographs amounted to a few
hundredths of a millimetre only. Thus great accuracy was necessary in making
the adjustments required for the taking of the photographs, and in their
subsequent measurement.



The results of the measurements confirmed the theory in a thoroughly
satisfactory manner. The rectangular components of the observed and of the
calculated deviations of the stars (in seconds of arc) are set forth in the
following table of results:
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(c) Displacement of Spectral Lines Towards the Red



In Section XXIII it has been shown that in a system K′ which is in rotation with
regard to a Galileian system K, clocks of identical construction, and which are
considered at rest with respect to the rotating reference-body, go at rates
which are dependent on the positions of the clocks. We shall now examine this
dependence quantitatively. A clock, which is situated at a distance r from the
centre of the disc, has a velocity relative to K which is given by



v = ωr,



where ω represents the angular velocity of rotation of the disc K′ with respect
to K. If v0, represents the number of ticks of the clock per unit
time (“rate” of the clock) relative to K when the clock is at rest,
then the “rate” of the clock (v) when it is moving relative to K with
a velocity v, but at rest with respect to the disc, will, in accordance with
Section XII, be given by



image055






or with sufficient accuracy by
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This expression may also be stated in the following form:
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If we represent the difference of potential of the centrifugal force between
the position of the clock and the centre of the disc by φ, i.e. the work,
considered negatively, which must be performed on the unit of mass against the
centrifugal force in order to transport it from the position of the clock on
the rotating disc to the centre of the disc, then we have
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From this it follows that
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In the first place, we see from this expression that two clocks of identical
construction will go at different rates when situated at different distances
from the centre of the disc. This result is also valid from the standpoint of
an observer who is rotating with the disc.



Now, as judged from the disc, the latter is in a gravitational field of
potential φ, hence the result we have obtained will hold quite generally for
gravitational fields. Furthermore, we can regard an atom which is emitting
spectral lines as a clock, so that the following statement will hold:



An atom absorbs or emits light of a frequency which is dependent on the
potential of the gravitational field in which it is situated.



The frequency of an atom situated on the surface of a heavenly body will be
somewhat less than the frequency of an atom of the same element which is
situated in free space (or on the surface of a smaller celestial body).



Now φ = – K (M/r), where K is Newton’s constant of gravitation, and M is the
mass of the heavenly body. Thus a displacement towards the red ought to take
place for spectral lines produced at the surface of stars as compared with the
spectral lines of the same element produced at the surface of the earth, the
amount of this displacement being



image060






For the sun, the displacement towards the red predicted by theory amounts to
about two millionths of the wave-length. A trustworthy calculation is not
possible in the case of the stars, because in general neither the mass M nor
the radius r are known.



It is an open question whether or not this effect exists, and at the present
time (1920) astronomers are working with great zeal towards the solution. Owing
to the smallness of the effect in the case of the sun, it is difficult to form
an opinion as to its existence. Whereas Grebe and Bachem (Bonn), as a result of
their own measurements and those of Evershed and Schwarzschild on the cyanogen
bands, have placed the existence of the effect almost beyond doubt, while other
investigators, particularly St. John, have been led to the opposite opinion in
consequence of their measurements.



Mean displacements of lines towards the less refrangible end of the spectrum
are certainly revealed by statistical investigations of the fixed stars; but
up to the present the examination of the available data does not allow of any
definite decision being arrived at, as to whether or not these displacements
are to be referred in reality to the effect of gravitation. The results of
observation have been collected together, and discussed in detail from the
standpoint of the question which has been engaging our attention here, in a
paper by E. Freundlich entitled “Zur Prüfung der allgemeinen
Relativitäts-Theorie” (Die Naturwissenschaften, 1919, No. 35, p. 520:
Julius Springer, Berlin).



At all events, a definite decision will be reached during the next few years.
If the displacement of spectral lines towards the red by the gravitational
potential does not exist, then the general theory of relativity will be
untenable. On the other hand, if the cause of the displacement of spectral
lines be definitely traced to the gravitational potential, then the study of
this displacement will furnish us with important information as to the mass of
the heavenly bodies.[27]




 



 [27]
 The displacement of spectral lines
towards the red end of the spectrum was definitely established by Adams in
1924, by observations on the dense companion of Sirius, for which the effect is
about thirty times greater than for the Sun. R.W.L.—translator




APPENDIX IV

THE STRUCTURE OF SPACE ACCORDING TO THE GENERAL THEORY OF RELATIVITY

(SUPPLEMENTARY TO SECTION XXXII)



Since the publication of the first edition of this little book, our knowledge
about the structure of space in the large (“cosmological problem”)
has had an important development, which ought to be mentioned even in a popular
presentation of the subject.



My original considerations on the subject were based on two hypotheses:



(1) There exists an average density of matter in the whole of space which is
everywhere the same and different from zero.



(2) The magnitude (“radius”) of space is independent of time.



Both these hypotheses proved to be consistent, according to the general theory
of relativity, but only after a hypothetical term was added to the field
equations, a term which was not required by the theory as such nor did it seem
natural from a theoretical point of view (“cosmological term of the field
equations”).



Hypothesis (2) appeared unavoidable to me at the time, since I thought that one
would get into bottomless speculations if one departed from it.



However, already in the ’twenties, the Russian mathematician Friedman showed
that a different hypothesis was natural from a purely theoretical point of
view. He realized that it was possible to preserve hypothesis (1) without
introducing the less natural cosmological term into the field equations of
gravitation, if one was ready to drop hypothesis (2). Namely, the original
field equations admit a solution in which the “world radius” depends
on time (expanding space). In that sense one can say, according to Friedman,
that the theory demands an expansion of space.



A few years later Hubble showed, by a special investigation of the
extra-galactic nebulae (“milky ways”), that the spectral lines
emitted showed a red shift which increased regularly with the distance of the
nebulae. This can be interpreted in regard to our present knowledge only in the
sense of Doppler’s principle, as an expansive motion of the system of stars in
the large—as required, according to Friedman, by the field equations of
gravitation. Hubble’s discovery can, therefore, be considered to some extent as
a confirmation of the theory.



There does arise, however, a strange difficulty. The interpretation of the
galactic line-shift discovered by Hubble as an expansion (which can hardly be
doubted from a theoretical point of view), leads to an origin of this expansion
which lies “only” about 109 years ago, while physical
astronomy makes it appear likely that the development of individual stars and
systems of stars takes considerably longer. It is in no way known how this
incongruity is to be overcome.



I further want to remark that the theory of expanding space, together with the
empirical data of astronomy, permit no decision to be reached about the finite
or infinite character of (three-dimensional) space, while the original
“static” hypothesis of space yielded the closure (finiteness) of
space.



K = co-ordinate system



x, y = two-dimensional co-ordinates



x, y, z = three-dimensional co-ordinates



x, y, z, t = four-dimensional co-ordinates



t = time



I = distance



v = velocity



F = force



G = gravitational field
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