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ABSCHNITT I. - EINLEITENDE BETRACHTUNGEN.


§. 1. Stationäre Strömungen in der Ebene als Deutung der Functionen von x
+ iy.


Die physikalische Deutung der Functionen von [formula], mit welcher wir im
Folgenden zu arbeiten haben, ist in ihren Grundlagen wohlbekannt(1), nur
der Vollständigkeit halber müssen letztere kurz zur Sprache gebracht
werden.


Sei [formula], [formula], [formula]. Dann hat man vor allen Dingen:


[formula]


und hieraus:


[formula]


sowie für v:


[formula]


Hier wird man nun u als Geschwindigkeitspotential deuten, so dass
[formula] [formula] die Componenten der Geschwindigkeit sind, mit der eine
Flüssigkeit parallel zur [formula]-Ebene strömt. Wir mögen uns diese
Flüssigkeit zwischen zwei Ebenen eingeschlossen denken, die parallel zur
[formula]-Ebene verlaufen, oder auch uns vorstellen, dass die Flüssigkeit
als unendlich dünne, übrigens gleichförmige Membran über der
[formula]-Ebene ausgebreitet sei. Dann sagt die Gleichung (2)—und dies
ist der Kern unserer physikalischen Deutung—, dass unsere Strömung eine
stationäre ist.  Die Curven [formula] Const. heissen die Niveaucurven,
während die Curven [formula] Const., die vermöge (1) den ersteren überall
rechtwinkelig begegnen, die Strömungscurven abgeben.


Bei dieser Vorstellungsweise ist es zunächst natürlich völlig
gleichgültig, wie beschaffen wir uns die strömende Flüssigkeit denken
wollen. Inzwischen wird es in der Folge vielfach zweckmässig sein,
dieselbe mit dem elektrischen Fluidum zu identificiren. Es wird dann
nämlich u mit dem elektrostatischen Potential, welches die Strömung
hervorruft, proportional, und die experimentelle Physik gibt uns
mannigfache Mittel an die Hand, um zahlreiche Strömungszustände, die uns
interessiren, thatsächlich zu realisiren.


Die Strömung selbst wird übrigens ungeändert bleiben, wenn wir u
durchweg um eine Constante vermehren: es sind nur die
Differentialquotienten [formula], welche unmittelbar in Evidenz treten.
Das Analoge gilt von v; so dass die Function [formula], welche wir
physikalisch deuten, durch diese Deutung nur bis auf eine additive
Constante bestimmt ist, was im Folgenden wohl zu beachten ist.


Sodann bemerke man noch, dass die Gleichungen (1)-(3) ungeändert bestehen
bleiben, wenn man u durch v, v durch [formula] ersetzt.
Dementsprechend erhalten wir einen zweiten Strömungszustand, bei welchem
v das Geschwindigkeitspotential abgibt und die Curven [formula] Const.
die Strömungscurven sind. Derselbe repräsentirt in dem oben erläuterten
Sinne die Function [formula]. Es ist häufig zweckmässig, diese neue
Strömung neben der ursprünglichen zu betrachten, bei welcher u das
Geschwindigkeitspotential war; wir wollen dann der Kürze halber von
conjugirten Strömungen sprechen. Die Benennung ist zwar etwas ungenau,
weil sich u zu v verhält, wie v zu [formula]; sie wird aber für
später ausreichen.


Diese ganze Erläuterung bezieht sich, gleich den Differentialgleichungen
(1)-(3), zuvörderst nur auf einen solchen (übrigens beliebigen) Theil
der Ebene, in welchem [formula] eindeutig ist und weder [formula], noch
einer seiner Differentialquotienten unendlich wird. Um den entsprechenden
physikalischen Vorgang deutlich zu übersehen, hat man sich also vorab
einen solchen Bereich abzugränzen und durch geeignete Vorrichtungen an der
Gränze dafür zu sorgen, dass der im Inneren des Gebietes eingeleitete
stationäre Bewegungszustand ungehindert fortdauern kann.


In einem so umgränzten Gebiete werden diejenigen Puncte [formula] unsere
besondere Aufmerksamkeit auf sich ziehen, für welche der
Differentialquotient [formula] verschwindet. Ich will der Allgemeinheit
wegen gleich annehmen, dass auch [formula], [formula], [formula] bis hin
zu [formula] gleich Null sein mögen. Um über den Verlauf der Niveaucurven,
oder auch der Strömungscurven, in der Nähe eines solchen Punctes
Aufschluss zu erhalten, entwickele man w in eine nach Potenzen von
[formula] fortschreitende Reihe. Dieselbe bringt hinter dem constanten
Gliede unmittelbar ein Glied mit [formula]. Durch Einführung von
Polarcoordinaten schliesst man hieraus: dass sich im Puncte [formula]
[formula] Curven [formula] Const. unter resp. gleichen Winkeln
kreuzen, während ebensoviel Curven [formula] Const. als Halbirungslinien
der genannten Winkel auftreten. Ich werde einen solchen Punct
dementsprechend einen Kreuzungspunct nennen, und zwar einen
Kreuzungspunct von der Multiplicität [formula].


Die folgende (selbstverständlich nur schematische) Figur mag dieses
Vorkommniss für [formula] erläutern und namentlich verständlich machen,
wie sich ein Kreuzungspunct in das Orthogonalsystem einfügt, welches
übrigens von den Curven [formula] Const., [formula] Const. gebildet wird:


                         [Illustration: Figur 1.]


                                 Figur 1.


Die Strömungscurven [formula] Const. erscheinen in der Figur ausgezogen
und die Strömungsrichtungen auf ihnen durch beigesetzte Pfeilspitzen
angegeben; die Niveaucurven sind durch Punctirung angedeutet. Man sieht,
wie die Flüssigkeit von drei Seiten auf den Kreuzungspunct zuströmt, um
ebenfalls nach drei Seiten von demselben abzuströmen. Diess wird nur
dadurch möglich, dass die Geschwindigkeit der Strömung im Kreuzungspunkte
gleich Null wird (dass sich die Flüssigkeit in demselben staut, wie man
nach Analogie bekannter Vorkommnisse sagen könnte). In der That ist ja die
Geschwindigkeit durch [formula] gegeben.


Es ist weiterhin vortheilhaft, den Kreuzungspunkt von der Multiplicität
[formula] als Gränzfall von [formula] einfachen Kreuzungspuncten
aufzufassen. Dass diess zulässig ist, zeigt die analytische Behandlung.
Denn im [formula]-fachen Kreuzungspunkte hat die Gleichung [formula] eine
[formula]-fache Wurzel, und eine solche entsteht, wie man weiss, durch
Zusammenrücken von [formula] einfachen Wurzeln. Im Uebrigen mögen folgende
Figuren diese Auffassung erläutern:


                         [Illustration: Figur 2.]


                                 Figur 2.


                         [Illustration: Figur 3.]


                                 Figur 3.


Ich habe in denselben der Einfachheit halber nur die Strömungscurven
angegeben. Linker Hand erblickt man denselben Kreuzungspunct von der
Multiplicität Zwei, auf den sich Figur 1 bezieht. Rechter Hand liegt eine
Strömung vor, welche dicht bei einander zwei einfache Kreuzungspuncte
aufweist. Man erkennt, wie der eine Strömungszustand aus dem anderen durch
continuirliche Aenderung hervorgeht.


Bei dieser Erläuterung wurde stillschweigend vorausgesetzt, dass das
Gebiet, in welchem wir den Strömungszustand betrachten, sich nicht in’s
Unendliche erstrecke. Es hat allerdings keinerlei principielle
Schwierigkeit, den Punct [formula] ebenso in Betracht zu ziehen, wie
irgend einen anderen Punct [formula]. An Stelle der Reihenentwickelung
nach Potenzen von [formula] hat dann in bekannter Weise eine solche nach
Potenzen von [formula] zu treten. Man wird von einem [formula]-fachen
Kreuzungspuncte bei [formula] sprechen, wenn diese Entwickelung hinter dem
constanten Gliede sofort einen Term mit [formula] bringt. Aber es scheint
überflüssig, die geometrischen Verhältnisse, welche diesen Vorkommnissen
bei unserer Strömung entsprechen, ausführlicher zu schildern. Denn wir
werden später Mittel und Wege kennen lernen, um die Sonderstellung des
Werthes [formula], wie sie uns hier entgegentritt, ein für allemal zu
beseitigen. Ebendesshalb wird der Punct [formula] in den nächstfolgenden
Paragraphen (§. 2-4) bei Seite gelassen, trotzdem er auch dort, wenn man
vollständig sein wollte, besonders in Betracht gezogen werden müsste.


§. 2. Berücksichtigung der Unendlichkeitspuncte von w = f(z).


Wir wollen nunmehr auch solche Puncte [formula] in unser Gebiet
hereinnehmen, in denen [formula] unendlich gross wird. Dabei schränken wir
indess die unbegränzte Reihe der Möglichkeiten, welche in dieser Richtung
vorliegt, mit Rücksicht auf die specielle von uns allein zu studierende
Functionsclasse bedeutend ein. Wir wollen verlangen, dass der
Differentialquotient [formula] keine wesentlich singuläre Stelle
besitzen soll, oder, was dasselbe ist, wir wollen festsetzen, _dass __w__
nur so unendlich werden darf, wie ein Ausdruck der folgenden Form_:


[formula]


unter [formula] eine bestimmte endliche Zahl verstanden.


Entsprechend den verschiedenen Formen, die dieser Ausdruck darbietet,
sagen wir, dass sich bei [formula] verschiedene Unstetigkeiten überlagern:
ein logarithmischer Unendlichkeitspunct, ein algebraischer
Unendlichkeitspunct von der Multiplicität Eins, u. s. f. Wir werden der
Einfachheit halber hier jedes dieser Vorkommnisse für sich betrachten,
worauf es eine nützliche Uebung sein wird, sich in einzelnen Fällen das
Resultat der Ueberlagerung deutlich zu machen.


Sei [formula] zuvörderst ein logarithmischer Unendlichkeitspunct. Wir
haben dann:


[formula]


Hier ist A diejenige Grösse, welche man, mit [formula] multiplicirt,
nach Cauchy als Residuum des logarithmischen Unendlichkeitspunctes
bezeichnet, eine Benennung, die im Folgenden gelegentlich angewandt werden
soll. Für die Strömung in der Nähe des Unstetigkeitspunctes ist es von
primärer Wichtigkeit, ob A reell ist oder rein imaginär, oder endlich
complex. Offenbar kann man den dritten Fall als eine Ueberlagerung der
beiden ersten auffassen. Wir wollen daher auch ihn bei Seite lassen und
haben uns somit nur mit zwei getrennten Möglichkeiten zu beschäftigen.


1) Wenn A reell ist, so werde [formula] gesetzt. Man hat dann in erster
Annäherung für [formula], [formula]:


[formula]


Die Curven [formula] Const. umgeben also den Unendlichkeitspunct in
Gestalt kleiner Kreise; die Curven [formula] Const. laufen, den
wechselnden Werthen von [formula] entsprechend, in allen Richtungen auf
den Unendlichkeitspunct zu. Wir haben eine Bewegung, bei welcher
[formula] eine Quelle von einer gewissen positiven oder negativen
Ergiebigkeit vorstellt. Um diese Ergiebigkeit zu berechnen, multipliciren
wir das Bogenelement eines kleinen mit dem Radius r um den
Unstetigkeitspunct beschriebenen Kreises mit der zugehörigen
Geschwindigkeit und integriren den so gewonnenen Ausdruck längs der
Kreisperipherie. Da [formula] in erster Annäherung mit [formula] und
dieses mit [formula] zusammenfällt, so kommt:


[formula]


als Werth der Ergiebigkeit. _Die Ergiebigkeit ist also gleich dem
Residuum, getheilt durch __i__; sie ist positiv oder negativ je nach dem
Werthe von __A_.


2) Sei zweitens A rein imaginär, gleich [formula]. Dann kommt unter
Beibehaltung der übrigen Bezeichnungen in erster Annäherung:


[formula]


Die Rollen der Curven [formula] Const., [formula] Const. sind also
geradezu vertauscht. Die Niveaucurven verlaufen jetzt nach allen
Richtungen von [formula] aus, während die Strömungscurven den
Unendlichkeitspunct in kleinen Kreisen umgeben. Die Flüssigkeit wirbelt
auf letzteren Curven um den Punct [formula] herum. Ich will den Punct
dementsprechend als einen Wirbelpunct bezeichnen. Sinn und Intensität
des Wirbels werden durch [formula] gemessen. Da die Geschwindigkeit


[formula]


in erster Annäherung gleich [formula] wird, so findet die Wirbelbewegung
bei positivem [formula] im Sinne des Uhrzeigers, bei negativem
[formula] in entgegengesetztem Sinne statt. Wir mögen die Intensität
des Wirbels gleich [formula] setzen, sie ist dann dem Residuum des
betreffenden Unendlichkeitspunctes negativ gleich.


Uebrigens können wir sagen, indem wir uns der Definition conjugirter
Strömungen, wie sie im vorigen Paragraphen gegeben wurde, mit der ihr
anhaftenden Unbestimmtheit erinnern: Hat eine von zwei conjugirten
Strömungen bei [formula] eine Quelle von einer gewissen Ergiebigkeit, so
hat die andere dort einen Wirbelpunct von gleicher oder entgegengesetzt
gleicher Intensität.


Wir betrachten ferner die algebraischen Unstetigkeitspuncte. Bei ihnen
ist der Verlauf der Strömung seinem allgemeinen Charakter nach davon
unabhängig, ob das erste Glied der Reihenentwickelung einen reellen,
imaginären oder complexen Coefficienten hat. Sei zuvörderst:


[formula]


so wird in erster Annäherung für [formula], [formula]:


[formula]


Betrachten wir zuvörderst den reellen Theil rechter Hand. Wenn r sehr
klein ist, so kann [formula] durch geschickte Wahl von [formula] doch noch
jeden beliebigen vorgegebenen Werth vorstellen. _Die Function __u__ nimmt
also in unmittelbarer Nähe der Unstetigkeitsstelle noch jeden Werth an_.
Zur näheren Orientirung denken wir uns einen Augenblick r und [formula]
als unbegränzte Veränderliche, setzen also


[formula]


Wir erhalten dann ein Büschel von Kreisen, welche alle die feste Richtung
[formula] berühren. Die Kreise sind um so kleiner, je grösser der absolute
Betrag von Const. genommen wird. In ähnlicher Weise verlaufen daher die
Curven [formula] Const. in der Nähe der Unstetigkeitsstelle.
Insbesondere haben sie für sehr grosse positive oder negative Werthe von
Const. die Gestalt kleiner, geschlossener, kreisähnlicher Ovale.—Für den
imaginären Theil des Ausdrucks rechter Hand und also die Curven [formula]
Const. gilt eine ähnliche Discussion. Der Unterschied ist nur der, dass
jetzt die Richtung [formula] von allen Curven berührt wird. Hiernach wird
die folgende Figur, in welcher die Niveaucurven wieder punctirt, die
Strömungscurven ausgezogen sind, verständlich sein:


                         [Illustration: Figur 4.]


                                 Figur 4.


Die analoge Discussion liefert vom [formula]-fachen algebraischen
Unstetigkeitspuncte die erforderliche Anschauung. Ich will hier nur das
Resultat anführen: Jede Curve [formula] Const. läuft [formula]-mal
durch den Unstetigkeitspunct hindurch, indem sie der Reihe nach
[formula] feste, gleich stark gegen einander geneigte Tangenten berührt.
Analog die Curven [formula]_ Const. Für sehr grosse (positive oder
negative) Werthe der Constante sind beiderlei Curven in__ unmittelbarer
Nähre der Unstetigkeitsstelle geschlossen_. Ich gebe zur Veranschaulichung
eine Figur für [formula]:


                         [Illustration: Figur 5.]


                                 Figur 5.


Man wird vermuthen, dass diese höheren Vorkommnisse aus den niederen durch
Gränzübergang entstehen mögen. Ich verschiebe die betreffende Erläuterung
bis zum folgenden Paragraphen, wo uns eine bestimmte Functionsclasse die
erforderlichen Anschauungen mit Leichtigkeit vermitteln wird.


§. 3. Rationale Functionen und ihre Integrale. Entstehung höherer
Unendlichkeitspuncte aus niederen.


Die entwickelten Sätze genügen, um den Gesammtverlauf solcher Functionen
zu veranschaulichen, die, übrigens in der ganzen Ebene eindeutig, keine
anderen Unendlichkeitspuncte aufweisen, als die eben betrachteten. Es sind
diess, wie man weiss, die rationalen Functionen und ihre Integrale. Ohne
ausgeführte Zeichnungen zu geben, stelle ich hier die Sätze, welche man
bei ihnen betreffs der Kreuzungspuncte und Unendlichkeitspuncte findet, in
knapper Form zusammen. Ich beschränke mich dabei, aus dem oben angegebenen
Grunde, auf solche Fälle, in denen [formula] keinerlei ausgezeichnete
Rolle spielt. Die hierin liegende Beschränkung wird hinterher, wie bereits
angedeutet, von selbst in Wegfall kommen.


1) Die rationale Function, welche wir zu betrachten haben, stellt sich in
der Form dar:


[formula]


wo [formula] und [formula] ganze Functionen desselben Grades sind, die
ohne gemeinsamen Theiler angenommen werden können. Ist dieser Grad der
[formula] und zählt man jeden algebraischen Unendlichkeitspunct so oft,
als seine Multiplicität anzeigt, so erhält man, den Wurzeln von [formula]
entsprechend, n algebraische Unstetigkeitspuncte. Die Kreuzungspuncte
sind durch [formula], eine Gleichung [formula] Grades, gegeben. Die
Gesammtmultiplicität der Kreuzungspuncte ist also [formula], wobei man
aber beachten muss, dass jede [formula]-fache Wurzel von [formula] eine
[formula]-fache Wurzel von [formula] ist und also jeder [formula]-fache
Unendlichkeitspunct der Function für [formula] Kreuzungspuncte mitzählt.


2) Soll das Integral einer rationalen Function


[formula]


für [formula] endlich bleiben, so muss der Grad von [formula] um zwei
Einheiten kleiner sein als der Grad von [formula]. [formula] und [formula]
sollen dabei ohne gemeinsamen Theiler angenommen werden. Dann liefert
[formula] die freien Kreuzungspuncte, d. h. diejenigen Kreuzungspuncte,
welche nicht mit Unendlichkeitspuncten zusammenfallen. Die Wurzeln von
[formula] geben die Unendlichkeitspuncte des Integrals. Und zwar
entspricht der einfachen Wurzel von [formula] ein logarithmischer
Unendlichkeitspunct, der Doppelwurzel ein Unendlichkeitspunct, der im
Allgemeinen die Ueberlagerung eines logarithmischen Unstetigkeitspunctes
mit einem einfachen algebraischen sein wird, etc. Wenn man
dementsprechend jeden Unendlichkeitspunct so oft zählt, als die
Multiplicität des entsprechenden Factors in [formula] beträgt, so ist
die Gesammtmultiplicität der Kreuzungspuncte um zwei Einheiten geringer
als die der Unendlichkeitspuncte. Uebrigens sei noch an den bekannten
Satz erinnert, dass die Summe der logarithmischen Residua sämmtlicher
Unstetigkeitspuncte gleich Null ist.—


Das Vorstehende gibt uns eine zweifache Möglichkeit, um höhere
Unstetigkeitspuncte aus niederen entstehen zu lassen. Wir können
einmal—und diess ist für uns das Wichtigste—vom Integral der rationalen
Function ausgehen. Bei ihm entsteht ein [formula]-facher algebraischer
Unstetigkeitspunct, wenn [formula] Factoren von [formula] einander gleich
werden, wenn also [formula] logarithmische Unstetigkeitspuncte in
geeigneter Weise zusammenrücken. Dabei ist deutlich, dass die
Residuensumme der letzteren gleich Null sein muss, wenn der entstehende
Unendlichkeitspunct ein rein algebraischer sein soll. Die folgenden beiden
Figuren, in denen nur die Strömungscurven angegeben sind, erläutern den
betreffenden Gränzübergang für den einfachen algebraischen
Unstetigkeitspunct der Figur (4):


                         [Illustration: Fig. 6.]


                                 Fig. 6.


                         [Illustration: Fig. 7.]


                                 Fig. 7.


Ich habe dabei die Anordnung in doppelter Weise getroffen, so dass linker
Hand zwei Quellenpuncte, rechter Hand zwei Wirbelpuncte einander nahe
gerückt scheinen und Figur 4 als übereinstimmendes Resultat des
Gränzüberganges in beiden Fällen erscheint. In derselben Beziehung stehen
die folgenden beiden Zeichnungen zu Figur 5:


                         [Illustration: Fig. 8.]


                                 Fig. 8.


                         [Illustration: Fig. 9.]


                                 Fig. 9.


Die zweite Möglichkeit für das Entstehen höherer Unendlichkeitsstellen aus
niederen bietet die Betrachtung der rationalen Function [formula] selbst.
Logarithmische Unendlichkeitsstellen bleiben dabei ausgeschlossen. Der
[formula]-fache algebraische Unstetigkeitspunct entsteht jetzt aus
[formula] einfachen algebraischen Unstetigkeitspuncten, indem nämlich
[formula] einfache lineare Factoren von [formula] zu einem
[formula]-fachen zusammenrücken müssen. Aber zugleich vereinigt sich mit
ihnen eine Anzahl von Kreuzungspuncten, deren Gesammtmultiplicität
[formula] beträgt. Denn [formula] erhält, wie schon bemerkt, in
demselben Augenblicke, wo [formula] den [formula]-fachen Factor bekommt,
einen [formula]-fachen Factor. Die folgende Figur erläutert in diesem
Sinne das Entstehen des in Figur 5 abgeleiteten zweifachen algebraischen
Unendlichkeitspunctes:


                         [Illustration: Fig. 10.]


                                 Fig. 10.


Es ist natürlich leicht, diese beiden Arten des Gränzüberganges unter eine
allgemeinere gemeinsam zu subsumiren. Wenn man [formula] logarithmische
Unendlichkeitspuncte und [formula] Kreuzungspuncte successive oder
gleichzeitig zusammenfallen lässt, so wird allemal ein [formula]-facher
algebraischer Unstetigkeitspunct entstehen. Doch ist hier nicht der Ort,
um diese Gedanken weiter auszuführen.


§. 4. Realisation der betrachteten Strömungen auf experimentellem Wege.


Wir wollen unserer Betrachtung nunmehr eine andere Wendung geben, indem
wir uns fragen, wie diejenigen Bewegungsformen, die wir jetzt von den
rationalen Functionen und ihren Integralen kennen, physikalisch realisirt
werden mögen. Dabei sei es gestattet, von dem Princip der Ueberlagerung
ausgiebigen Gebrauch zu machen, so dass es sich nur um Herstellung der
allereinfachsten Bewegungsformen handelt. Aus der Theorie der
Partialbrüche folgt, dass man jede der in Betracht kommenden Functionen
aus einzelnen Bestandtheilen additiv zusammensetzen kann, welche sich
unter einen der folgenden beiden Typen subsumiren:


[formula]


Da [formula] bei [formula] einen Unstetigkeitspunct hat, was eine
unnöthige Besonderheit ist, so wollen wir den ersten Typus durch den
allgemeineren ersetzen:


[formula]


und diesen selbst wieder, entsprechend den Erläuterungen des §. 2, in zwei
Bestandtheile zerspalten, indem wir nämlich A gleich  A + _i_B setzen
und nun A [formula] und _i_B [formula] gesondert betrachten. Hiernach
haben wir im Ganzen drei Fälle auseinanderzuhalten.


1) Wenn es sich um den Typus A [formula] handelt, so haben wir bei
[formula] eine Quelle von der Ergiebigkeit 2 A [formula], bei [formula]
eine solche von der Ergiebigkeit [formula] A [formula] anzubringen. Man
denke sich zu dem Zwecke die [formula]-Ebene mit einer unendlich dünnen,
gleichförmigen, elektricitätsleitenden Schicht überdeckt. Dann wird die
entsprechende Bewegungsform offenbar realisirt, indem wir bei [formula]
den einen, bei [formula] den anderen Pol einer galvanischen Batterie von
zweckmässig gewählter Stärke aufsetzen(2).—Man sieht zugleich, wesshalb
das Residuum von [formula] demjenigen von [formula] entgegengesetzt gleich
sein muss: da der Strömungszustand stationär sein soll, muss an der einen
Stelle ebenso viel Elektricität zugeführt werden, als an der anderen
abströmt. Derselbe Grund gilt, wie man sofort erkennt, für den
entsprechenden Satz bei beliebig vielen logarithmischen
Unendlichkeitspuncten, wobei allerdings zunächst nur von den rein
imaginären Theilen der betreffenden Residua die Rede ist (welche den von
den Unendlichkeitspunkten ausgehenden Quellenbewegungen entsprechen).


2) Im zweiten Falle (wo _i_B [formula] gegeben ist) wird die
experimentelle Anordnung etwas schwieriger. Das einfachste Schema ist
dieses, dass man [formula] und [formula] durch eine sich selbst nicht
schneidende Curve verbindet und nun dafür sorgt, dass diese Curve der
Sitz einer constanten elektromotorischen Kraft sei. Es entwickelt sich
dann in der [formula]-Ebene eine Strömung, welche bei [formula] und
[formula] Wirbelpunkte aufweist, welche überall sonst stetig verläuft, und
aus der man durch Integration als zugehöriges Geschwindigkeitspotential
eine Function findet, welche bei jeder Umkreisung von [formula] oder
[formula] um einen gewissen Periodicitätsmodul wächst. Von diesem
Geschwindigkeitspotential ist dabei das nothwendig eindeutige
elektrostatische Potential wohl zu unterscheiden. Die Curve, welche
[formula] und [formula] verbindet, ist für das letztere eine
Unstetigkeitscurve, und wird eben hierdurch die Eindeutigkeit des
elektrostatischen Potentials ermöglicht(3).


                         [Illustration: Fig. 11.]


                                 Fig. 11.


Ich weiss nicht, ob es eine experimentelle Anordnung giebt, um dieses
einfachste Schema zu realisiren. Es scheint, dass man umständlicher zu
Werke gehen muss. Denken wir zuvörderst etwa an thermoelektrische
Ströme. Wir wollen die [formula]-Ebene zum Theil mit dem Materiale I, zum
Theil mit dem Materiale II überdecken und die Stärke der überdeckenden
Schichten dabei so bemessen, dass der specifische Leitungswiderstand
überall derselbe sei. Wenn wir dann dafür sorgen, dass die beiden durch
[formula] und [formula] von einander getrennten Theile der Contour, in
welcher die zweierlei Materialien zusammenstossen, beide auf constanten,
unter sich verschiedenen Temperaturen gehalten werden, so wird in der That
eine elektrische Strömung entstehen, wie wir sie haben wollen. Dabei weist
das elektrostatische Potential, nach den Vorstellungen, die man der Lehre
von der Thermoelektricität zu Grunde legt, an beiden Theilen der
genannten Contour Unstetigkeiten auf.—Noch complicirter scheint es,
elektrische Ströme zu benutzen, wie sie die gewöhnlichen galvanischen
Elemente liefern. Man muss die Ebene dann durch mindestens drei Curven,
welche von [formula] nach [formula] verlaufen, in Theile zerlegen und zwei
dieser Theile mit metallischen Belegen, den dritten mit einem feuchten
Leiter überdecken. Man vergleiche hierzu die Figur 12.


                         [Illustration: Fig. 12.]


                                 Fig. 12.


Durch alle diese Anordnungen hindurch ist von Vorne herein ersichtlich,
dass die beiden bei [formula] und [formula] auftretenden Wirbelpuncte in
der That entgegengesetzt gleiche Intensität haben müssen. Aus ähnlichen
Gründen wird die Gesammtintensität sämmtlicher Wirbel bei beliebig vielen
gegebenen Wirbelpuncten immer gleich Null sein, und ist dadurch der Satz
von dem Verschwinden der Summe aller logarithmischen Residuen, auch was
den reellen Theil dieser Residuen angeht, auf physikalisch evidente Gründe
zurückgeführt.


3) Die Bewegungsformen, welche den algebraischen Typen [formula]
entsprechen, mögen den Entwickelungen des §. 3 zufolge aus den eben
betrachteten durch Grenzübergang gewonnen werden. Es wird diess natürlich
nur mit einer gewissen Annäherung geschehen können. Man setze z. B.
[formula] Drähte, in welche die Pole einer galvanischen Batterie
auslaufen, dicht bei einander auf die [formula]-Ebene auf. Dann entsteht
eine Strömung, welche in einiger Entfernung von den Drahtenden mit
derjenigen merklich zusammenfällt, welche einem algebraischen
Unstetigkeitspunkte von der Multiplicität [formula] entspricht. Zugleich
ergiebt sich eine Ergänzung unserer obigen Darstellung. Man wird die
galvanische Batterie sehr stark nehmen müssen, wenn bei der erwähnten
Anordnung noch eine mittlere elektrische Strömung zu Stande kommen soll.
Es entspricht diess dem von analytischer Seite wohlbekannten Satze, dass
die Residua logarithmischer Unendlichkeitspuncte selbst in’s Unendliche
wachsen müssen, wenn beim Zusammenfallen der logarithmischen ein
algebraischer Unstetigkeitspunkt entstehen soll.—Ich gehe hier in kein
weiteres Detail, da es im Folgenden allein darauf ankommt, dass auf Grund
der Figuren 6-9 das allgemeine Princip verstanden wird.


§. 5. Uebergang zur Kugelfläche, Strömungen auf beliebigen krummen
Flächen.


Um die unendlich grossen Werthe von z derselben geometrischen
Behandlungsweise zugänglich zu machen, wie die endlichen, bedient man sich
in den Lehrbüchern jetzt allgemein der Kugelfläche(4), welche
stereographisch auf die [formula]-Ebene bezogen ist. Man kennt die
einfachen geometrischen Beziehungen, welche bei dieser Abbildung
auftreten(5). Man weiss auch zur Genüge, dass das Unendlich-Weite der
Ebene sich in einen bestimmten Punct der Kugel, den Projectionspunct,
zusammenzieht, so dass es keine symbolische Ausdrucksweise mehr ist, wenn
man auf der Kugel von einem Puncte [formula] spricht. Dagegen scheint es
noch immer weniger bekannt zu sein, dass bei dieser Abbildung die
Functionen von [formula] eine Bedeutung für die Kugelfläche gewinnen,
welche derjenigen, die sie für die Ebene hatten, genau analog ist, dass
man also in den Entwickelungen der vorangehenden Paragraphen statt der
Ebene die Kugel gebrauchen kann, wobei von einer Sonderstellung des
Werthes [formula] von vorne herein keine Rede ist(6): Ich entwickele
hier kurz diejenigen Sätze der Flächentheorie, aus denen diese Behauptung
folgt, und nehme meinen Standpunct dabei gleich so allgemein, dass meine
Darstellung für später anzustellende Betrachtungen ausreicht.


Indem wir Flüssigkeitsbewegungen parallel der [formula]-Ebene studirten,
haben wir uns bereits gewöhnt, die Flüssigkeitsschicht, welche der
Betrachtung unterliegt, als unendlich dünn vorauszusetzen. In demselben
Sinne kann man Flüssigkeitsbewegungen offenbar auf beliebig gegebenen
Flächen betrachten. Die Verschiebungen frei ausgespannter
Flüssigkeitsmembranen in sich, wie man sie bei den Plateau’schen Versuchen
so schön beobachten kann, geben ein anschauliches Beispiel dafür.—Wir
werden versuchen, auch derartige Bewegungen durch ein Potential zu
definiren, und vor allen Dingen fragen, welche Bewandniss es dann mit den
stationären Bewegungen hat.


Die zweckmässige Verallgemeinerung des Potentialbegriffs bietet sich
unmittelbar. Es sei u eine Function des Ortes auf der Fläche, so denke
man sich auf letzterer die Curven [formula] Const. gezogen. Sodann werde
festgesetzt, dass die Flüssigkeitsbewegung auf der Fläche in jedem Punkte
senkrecht gegen die hindurchgehende Curve [formula] Const. stattfinden
solle, und zwar mit einer Geschwindigkeit, die, unter [formula] das
Bogenelement der zugehörigen, auf der Fläche verlaufenden Normalrichtung
verstanden, gleich [formula] ist. Wir nennen dann u, wie in der Ebene,
das zur Bewegung gehörige Geschwindigkeitspotential.


Die in solcher Weise definirte Strömung soll nun eine stationäre sein.


Um eine bestimmte Formel zu haben, wollen wir ein krummliniges


Coordinatensystem p, q auf unserer Fläche annehmen und uns die Form


bestimmt denken:




[formula]


welche vermöge dieses Coordinatensystems das Bogenelement auf der Fläche
annimmt. Dann gibt eine einfache Zwischenbetrachtung, welche der in der
Ebene üblichen durchaus analog verläuft, dass u, um eine stationäre
Bewegung zu veranlassen, der folgenden Differentialgleichung zweiter
Ordnung genügen muss:


[formula]


An diese Differentialgleichung knüpft nun eine kurze Ueberlegung, welche
die volle Analogie mit den auf die Ebene bezüglichen Resultaten herstellt.


Es ergiebt sich nämlich aus der Form von (2); dass man neben jedem u,
welches (2) genügt, eine andere Function v einführen kann, _die zu __u__
genau in dem bekannten Reciprocitätsverhältnisse steht_. In der That,
vermöge (2) sind die folgenden beiden Gleichungen verträglich:


[formula]


sie definiren ein v bis auf eine nothwendig unbestimmt bleibende
Constante. Aus ihnen aber folgt durch Auflösung:


[formula]


und hieraus:


[formula]


so dass einmal u sich zu v verhält, wie v zu [formula], und
andererseits v, so gut wie u, der partiellen Differentialgleichung (2)
genügt. Zugleich haben die Gleichungen (3), bez. (4), die geometrische
Bedeutung, dass die Curven u = Const. und v = Const. einander im
Allgemeinen rechtwinkelig schneiden.


Was nun die Behauptung betrifft, die ich hinsichtlich der
stereographischen Beziehung der Kugel auf die Ebene zu Eingang dieses
Paragraphen voranstellte, so ist sie ein unmittelbarer Ausfluss aus dem
Umstande, dass die Gleichungen [formula]_ in __E__, __F__, __G__ homogen
von der nullten Dimension sind_(7). Wenn zwei Flächen conform auf einander
bezogen sind und man führt auf ihnen entsprechende krummlinige Coordinaten
ein, so unterscheidet sich der Ausdruck für das Bogenelement auf der einen
Fläche von dem auf die andere Fläche bezüglichen nur durch einen Faktor.
Dieser Factor aber fällt aus dem angegebenen Grunde aus den Gleichungen
(2)—(5) einfach heraus. Wir haben also einen allgemeinen Satz, der die
besondere auf Kugel und Ebene bezügliche, oben ausgesprochene Behauptung
als speciellen Fall umfasst. Indem ich aus u, v die Combination
[formula] bilde und diese als complexe Function des Ortes auf der Fläche
bezeichne, spricht sich derselbe folgendermassen aus:


Wird eine Fläche conform auf eine zweite abgebildet, so verwandelt sich
jede auf ihr existirende complexe Function des Ortes in eine Function
derselben Art auf der zweiten Fläche.


Vielleicht ist es nützlich, ausdrücklich einem Missverständnisse
entgegenzutreten, welches hierbei entstehen könnte. Derselben Function
[formula] entspricht eine Flüssigkeitsbewegung auf der einen und auf der
anderen Fläche; man könnte meinen, dass die eine Bewegung vermöge der
Abbildung aus der anderen hervorgehe. Dies ist natürlich richtig mit Bezug
auf den Verlauf der Strömungscurven und der Niveaucurven, keineswegs aber
in Bezug auf die Geschwindigkeit. Wo das Bogenelement der einen Fläche
grösser ist, als das Bogenelement der anderen Fläche, da ist die
Geschwindigkeit der Strömung entsprechend kleiner. Hierin eben liegt es,
dass der Werth [formula] auf der Kugel seine singuläre Stellung verliert.
Für den Unendlichkeitspunct der Ebene erweist sich die Geschwindigkeit der
Strömung, wie man sofort sieht, im Allgemeinen als unendlich klein von der
zweiten Ordnung. Sollte der Unendlichkeitspunkt singulär sein, so wird die
Geschwindigkeit dort allemal um zwei Ordnungen kleiner, als die
Geschwindigkeit in einem gleichzubenennenden Punkt des Endlichen. Man
erinnere sich nun der oben (unter dem Texte) mitgetheilten Formel:


[formula]


welche das Bogenelement der Kugel zum Bogenelement der Ebene in Beziehung
setzt. Hier ist [formula] eben auch eine Grösse zweiter Ordnung, und es
findet daher beim Uebergange zur Kugel genaue Compensation statt.


§. 6. Zusammenhang der entwickelten Theorie mit den Functionen eines
complexen Argumentes.


Nun wir die Kugel als Substrat unserer Betrachtungen gewonnen haben,
übertragen wir auf sie, was wir in den §§. 3 und 4 betreffs rationaler
Functionen und ihrer Integrale haben kennen lernen. Wir gewinnen dadurch,
dass alle früher aufgestellten Sätze auch für unendlich grosses z und
somit ausnahmslos gelten. Um so interessanter wird es, sich auf der Kugel
den Verlauf bestimmter rationaler Functionen zu überlegen und über die
Mittel zu ihrer physikalischen Realisirbarkeit nachzudenken(8). Aber es
ist eine andere wichtige Frage, welche sich bei solchen Untersuchungen
aufdrängt. Die verschiedenen Functionen des Ortes, welche wir auf der
Kugelfläche studiren, sind zugleich Functionen des Argumentes [formula].
Woher dieser Zusammenhang?


Man wolle vor allen Dingen bemerken, dass [formula] selbst eine complexe
Function des Ortes auf unserer Kugel ist; genügen doch x und y, für
u und v eingesetzt, den früher (§. 1) für letztere aufgestellten
Differentialgleichungen. So lange man in der Ebene operirt, könnte man
denken, dass diese Function vor den übrigen etwas Wesentliches voraus
habe; nach dem Uebergange zur Kugel ist hierzu keine Veranlassung mehr.
Und in der That verallgemeinert sich die Bemerkung, auf die sich unsere
Frage bezieht, sofort. Wenn [formula] und [formula] Functionen von
[formula] sind, so ist auch [formula] eine Function von [formula] Wir
haben also für Ebene und Kugelfläche den allgemeinen Satz: dass von zwei
complexen Functionen des Ortes im Sinne der gewöhnlichen
functionentheoretischen Ausdrucksweise jede eine Function der anderen
ist.


Wird dieses nun eine besondere Eigenthümlichkeit der genannten Flächen
sein? Sicher wird sich dieselbe auf alle solche Flächen übertragen, die
man auf einen Theil der Ebene (oder der Kugel) conform beziehen kann.
Diess folgt aus dem letzten Satze des vorigen Paragraphen. Ich sage aber,
dass dieselbe Eigenthümlichkeit überhaupt allen Flächen zukommt, womit
implicite behauptet wird, dass man einen Theil einer beliebigen Fläche
auf die Ebene oder die Kugelfläche conform übertragen kann.


Der Beweis gestaltet sich unmittelbar, wenn man die Bestandteile [formula]
irgend einer auf einer Fläche existirenden complexen Function des Ortes,
[formula], auf der Fläche selbst als krummlinige Coordinaten einführt.
Dann müssen nämlich die Coëfficienten E, F, G in dem Ausdrucke des
Bogenelementes so beschaffen werden, dass Identitäten entstehen, wenn man
in die Gleichungen (2)-(5) des vorigen Paragraphen für p und q und
gleichzeitig für u und v bez. x und y einführt. Diess bedingt,
wie man sofort ersieht, dass [formula], [formula] wird. Hierdurch
aber verwandeln sich jene Gleichungen in die wohlbekannten:


[formula]


Sie gehen also direct in jene Gleichungen über, durch welche man
Functionen des Argumentes [formula] zu definiren pflegt, so dass [formula]
in der That eine Function von [formula] wird, was zu beweisen war.


Zugleich erledigt sich, was hinsichtlich conformer Abbildung behauptet
wurde. Denn ans der Form des Bogenelementes


[formula]


folgt unmittelbar, dass unsere Fläche durch [formula] auf die
[formula]-Ebene conform übertragen wird. Ich will dieses Resultat in etwas
allgemeinerer Form aussprechen, indem ich sage:


Wenn man auf zwei Flächen zwei complexe Functionen des Ortes kennt, und
man bezieht die Flächen so aufeinander, dass entsprechende Puncte
respective gleiche Functionswerthe aufweisen, so sind die Flächen conform
auf einander bezogen.


Es ist dies die Umkehr des ähnlich lautenden am Schlusse des vorigen


Paragraphen aufgestellten Satzes.




Alle diese Theoreme haben, soweit sie sich auf beliebige Flächen beziehen,
für’s Erste nur dann einen klaren Sinn, wenn man seine Aufmerksamkeit auf
kleine Stücke der Flächen beschränkt, innerhalb deren die complexen
Functionen des Ortes weder Unendlichkeitspuncte noch Kreuzungspuncte
aufweisen. Ich habe desshalb gelegentlich auch nur von einem
Flächen_theile_ gesprochen. Aber es liegt nahe, zu fragen, wie sich die
Verhältnisse gestalten, wenn man geschlossene Flächen in ihrer ganzen
Ausdehnung benutzt. Diese Frage ist mit der weiteren Ideenentwickelung,
die ich im folgenden zu geben habe, auf das Innigste verknüpft; ihr
speciell sind die §§. 19—21 des Folgenden gewidmet.


§. 7. Noch einmal die Strömungen auf der Kugel. Riemann’s allgemeine
Fragestellung.


Wir haben nunmehr alle Vorbedingungen, um die Entwickelungen der ersten


Paragraphen dieser Einleitung in wesentlich neuer Weise aufzufassen und


uns vermöge dieser Auffassung zu einer grossen und allgemeinen


Fragestellung zu erheben, welche die Riemann’sche ist, und deren


Präcisirung und Beantwortung den eigentlichen Gegenstand der gegenwärtigen


Schrift zu bilden hat.




Das Primäre bei der bisherigen Darstellung bildete die Function von
[formula]. Wir haben dieselbe durch eine stationäre Strömung auf der Kugel
gedeutet, und uns bemüht, Eigenschaften der Function in solchen der
Strömung wieder zu erkennen. Insbesondere haben uns die rationalen
Functionen und ihre Integrale mit einer einfachen Art von Strömungen
bekannt gemacht: es sind die einförmigen Strömungen, diejenigen, bei
denen in jedem Puncte der Kugel nur eine Strömung statt hat. Und zwar
sind es unter der Voraussetzung, dass keine anderen Unstetigkeitspuncte
statt haben, als die in §. 2 definirten, die allgemeinsten einförmigen
Strömungen, welche es auf der Kugel gibt.


Es scheint von Vorneherein möglich, diese ganze Entwickelung umzukehren:
das Studium der Strömungen voranzustellen und aus ihm erst die Theorie
gewisser analytischer Functionen zu entwickeln. Die Frage nach der
allgemeinsten in Betracht kommenden Strömung mag dann vorab durch
physikalische Betrachtungen beantwortet werden; geben uns doch die
experimentellen Anordnungen des §. 4 zusammen mit dem Princip der
Ueberlagerung das Mittel, um jede derartige Strömung zu definiren! Die
einzelne Strömung bestimmt uns sodann, von einer Integrationsconstante
abgesehen, eine complexe Function des Ortes, deren allgemeinen Verlauf wir
anschauungsmässig verfolgen können. Jede solche Function ist eine
analytische Function jeder anderen. Indem wir irgend zwei complexe
Functionen des Ortes zusammenstellen, werden wir zu analytischen
Abhängigkeiten hingeführt, deren Eigenschaften wir von Vorneherein
übersehen und die wir erst hinterher, um den Zusammenhang mit den
Betrachtungen der Analysis herzustellen, mit sonst in der Analysis
üblichen Abhängigkeiten identificiren.


Alles dieses ist so deutlich, dass eine genauere Ausführung hier
überflüssig erscheint, dass wir vielmehr sofort zu der in Aussicht
gestellten Verallgemeinerung schreiten können. Auch diese bietet sich
auf Grund der bisherigen Entwickelungen fast mit Nothwendigkeit. Wir
werden alle die Fragen, welche wir gerade hinsichtlich der Kugelfläche
formulirten, in gleicher Weise aufwerfen können, wenn statt der
Kugelfläche eine beliebige geschlossene Fläche gegeben ist. Auch auf ihr
werden wir einförmige Strömungen und also complexe Functionen des Ortes
bestimmen können, deren Eigenschaften wir anschauungsmässig erfassen. Die
gleichzeitige Betrachtung verschiedener Functionen des Ortes verwandelt
hernach die zu gewinnenden Ergebnisse in ebenso viele Lehrsätze der
gewöhnlichen Analysis.—Die Ausführung dieses Gedankenganges ist die
Riemann’sche Theorie; zugleich haben wir die Haupteintheilung, welche bei
der folgenden Exposition derselben zu Grunde zu legen ist.


ABSCHNITT II. - EXPOSITION DER RIEMANN’SCHEN THEORIE.


§. 8. Classification geschlossener Flächen nach der Zahl p.(9)


Für unsere Betrachtungen sind selbstverständlich alle diejenigen
geschlossenen Fächen als aequivalent aufzufassen, die sich durch
eindeutige Zuordnung conform auf einander abbilden lassen. Denn jede
complexe Function des Ortes auf der einen Fläche wird sich bei einer
solchen Abbildung in eine ebensolche Function auf der anderen Fläche
verwandeln: die analytische Beziehung also, welche durch das
Zusammenbestehen zweier complexer Functionen auf der einen Fläche
versinnlicht wird, bleibt beim Uebergange zur zweiten Fläche durchaus
ungeändert. Wenn man also z. B. (zufolge bekannter Entwickelungen) das
Ellipsoid derart conform auf die Kugel beziehen kann, dass jedem Puncte
desselben ein und nur ein Kugelpunct entspricht, so heisst diess für uns,
dass das Ellipsoid ebenso geeignet ist, die rationalen Functionen und ihre
Integrale zu repräsentiren, wie die Kugel.


Um so wichtiger ist es, ein Element kennen zu lernen, welches nicht nur
bei conformer, sondern überhaupt bei eindeutiger Umgestaltung einer
Fläche ungeändert erhalten bleibt(10). _Es ist diess das __Riemann__’sche
p:_ die Zahl der Rückkehrschnitte, welche man auf einer Fläche ziehen
kann, ohne sie zu zerstücken. Die einfachsten Beispiele genügen, um diesen
Begriff einzuüben. Für die Kugel ist [formula]; denn sie zerfällt durch
jede auf ihr verlaufende geschlossene Curve, in zwei getrennte Bereiche.
Für den gewöhnlichen Ring ist [formula], man kann ihn längs einer, aber
auch nur längs einer, übrigens noch sehr willkürlichen, in sich
zurücklaufenden Curve zerschneiden, ohne dass er in Stücke zerfällt.


Dass es unmöglich ist, zwei Flächen von verschiedenem p eindeutig auf
einander zu beziehen, scheint evident(11). Complicirter ist es, den
umgekehrten Satz zu beweisen, _dass nämlich die Gleichheit des __p__ die
hinreichende Bedingung für die Möglichkeit der eindeutigen Beziehung
zweier Flächen abgibt_. Ich muss mich, was den Beweis dieses wichtigen
Satzes angeht, an dieser Stelle auf blosse Citate unter dem Texte
beschränken(12). Auf Grund desselben ist man berechtigt, bei
Untersuchungen über geschlossene Flächen, so lange nur allgemeine
Lagenverhältnisse in Betracht kommen, für jedes p einen möglichst
einfachen Typus zu Grunde zu legen. In diesem Sinne wollen wir von
Normalflächen sprechen. Für quantitative Bestimmungen reichen die
Normalflächen natürlich in keiner Weise mehr aus; aber sie bieten auch für
sie ein Mittel zur Orientirung.


Die Normalfläche für [formula] sei die Kugel, für [formula] der Ring. Bei
höherem p mag man sich eine Kugel mit p Anhängseln (Handhaben)
versehen denken, wie folgende Figur für [formula] aufweist: (see figure
14)


                         [Illustration: Fig. 14.]


                                 Fig. 14.


Eine ähnliche Normalfläche ist natürlich auch bei [formula] statthaft, wie
überhaupt man sich diese Flächen nicht als starr gegeben, sondern als
beliebiger Verzerrungen fähig denken muss.


Auf diesen Normalflächen mögen nun gewisse Querschnitte, von denen wir
im Folgenden Gebrauch zu machen haben, festgelegt werden. Bei [formula]
kommen dieselben noch nicht in Betracht. Auf dem Ringe [formula] mag eine
\quotedblbase Meridiancurve‘‘ A, verbunden mit einer "Breitencurve" B
das Querschnittsystem bilden:


                         [Illustration: Fig. 15.]


                                 Fig. 15.


Allgemein gebrauchen wir [formula] Querschnitte. Es wird, denke ich, mit


Rücksicht auf die folgende Figur verständlich sein, wenn ich bei der


einzelnen Handhabe unserer Normalfläche von einer Meridiancurve und einer


Breitencurve rede:




                         [Illustration: Fig. 16.]


                                 Fig. 16.


Wir wählen die [formula]_ Querschnitte derart, dass wir um jede der
__p__ Handhaben eine Meridiancurve und eine Breitencurve herumlegen._ Wir
wollen diese Querschnitte der Reihe nach mit [formula], [formula],
[formula], beziehungsweise [formula], [formula], [formula] bezeichnen.


§. 9. Vorläufige Bestimmung stationärer Strömungen auf beliebigen Flächen.


Wir haben uns nun mit der Aufgabe zu beschäftigen, auf beliebigen
(geschlossenen) Flächen die allgemeinsten einförmigen, stationären
Strömungen mit Geschwindigkeitspotential zu definiren, immer unter der
Voraussetzung, dass keine anderen Unendlichkeitspuncte zugelassen werden
sollen, als die in §. 2 genannten(13). Zu dem Zwecke richten wir unsere
Ideen auf die Normalflächen des vorigen Paragraphen und benutzen übrigens
wieder Vorstellungen der Elektricitätslehre. Die gegebene Fläche denken
wir uns mit einem unendlich dünnen gleichförmigen Ueberzuge einer
leitenden Substanz versehen, und wenden zunächst diejenigen
experimentellen Mittel an, die uns von §. 3 her bekannt sind. Wir werden
also zuvörderst etwa die beiden Pole einer galvanischen Batterie auf
unsere Fläche an zwei beliebigen Stellen aufsetzen: es entsteht dann eine
Strömung, welche diese beiden Stellen als Quellenpuncte von
entgegengesetzt gleicher Ergiebigkeit besitzt. Wir werden sodann zwei
beliebige Puncte der Fläche durch eine oder mehrere, neben einander
herlaufende, sich selbst nicht schneidende Curven verbinden, welche der
Sitz constanter elektromotorischer Kräfte sein sollen,—wobei man sich
alles Dessen erinnern mag, was in §. 4 betreffs der dann nothwendig
werdenden experimentellen Anordnung gesagt wurde. Wir erhalten dann eine
stationäre Bewegung, für welche die beiden Puncte Wirbelpuncte von
entgegengesetzt gleicher Intensität sind.—Wir werden ferner verschiedene
solche Bewegungsformen überlagern und endlich, wenn es nöthig scheint,
getrennte Unendlichkeitspuncte durch Gränzübergang zu höheren
Unendlichkeitspuncten zusammenfallen lassen. Alles das gestaltet sich
genau so, wie auf der Kugel, und wir haben also jedenfalls den folgenden
Satz:


Wenn man die Art der Unendlichkeitsstellen nach Anleitung des §. 2
beschränkt, wenn man ferner daran festhält, dass die Summe sämmtlicher
logarithmischer Residua allemal gleich Null sein muss, so existiren auf
unserer Fläche complexe Functionen des Ortes, welche an beliebig gegebenen
Stellen in übrigens beliebig gegebener Weise unendlich werden und überall
sonst stetig verlaufen.


Mit den so bestimmten Functionen ist nun aber, für [formula], die Sache
noch keineswegs erschöpft. Wir können nämlich eine experimentelle
Anordnung treffen, für welche auf der Kugel noch keinerlei Möglichkeit
gegeben war. Es gibt jetzt auf der Fläche in sich zurücklaufende Curven,
vermöge deren die Fläche keineswegs in getrennte Bereiche zerlegt wird.
Nichts steht im Wege, dass die Elektricität von der einen Seite einer
solchen Curve durch die Fläche hindurch zur anderen Seite derselben
hinüberströmt. Wir werden eine solche Curve, oder auch mehrere neben
einander herlaufende Curven dieser Art ebensogut als Sitz constanter
elektromotorischer Kräfte betrachten können, wie diess in §. 4 mit
Curvenzügen geschah, die von einem Endpuncte zu einem zweiten hinlaufen.


Die Strömungen, welche wir dann erhalten, haben überhaupt keine
Unstetigkeiten. Wir werden sie als überall endliche Strömungen und die
zugehörigen complexen Functionen des Ortes als überall endliche
Functionen bezeichnen können. Diese Functionen sind nothwendig unendlich
vieldeutig. Denn sie erhalten jeweils einen reellen, der angenommenen
elektromotorischen Kraft proportionalen Periodicitätsmodul, so oft man die
gegebene Curve in demselben Sinne überschreitet(14)


Wir fragen, wie mannigfach die so definirten überall endlichen Strömungen
sein mögen. Offenbar sind zwei auf derselben Fläche verlaufende Curven,
als Sitz gleich starker elektromotorischer Kräfte betrachtet, für unseren
Zweck aequivalent, wenn sie sich durch stetige Verschiebung über die
Fläche hin zur Deckung bringen lassen. Verzerrt man eine Curve so, dass
Curvenstücke auftreten, welche zweimal in entgegengesetzter Richtung
durchlaufen werden, so dürfen dieselben einfach weggelassen werden. In
Folge dessen beweist man, dass eine jede geschlossene Curve einer
ganzzahligen Combination der Querschnitte [formula], [formula], wie
diese im vorigen Paragraphen definirt wurden, aequivalent ist.


                         [Illustration: Fig. 17.]
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                         [Illustration: Fig. 18.]
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In der That, man verfolge den Weg einer geschlossenen Curve auf unserer
Normalfläche(15). Für [formula] wird die Richtigkeit unserer Behauptung
dann unmittelbar evident. Es genügt, ein Beispiel zu betrachten, wie es in
den vorstehenden Figuren vorliegt.


Die in Figur 17 auf der Ringfläche verlaufende Curve ist mit der anderen,
welche rechter Hand gezeichnet ist, durch blosse Verzerrung zur Deckung zu
bringen, sie ist also mit einer dreifachen Durchlaufung der Meridiancurve
A (vergl. Fig. 15) und einer einfachen Durchlaufung der Breitencurve B
aequivalent.—Sei ferner [formula]. So oft dann unsere Curve über eine der
p Handhaben verläuft, kann man ein Stück von ihr abtrennen, das sich
durch blosse Verzerrung in eine ganzzahlige Verbindung der betreffenden
Meridiancurve und der zugehörigen Breitencurve verwandeln lässt. Nach
Absonderung aller solcher Bestandtheile bleibt eine geschlossene Curve
übrig, die sich entweder unmittelbar in einen einzelnen Punct der Fläche
zusammenziehen lässt und also jedenfalls keinen Beitrag zur elektrischen
Strömung liefert, oder die eine oder mehrere Handhaben völlig umschliesst,
wovon Figur 19 ein Beispiel aufweist:


                         [Illustration: Fig. 19.]
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Die Figur 20 erläutert, wie man eine solche Curve durch Deformation
verändern kann. Durch Fortsetzung des hierdurch angedeuteten Processes
verwandelt sie sich in einen Curvenzug, der aus der inneren Randcurve der
betreffenden Handhabe und einer zugehörigen Meridiancurve besteht, dessen
Stücke aber beide zweimal in entgegengesetzter Richtung durchlaufen
werden. Also auch eine solche Curve gibt keinen Beitrag zur Strömung. Man
hätte dieses übrigens auch von Vorneherein aus der Bemerkung ersehen
können, dass die jetzt betrachtete Curve, gleich einer solchen, die sich
in einen Punct zusammenziehen lässt, die gegebene Fläche in getrennte
Gebiete zerlegt.


Wir erzielen daher durch Heranziehen beliebiger geschlossener Curven nicht
mehr, als durch geeignete Benutzung der [formula] Curven [formula],
[formula]. Die allgemeinste überall endliche Strömung, welche wir
hervorrufen können, wird entstehen, wenn wir jeden der [formula]
Querschnitte zum Träger einer beliebigen constanten elektromotorischen
Kraft machen. Oder anders ausgedrückt:


Die allgemeinste von uns zu construirende überall endliche Function ist
diejenige, deren reeller Theil an den [formula] Querschnitten beliebig
vorgegebene Periodicitätsmoduln aufweist.


§. 10. Die allgemeinste stationäre Strömung. Beweis für die Unmöglichkeit
anderweitiger Strömungen.


Wenn wir die verschiedenen im vorigen Paragraphen construirten complexen
Functionen des Ortes additiv zusammenfügen, so erhalten wir eine Function,
deren Willkürlichkeit wir sofort übersehen. Indem wir die Bedingungen, die
hinsichtlich der Unendlichkeitsstellen ein für allemal vorgeschrieben
sind, nicht noch besonders erwähnen, können wir sagen: dass unsere
Function an beliebig gegebenen Stellen in beliebig gegebener Weise
unendlich wird und überdiess ihr reeller Theil an den [formula]
Querschnitten beliebig gegebene Periodicitätsmoduln aufweist.


Ich sage nun, dass diess in der That die allgemeinste Function ist, der
auf unserer Fläche eine einförmige Strömung entspricht. Zum Beweise mögen
wir diese Behauptung auf eine einfachere reduciren. Ist irgend eine
complexe Function der in Betracht kommenden Art auf unserer Fläche
gegeben, so haben wir im Vorhergehenden das Mittel, eine zugehörige
Function zu construiren, welche an denselben Stellen in derselben Weise
unendlich wird, und deren reeller Theil an den Querschnitten [formula],
[formula] dieselben Periodicitätsmoduln aufweist, wie der reelle Theil der
gegebenen Function. Die Differenz der beiden Functionen ist eine neue
Function, welche nirgendwo unendlich wird und deren reeller Theil an den
Querschnitten verschwindende Periodicitätsmoduln besitzt, welche
überdiess, wie selbstverständlich, wiederum eine einförmige Strömung
definirt. Offenbar haben wir zu beweisen, dass eine solche Function
nicht existirt, oder vielmehr, dass sie sich auf eine Constante reducirt.


Und in der That ist dieser Beweis nicht schwierig. Was eine Durchführung
desselben in strenger Form betrifft, so will ich mich darauf beschränken,
zu bemerken, dass dieselbe mit Hülfe des verallgemeinerten Green’schen
Satzes gelingt(16). Die folgenden Betrachtungen sollen auf
anschauungsmässigem Wege dieselbe Unmöglichkeit darthun. Mag man
dieselben wegen der unbestimmten Form, die sie besitzen, vielleicht auch
nicht als zwingend erachten(17), so scheint es doch nützlich, auch in
dieser Weise den Gründen für das Bestehen jenes Theoremes nachzugehen.


Wir mögen den besonderen Fall [formula] vorweg nehmen und uns also fragen,
wesshalb auf der Kugel eine einförmige, überall endliche Strömung
unmöglich ist. Das Zweckmässigste scheint es zu sein, den Verlauf der
Strömungscurven auf der Kugel zu verfolgen. Da Unendlichkeitspuncte nicht
auftreten sollen, so kann eine Strömungscurve nicht plötzlich abbrechen,
wie es in einem Quellenpuncte, oder in einem algebraischen
Unstetigkeitspuncte geschieht. Ueberdiess halte man vor Augen, dass neben
einander herlaufende Strömungscurven nothwendig gleichen Strömungssinn
haben. Man erkennt dann, dass nur zweierlei Arten von nicht abbrechenden
Strömungscurven möglich sind. Entweder die Curve windet sich, je länger um
so enger, um einen asymptotischen Punct—dann haben wir wieder einen
Unendlichkeitspunct—, oder die Curve ist geschlossen. Ist aber eine
Strömungscurve geschlossen, so sind es die nächstfolgenden auch. Dabei
schliessen sie einen kleineren und kleineren Theil der Kugelfläche ein. Es
kann also nicht fehlen, dass man zu einem Wirbelpuncte, d. h. abermals zu
einem Unendlichkeitspuncte geführt wird. Eine überall endliche Strömung
ist also in der That unmöglich. Allerdings haben wir der Möglichkeit nicht
gedacht, die in dem Auftreten von Kreuzungspuncten liegt. Diese Puncte
sind jedenfalls nur, wie oben hervorgehoben, in endlicher Zahl vorhanden.
Es wird also nur eine endliche Zahl von Strömungscurven geben, welche
durch sie hindurchlaufen. Man denke sich die Kugel durch diese Curven in
Gebiete zerlegt und wiederhole innerhalb der einzelnen Gebiete die gerade
angestellten Betrachtungen, wobei sich das frühere Resultat von Neuem
ergeben wird.


Nehmen wir nun [formula] und legen wieder die Normalflächen des §. 8 zu
Grunde. Dass auf diesen Flächen überall endliche, einförmige Strömungen
existiren, liegt nach dem gerade Gesagten an dem Auftreten der Handhaben.
Eine auf der Normalfläche gezogene geschlossene Curve, die sich in einen
Punct zusammenziehen lässt, kann ebensowenig, wie eine geschlossene Curve
auf der Kugel, Strömungscurve für eine überall endliche Strömung sein.
Aber auch eine Curve, wie wir sie in Figur (19) betrachteten, ist nicht zu
brauchen. Denn an eine erste solche Strömungscurve müssen sich weitere
schliessen nach Art der in Figur (20) dargestellten,—so dass wir zuletzt
zu einer Curve gelangen, deren Theile zweimal in entgegengesetztem Sinne
durchlaufen werden! Die Strömungscurve muss also nothwendig sich um die
eine oder andere Handhabe herumwinden, mag diess ein einfaches Umfassen
jener Handhabe sein, oder ein wiederholtes Umkreisen derselben im Sinne
der Meridian- oder der Breitencurven. In allen Fällen lässt sich von der
Strömungscurve ein Theil abtrennen, der im Sinne des vorigen Paragraphen
mit einer ganzzahligen Combination der betreffenden Meridiancurve und der
zugehörigen Breitencurve aequivalent ist. Nun wächst u, der reelle Theil
der durch die Strömung definirten complexen Function, fortwährend, wenn
man längs einer Strömungscurve fortschreitet. Andererseits liefern zwei
Curven, welche im Sinne des vorigen Paragraphen aequivalent sind, bei
Durchlaufung nothwendig dieselben Incremente von u. Es gibt also eine
Combination wenigstens einer Meridiancurve und einer Breitencurve, deren
Durchlaufung einen nicht verschwindenden Zuwachs von u herbeiführt. Das
Gleiche gilt nothwendig von der betreffenden Meridiancurve oder der
Breitencurve selbst. Der Zuwachs aber, den u beim Durchlaufen der
Meridiancurve gewinnt, entspricht dem Ueberschreiten der Breitencurve,
und umgekehrt. Daher hat u nothwendig wenigstens an einer Breitencurve
oder Meridiancurve einen nicht verschwindenden Periodicitätsmodul, und
eine überall endliche, einförmige Strömung, bei der alle diese
Periodicitätsmoduln gleich Null sind, ist in der That unmöglich, w. z. b.
w.


§. 11. Erläuterung der Strömungen an Beispielen.


Es scheint sehr nützlich, sich üher den allgemeinen Verlauf der nunmehr
definirten Strömungen an Beispielen zu orientiren, damit nämlich unsere
Sätze nicht blosse abstracte Formulirungen bleiben, sondern mit concreten
Vorstellungen verbunden werden(18). Es gelingt diess im gegebenen Falle
ziemlich leicht, so lange man sich auf qualitative Verhältnisse
beschränkt; die genaue quantitative Bestimmung würde selbstverständlich
ganz andere Hülfsmittel erfordern. Ich will mich dabei der Einfachheit
halber auf solche Flächen beschränken, bei denen eine Symmetrieebene
existirt, die mit der Ebene der Zeichnung zusammenfällt,—und auf diesen
Flächen nur solche Strömungen in Betracht ziehen, bei denen der scheinbare
Umriss der Fläche (d. h. der Schnitt der Fläche mit der Zeichnungsebene)
entweder Strömungscurve oder Niveaucurve ist. Man hat dann den
wesentlichen Vortheil, dass man die Strömungscurven nur auf der
Vorderseite der Fläche zu zeichnen braucht; denn auf der Rückseite
verlaufen sie genau gerade so(19).


                         [Illustration: Fig. 21.]
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Beginnen wir mit überall endlichen Strömungen auf dem Ringe [formula]. Wir


betrachten zunächst eine Breitencurve (oder mehrere solche Curven) als


Sitz der elektromotorischen Kraft. Dann entsteht die Figur 21, in der alle


Strömungscurven Meridiancurven sind und Kreuzungspuncte nicht auftreten.


Die Meridiancurven sind dabei durch Stücke radial verlaufender gerader


Linien vorgestellt. Die Pfeilspitzen geben die Strömungsrichtung auf der


Vorderseite, auf der Rückseite haben wir durchweg den umgekehrten


Bewegungssinn.




Bei der conjugirten Strömung spielen die Breitencurven die analoge Rolle,
wie soeben die Meridiancurven; dieselbe mag durch folgende Zeichnung
erläutert sein:


                         [Illustration: Fig. 22.]
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Der Bewegungssinn ist in diesem Falle auf Vorder- und Rückseite derselbe.


                         [Illustration: Fig. 23.]
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                         [Illustration: Fig. 24.]
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Wir wollen nun den Ring [formula] dadurch umändern, dass wir, etwa auf der
rechten Seite der Figur, zwei Ausstülpungen aus ihm hervorwachsen lassen,
die sich allmählich zusammenbiegen und schliesslich verschmelzen. So
haben wir eine Fläche [formula] und auf ihr ein Paar conjugirter
Strömungen, wie es die Figuren 23 und 24 erläutern.


Es haben sich, wie man erkennt, rechter Hand zwei Kreuzungspuncte
eingestellt (von denen natürlich nur einer auf der Vorderseite gelegen und
also sichtbar ist). Etwas Analoges tritt jedesmal ein, wenn man überall
endliche Strömungen auf einer Fläche [formula] studirt. Ich setze statt
weiterer Erläuterungen noch zwei Figuren mit je vier Kreuzungspuncten her,
die sich auf [formula] beziehen:


                         [Illustration: Fig. 25.]
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Dieselben entstehen, wenn man auf sämmtlichen "Handhaben" der Fläche
einmal in den Breitencurven, das andere Mal in den Meridiancurven
elektromotorische Kräfte wirken lässt. Auf den beiden unteren Handhaben
sind dieselben in gleichem Sinne orientirt, bei der oberen im
entgegengesetzten. Von den Kreuzungspuncten liegen zwei bei a und b,
der dritte bei c, der vierte an der entsprechenden Stelle der Rückseite.
Es sind die Kreuzungspuncte bei a und b in Figur (25) nur desshalb
schwer zu erkennen, weil am Rande der Figur bei der von uns gewählten
Darstellungsweise eine perspectivische Verkürzung eintritt und daher beide
im Kreuzungspuncte zusammentreffende Strömungscurven den Rand zu berühren
scheinen. Denkt man sich die (in entgegengesetzter Richtung)
stattfindenden Strömungen auf der Rückseite der Fläche hinzu, so kann über
die Natur dieser Puncte wohl keine Unklarheit bestehen.


Gehen wir nun zum Ringe [formula] zurück und lassen bei ihm zwei
logarithmische Unstetigkeitspuncte gegeben sein! Man erhält zugehörige
Figuren, wenn man die Zeichnungen (23) und (24) einem Deformationsprocesse
unterwirft, der auch in allgemeineren Fällen ebenso interessant als
nützlich ist. Wir wollen nämlich die Partieen linker Hand in den einzelnen
Figuren zusammenziehen, die rechter Hand ausdehnen, so dass wir zunächst
etwa folgende Bilder erhalten:


                         [Illustration: Fig. 27.]
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und nun die linker Hand bereits sehr schmal gewordene "Handhabe" vollends
zur Curve zusammenziehen, um sie dann wegzuwerfen. So ist aus der überall
endlichen Strömung auf der Fläche [formula] eine Strömung mit zwei
logarithmischen Unstetigkeitspunkten auf der Fläche [formula] geworden.
Die Figuren haben nämlich folgende Gestalt angenommen:


                         [Illustration: Fig. 29.]
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Die beiden Kreuzungspuncte von (23), (24) sind geblieben; m und n sind
die beiden logarithmischen Unstetigkeitspuncte. Und zwar sind dieselben im
Falle der Figur 29 Wirbelpuncte von entgegengesetzt gleicher Intensität,
im Falle der Figur 30 Quellenpuncte von entgegengesetzt gleicher
Ergiebigkeit. Dabei ist es wieder eine Folge der von uns gewählten
Projectionsart, wenn im zweiten Falle sämmtliche Strömungscurven, von
einer einzigen abgesehen, in m und n den Rand zu berühren scheinen.


Wollen wir endlich m und n zusammenrücken lassen, so dass ein
algebraischer Unstetigkeitspunct von einfacher Multiplicität entsteht, so
kommen folgende Zeichnungen, bei denen, wie man beachten mag, die
Kreuzungspuncte nach wie vor an ihrer Stelle geblieben sind:


                         [Illustration: Fig. 31.]


                                 Fig. 31.


                         [Illustration: Fig. 32.]


                                 Fig. 32.


Ich will diese Figuren nicht noch mehr vervielfältigen, da weitere
Beispiele nach Art der nunmehr betrachteten leicht zu bilden sind. Nur der
eine Umstand werde noch hervorgehoben. Die Zahl der Kreuzungspunkte einer
Strömung wächst offenbar mit dem p der Fläche und mit der Zahl der
Unendlichkeitspunkte. Algebraische Unendlichkeitspuncte von der
Multiplicität r mögen als [formula] logarithmische Unendlichkeitspuncte
gezählt werden. Dann ist auf der Kugel bei [formula] logarithmischen
Unendlichkeitspunkten die Anzahl der eigentlichen Kreuzungspunkte
allgemein [formula]. Andererseits ist mit der Zunahme von p um eine
Einheit nach unseren Beispielen eine Zunahme der Zahl der Kreuzungspunkte
um zwei Einheiten verbunden. Hiernach wird man vermuthen, dass die Zahl
der Kreuzungspuncte überhaupt [formula] sein wird. Ein strenger Beweis
dieses Satzes auf Grund der bisher entwickelten Anschauungen hat
jedenfalls keine besondere Schwierigkeit(20); er würde hier aber zu weit
führen. Der einzige Specialfall unseres Satzes, den wir später gebrauchen
werden, ist auf Grund der gewöhnlichen Untersuchungen der Analysis situs
bekannt: es handelt sich bei ihm (§. 14) um solche Strömungen, bei denen
m einfache algebraische Unstetigkeitspuncte vorhanden sind, bei denen
also [formula] Kreuzungspuncte auftreten müssen.


§. 12. Ueber die Zusammensetzung der allgemeinsten complexen Function des
Ortes aus einzelnen Summanden.


Der Beweisgang des §. 10 setzt uns in den Stand, von der allgemeinsten auf
einer Fläche existirenden complexen Function des Ortes uns dadurch eine
concretere Vorstellung zu machen, dass wir dieselbe aus einzelnen
Summanden von möglichst einfacher Eigenschaft additiv zusammensetzen.


Betrachten wir zuvörderst überall endliche Functionen.


Es seien [formula] überall endliche Potentiale. Dieselben mögen linear
abhängig heissen, wenn zwischen ihnen eine Relation


[formula]


mit constanten Coëfficienten besteht. Eine solche Beziehung liefert
entsprechende Gleichungen für die [formula] Serien von [formula]
Periodicitätsmoduln, welche [formula] an den [formula] Querschnitten der
Fläche besitzen. Umgekehrt würde, nach dem in §. 10 bewiesenen Satze, aus
solchen Gleichungen zwischen den Periodicitätsmoduln die lineare Relation
zwischen den u selbst hervorgehen. Es ergiebt sich so, dass man auf
mannigfachste Weise [formula] linear unabhängige überall endliche
Potentiale


[formula]


finden kann, dass sich aber aus ihnen jedes andere überall endliche
Potential linear zusammensetzt:


[formula]


In der That kann man [formula] z. B. derart wählen, dass jedes nur an
einem der [formula] Querschnitte einen nicht verschwindenden
Periodicitätsmodul besitzt (wobei natürlich jedem Querschnitte ein und nur
ein Potential zugewiesen werden soll). Hernach kann man in [formula] die
Constanten [formula] so bestimmen, dass dieser Ausdruck an sämmtlichen
[formula] Querschnitten dieselben Periodicitätsmoduln aufweist, wie u.
Dann ist [formula] eine Constante, und wir haben also die vorstehende
Formel.


Um nun von den Potentialen u zu den überall endlichen Functionen [formula]
überzugehen, denke ich mir der Einfachheit halber ein solches
Coordinatensystem [formula] auf der Fläche eingeführt (§. 6), dass
[formula] durch die Gleichungen verknüpft sind:


[formula]


Sei jetzt [formula] ein beliebiges überall endliches Potential. Wir bilden
das zugehörige [formula] und haben:


[formula] und [formula] sind jedenfalls linear unabhängig.


Denn wenn zwischen [formula] eine Gleichung


[formula]


mit constanten Coëfficienten bestünde, so würde dieselbe die folgenden
Relationen begründen:


[formula]


aus denen vermöge der angegebenen Beziehungen das widersinnige Resultat


[formula]


folgen würde.


Es sei nun ferner [formula] von [formula] und [formula] linear unabhängig.


Dann nehmen wir das zugehörige [formula] und haben dann den allgemeineren


Satz:




Die vier Functionen [formula] sind ebenfalls linear unabhängig.


In der That könnte man aus jeder linearen Relation:


[formula]


durch Benutzung der zwischen den [formula] bestehenden Beziehungen die
folgenden Gleichungen ableiten:


[formula]


aus denen durch Integration eine lineare Abhängigkeit zwischen [formula]
folgen würde.—


So vorwärts schliessend bekommt man endlich [formula] linear unabhängige


Potentiale:




[formula]


wo jedes v mit dem gleichbezeichneten u zusammengehört. Wir setzen
[formula] und nennen nunmehr überall endliche Functionen [formula] linear
unabhängig, wenn zwischen ihnen keinerlei Relation:


[formula]


besteht, unter [formula] beliebige complexe Constanten verstanden. Dann
haben wir sofort:


_Die __p__ überall endlichen Functionen_


[formula]


sind linear unabhängig.


Wenn nämlich eine lineare Abhängigkeit bestünde, so könnte man in ihr das
Reelle und Imaginäre sondern und erhielte dadurch lineare Beziehungen
zwischen den u und v.


Des Weiteren aber folgt: Jede beliebige überall endliche Function setzt
sich aus unseren [formula] in der Form zusammen:


[formula]


In der That können wir durch geeignete Wahl der complexen Constanten
[formula] bei der linearen Unabhängigkeit der [formula] erreichen, dass
eine durch vorstehende Formel definirte Function w an den [formula]
Querschnitten beliebig vorgegebene Grössen als Periodicitätsmoduln des
reellen Theils aufweist.


Diess ist das Theorem, welches wir hinsichtlich der Darstellung überall
endlicher Functionen im gegenwärtigen Paragraphen aufzustellen hatten. Der
Uebergang zu Functionen mit Unendlichkeitsstellen ist nun sehr leicht zu
bewerkstelligen.


Es seien [formula] die Punkte, in denen unsere Function in irgendwie
vorgeschriebener Weise unendlich werden soll. Wir wollen dann einen
Hülfspunct [formula] einführen und eine Reihe von einzelnen Functionen


[formula]


construiren, von denen jede einzelne nur in einem der Puncte [formula],
und zwar in der für diesen Punct vorgeschriebenen Weise, unendlich werden
soll und überdies in [formula] einen logarithmischen Unstetigkeitspunct
besitzen mag, dessen Residuum dem, zu dem betreffenden [formula]
gehörigen, logarithmischen Residuum entgegengesetzt gleich kommt. Die
Summe


[formula]


wird dann in [formula] stetig; denn die Summe aller zu den
Unstetigkeitspuncten [formula] gehörigen Residua ist, wie wir wissen,
gleich Null. Ueberdiess wird sie in den [formula] und nur in den
[formula], dabei in der vorgeschriebenen Weise unendlich. Sie
unterscheidet sich also von der gesuchten Function nur um eine überall
endliche Function. Die gesuchte Function ist also in der Gestalt
darstellbar:


[formula]


womit wir auch das allgemeine hier in Betracht kommende Theorem gefunden
haben.


Dasselbe entspricht offenbar der Zerlegung, welche wir in §. 4 für die auf
der Kugel existirenden complexen Functionen betrachteten, und die wir
damals, wie man es gewöhnlich thut, der Lehre von der
Partialbruchzerlegung rationaler Functionen entnahmen.


§. 13. Ueber die Vieldeutigkeit unserer Functionen. Besondere Betrachtung
eindeutiger Functionen.


Die Functionen [formula], welche wir auf unseren Flächen studieren, sind
im Allgemeinen unendlich vieldeutig: denn einmal bringt jeder
logarithmische Unendlichkeitspunct einen Periodicitätsmodul mit sich,
andererseits haben wir die Periodicitätsmoduln an den [formula]
Querschnitten [formula], deren reelle Theile wir willkürlich annehmen
konnten. Ich sage nun, dass mit diesen Angaben die Vieldeutigkeit von
[formula] in der That erschöpft ist. Zum Beweise müssen wir auf den
Begriff der Aequivalenz zweier Curven auf gegebener Fläche zurückgreifen,
den wir in §. 9 zunächst zu anderem Zwecke einführten. Da die
Differentialquotienten von u und v (oder, was dasselbe ist, die
Componenten der zugehörigen Strömung) auf unserer Fläche durchweg
eindeutig sind, so liefern zwei aequivalente geschlossene Curven, welche
durch keinen logarithmischen Unstetigkeitspunkt getrennt sind, bei
Durchlaufung denselben Zuwachs von u, wie von v. Nun fanden wir aber,
dass jede geschlossene Curve mit einer ganzzahligen Combination der
Querschnitte [formula] aequivalent ist. Wir bemerkten ferner (§. 10), dass
die Durchlaufung von [formula] denjenigen Periodicitätsmodul liefert,
welcher der Ueberschreitung von [formula] entspricht, und umgekehrt.
Hieraus aber folgt das ausgesprochene Theorem in bekannter Weise.


Es wird uns nun insbesondere interessiren, eindeutige Functionen des
Ortes zu betrachten. Dem Gesagten zufolge werden wir alle solche
Functionen erhalten, wenn wir als Unstetigkeiten nur rein algebraische
Unendlichkeitspuncte zulassen und dann dafür sorgen, dass die [formula]
Periodicitätsmoduln an den Querschnitten [formula] sämmtlich verschwinden.
Dabei wird es der leichteren Ausdrucksweise wegen gestattet sein, nur
einfache algebraische Unstetigkeitspuncte in Betracht zu ziehen. Denn
wir wissen ja aus §. 3, dass der [formula]-fache algebraische
Unstetigkeitspunct durch Zusammenrücken von [formula] einfachen entstehen
kann, wobei übrigens, wie man nicht vergessen darf, Kreuzungspuncte in der
Gesammtmultiplicität [formula] absorbirt werden. Seien also m Puncte als
einfache algebraische Unendlichkeitspuncte der gesuchten Function gegeben.
So wollen wir zuerst irgend m Functionen des Ortes bilden: [formula] von
denen jede nur an einer der gegebenen Stellen einfach algebraisch
unendlich werden soll aber übrigens beliebig vieldeutig sein mag. Aus
diesen Z setzt sich die allgemeinste complexe Function des Ortes, welche
an den gegebenen Stellen einfache algebraische Unstetigkeiten besitzt, dem
vorigen Paragraphen zufolge in der Gestalt zusammen:


[formula]


unter [formula] beliebige constante Coëfficienten verstanden. Um eine
eindeutige Function zu haben, setzen wir die Periodicitätsmoduln, welche
dieser Ausdruck an den [formula] Querschnitten besitzt, gleich Null. Aber
diese Periodicitätsmoduln setzen sich vermöge der [formula] aus den
Periodicitätsmoduln der [formula] linear zusammen. Wir finden also
[formula] lineare homogene Gleichungen für die [formula]_ Constanten
__a__ und __c__._ Wir wollen annehmen, dass diese Gleichungen linear
unabhängig sind(21). Dann kommt der wichtige Satz:


_Unter der genannten Voraussetzung giebt es bei __m__ beliebig
vorgeschriebenen einfachen algebraischen Unstetigkeitspuncten nur dann
eindeutige Functionen des Ortes, wenn [formula] ist, und zwar enthalten
diese Functionen [formula] linear vorkommende willkürliche Constante._


Man denke sich jetzt die m Unendlichkeitspuncte als beweglich. So treten
m neue Willkürlichkeiten in die Betrachtung ein. Ueberdies ist klar,
dass man beliebige m Puncte auf der Fläche durch continuirliche
Verschiebung in beliebige m andere verwandeln kann. Wir können also sagen,
indem wir uns übrigens immer der Voraussetzung erinnern, die wir gemacht
haben:


_Die Gesammtheit der eindeutigen Functionen mit __m__ einfachen
algebraischen Unstetigkeitspuncten, die auf gegebener Fläche existiren,
bildet ein Continuum von [formula] Abmessungen._


Nun wir die Existenz und die Mannigfaltigkeit der eindeutigen Functionen
haben kennen lernen, wollen wir auf möglichst anschauungsmässigem Wege
noch eine andere wichtige Eigenschaft derselben entwickeln. Die Zahl m
der Unendlichkeitspuncte unserer Function hat nämlich für letztere eine
noch viel weiter gehende Bedeutung. Ich sage, dass unsere Function
[formula] jeden beliebig vorgegebenen Werth [formula]_ genau an __m__
Stellen annimmt._


Zum Beweise betrachte man den Verlauf der Curven [formula] auf unserer
Fläche. Nach §. 2 ist klar, dass jede dieser Curven einen Ast durch jeden
der m Unendlichkeitspuncte hindurchschickt. Andererseits folgt aus
Betrachtungen, wie wir sie in §. 10 entwickelten, dass jeder Curvenast
mindestens einen Unendlichkeitspunct enthalten muss. Hiernach ist für sehr
grosse [formula] die Richtigkeit unserer Behauptung unmittelbar klar. Denn
die betreffenden Curven [formula] gehen dann in der Nähe des einzelnen
Unendlichkeitspunctes nach §. 2 in kleine durch den Unendlichkeitspunct
hindurchlaufende Kreise über, welche nothwendig neben dem (hier nicht
weiter in Betracht kommenden) Unstetigkeitspuncte noch je einen
Schnittpunct gemein haben:


                         [Illustration: Fig. 33.]
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Hieraus aber folgt die Sache allgemein. Denn die Curven [formula],
[formula] können bei continuirlicher Aenderung von [formula],
[formula] niemals einen Schnittpunct verlieren. Es könnte diess nämlich
nach dem Gesagten nur so geschehen, dass mehrere Schnittpuncte
zusammenrückten, um dann in geringerer Zahl wieder aus einander zu treten.
Nun bilden die Curven [formula] ein Orthogonalsystem. Ein Zusammenrücken
reeller Schnittpuncte ist also nur in den Kreuzungspuncten möglich (in
denen es auch wirklich geschieht). Die Kreuzungspuncte aber sind nur in
endlicher Zahl vorhanden, und also nicht im Stande, die Fläche in
verschiedene Gebiete zu zerlegen. Die Eventualität des Zusammenrückens ist
also überhaupt nicht in Betracht zu ziehen, und somit unsere Behauptung
bewiesen.


Es ist übrigens für das Folgende nützlich, sich die Vertheilung der Werthe
von [formula] in der Nähe eines Kreuzungspunctes deutlich zu machen.
Hierzu genügt eine aufmerksame Beobachtung der oben gegebenen Figur 1. Man
erkennt zumal, dass von den m beweglichen Schnittpuncten der Curven
[formula], [formula] bei Annäherung an den [formula]-fachen Kreuzungspunct
[formula] zusammenrücken.—


Analoge Betrachtungen, wie wir sie hiermit für eindeutige Functionen
erledigt haben, finden natürlich auch bei vieldeutigen Functionen ihre
Stelle. Ich gehe auf sie nur desshalb nicht ein, weil es die im Folgenden
festgehaltene Umgränzung des Stoffes nicht nöthig macht. Auch kommt nur in
den allereinfachsten Fällen ein übersichtliches Resultat. Sei in dieser
Beziehung daran flüchtig erinnert, dass eine complexe Function mit mehr
als zwei incommensurabeln Periodicitätsmoduln an jeder Stelle jedem
beliebigen Werthe unendlich nahe gebracht werden kann.


§. 14. Die gewöhnlichen Riemann’schen Flächen über der x + iy-Ebene.


Statt die Vertheilung der Functionswerthe [formula] auf der ursprünglichen
Fläche zu betrachten, kann man ein sozusagen umgekehrtes Verfahren
einschlagen. Man deute nämlich die Functionswerthe—welche dementsprechend
jetzt [formula] genannt werden sollen—in gewöhnlicher Weise in der Ebene
(oder auch auf der Kugel(22) und studiere die conforme Abbildung, welche
demzufolge (nach §. 5) von unserer ursprünglichen Fläche entworfen wird.
Wir beschränken uns dabei wieder, der Einfachheit halber, auf den Fall der
eindeutigen Functionen, trotzdem es besonderes Interesse hat, gerade auch
die Abbildung durch mehrdeutige Fuuctionen in Betracht zu ziehen(23).


Eine kurze Ueberlegung zeigt, dass wir so gerade zu der mehrblättrigen,
mit Verzweigungsverzweigungspuncten versehenen, über der [formula]-Ebene
ausgebreiteten Fläche geführt werden, welche man gewöhnlich als
Riemann’sche Fläche schlechthin bezeichnet.


In der That, sei m die Zahl der (einfachen) Unendlichkeitspuncte, welche
[formula] auf der ursprünglichen Fläche besitzt. Es nimmt dann [formula],
wie wir sahen, jeden Werth auf der gegebenen Fläche m-mal an. Daher
überdeckt die conforme Abbildung unserer Fläche auf die [formula]_-Ebene
die letztere im Allgemeinen mit __m__ Blättern._ Eine Ausnahmestellung
nehmen nur diejenigen Werthe von [formula] ein, für welche einige der m
auf der ursprünglichen Fläche zugehörigen Stellen zusammenfallen, denen
also Kreuzungspuncte entsprechen. Man ziehe zum Verständnisse noch
einmal die Figur (1) heran. Es folgt aus derselben, dass man die Umgebung
eines [formula]-fachen Krenzungspunctes derart in [formula] Sectoren
zerlegen kann, dass [formula] innerhalb jedes Sectors denselben
Werthvorrath durchläuft. Daher werden oberhalb der betreffenden Stelle
der [formula] Ebene [formula] Blätter der conformen Abbildung derart
zusammenhängen, dass eine Umlaufung der Stelle von einem Blatte in ein
zweites, von diesem in ein drittes führt etc., und dass eine
[formula]-malige Umlaufung derselben nöthig wird, um zum Anfangspuncte
zurückzugelangen. Diess ist aber genau, was man gewöhnlich als einen
[formula]-fachen Verzweigungspunct bezeichnet(24). Dabei ist die
Abbildung in diesem Puncte selbst natürlich keine conforme mehr; man
beweist leicht, dass der Winkel, den irgend zwei auf der ursprünglichen
Fläche verlaufende sich im Kreuzungspuncte schneidende Curven mit einander
bilden, auf der über der [formula]-Ebene ausgebreiteten Riemann’schen
Fläche genau mit [formula] multiplicirt erscheint.—


Aber zugleich erkennen wir die Bedeutung, welche diese mehrblättrige
Fläche für unsere Zwecke beanspruchen kann. Alle Flächen, welche durch
conforme Abbildung eindeutig aus einander hervorgehen, sind für uns
gleichbedeutend (§. 8). Wir können also die m-blättrige Fläche über der
Ebene ebensogut zu Grunde legen, wie die bisher benutzte Fläche, die wir
uns ohne jedes singuläre Vorkommniss frei im Raume gelegen vorstellten.
Dabei kommt die Schwierigkeit, die man in dem Auftreten der
Verzweigungspuncte erblicken könnte, von vorneherein in Wegfall: denn wir
werden nur solche Strömungen auf der mehrblättrigen Fläche in Betracht
ziehen, welche sich in der Umgebung der Verzweigungspuncte derart
verhalten, dass sie rückwärts auf die im Raume gelegene ursprüngliche
Fläche übertragen dort keine anderen singulären Vorkommnisse darbieten,
als die ohnehin gestatteten. Hierzu ist nicht einmal nöthig, dass man eine
entsprechende im Raume gelegene Fläche kennt; handelt es sich doch nur um
Verhältnisse in der nächsten Umgebung der Verzweigungspuncte, d. h. um
differentielle Relationen, denen unsere Strömungen genügen müssen(25). Es
hat hiernach auch keinen Zweck mehr, wenn wir von beliebig gekrümmten
Flächen sprechen, uns diese ohne singuläre Puncte zu denken: sie mögen
selbst mit mehreren Blättern überdeckt sein, die unter sich durch
Verzweigungspuncte, beziehungsweise Verzweigungsschnitte zusammenhängen.
Aber welche unter den unbegränzt vielen, sonach gleichberechtigten Flächen
wir auch der Betrachtung zu Grunde legen wollen: wir müssen zwischen
wesentlichen Eigenschaften unterscheiden, welche allen gleichberechtigten
Flächen gemeinsam sind, und unwesentlichen Eigenschaften, die der
particulären Fläche anhaften. Zu ersteren gehört die Zahl p, es gehören
dahin die "Moduln", von denen in §. 18 ausführlicher die Rede sein soll;
zu letzteren bei mehrblättrigen Flächen die Art und Lage der
Verzweigungspuncte. Wenn wir uns eine ideale Fläche denken, die nur jene
wesentlichen Eigenschaften besitzen soll, so entsprechen auf ihr den
Verzweigungspuncten der mehrblättrigen Fläche gewöhnliche Puncte, die,
allgemein zu reden, vor den übrigen Puncten Nichts voraus haben, und die
erst dadurch beachtenswerth werden, dass bei der conformen Abbildung, die
von der idealen Fläche zur particulären hinüberführt, in ihnen
Kreuzungspuncte entstehen.


Das Resultat ist also dieses, dass wir betreffs der Flächen, auf denen
wir operiren dürfen, eine grössere Beweglichkeit gewonnen haben, und dass
wir zugleich die Zufälligkeiten erkennen, welche die Betrachtung jeder
einzelnen besonderen Fläche mit sich bringt. Insbesondere werden wir im
Folgenden, so oft es nützlich scheint, mehrblättrige Flächen über der
[formula]-Ebene in Betracht ziehen; ihre Verwendung soll aber in keiner
Weise die Allgemeinheit der Auffassung beeinträchtigen(26).


§. 15. Der Ring p = 1 und die zweiblättrige Fläche mit vier
Verzweigungspuncten über der Ebene. (27)


Ich habe mich im vorigen Paragraphen ziemlich kurz fassen können, da ich
die gewöhnliche Riemann’sche Fläche über der Ebene mit ihren
Verzweigungspuncten als bekannt ansah. Immerhin wird es nützlich sein,
wenn ich das Gesagte an einem Beispiele erläutere. Wir wollen einen Ring
[formula] betrachten. Auf ihm existiren nach §. 13 [formula] eindeutige
Functionen mit nur zwei Unendlichkeitspuncten. Eine jede derselben besitzt
nach der allgemeinen Formel des §. 11 vier Kreuzungspuncte. Der Ring ist
also auf mannigfache Weise auf eine zweiblättrige ebene Fläche mit vier
Verzweigungspuncten abzubilden. Ich will den besonderen Fall, in welchem
ich diese Abbildung nunmehr betrachten werde, auf explicite Formeln
stützen, damit auch denjenigen Lesern, die in rein anschauungsmässigen
Operationen minder geübt sind, die Sache zugänglich sei. Allerdings greife
ich damit in etwas den Entwickelungen vor, welche erst der folgende
Paragraph zu bringen bestimmt ist.
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Wir wollen die Ringfläche als gewöhnlichen Torus voraussetzen, der durch


Rotation eines Kreises um eine denselben nicht schneidende Axe seiner


Ebene entsteht. Sei [formula] der Radius dieses Kreises, R der Abstand


seines Mittelpunctes von der Axe, [formula] ein Polarwinkel.




Wir führen die Rotationsaxe als Z-Axe, den Punct O der Figur als
Anfangspunct eines rechtwinkligen Coordinatensystems ein und unterscheiden
die durch [formula] hindurchlaufenden Ebenen nach dem Winkel [formula],
den sie mit der positiven X-Axe bilden. Dann hat man für einen
beliebigen Punct der Ringfläche:


[formula]


Daher wird das Bogenelement:


[formula]


oder:


[formula]


wo


[formula]


gesetzt sein soll.


Nach Formel (3) haben wir eine conforme Abbildung der Ringfläche auf die
[formula]-Ebene. Die ganze Ringfläche wird offenbar einmal überstrichen,
wenn [formula] und [formula] (in den Formeln (1)) jedes von [formula] bis
[formula] läuft. Die conforme Abbildung der Ringfläche überdeckt daher
ein Rechteck der Ebene, wie es durch folgende Figur vorgestellt wird:


                         [Illustration: Fig. 35.]
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Ich habe dabei in der Figur der Kürze halber statt [formula] einfach p
geschrieben.—Wollen wir uns die Beziehung zwischen Rechteck und
Ringfläche recht anschaulich vorstellen, so denke man sich ersteres aus
dehnsamem Materiale verfertigt und nun die gegenüberstehenden Kanten des
Rechtecks ohne Torsion zusammengebogen. Oder auch, man denke sich den Ring
von analoger Beschaffenheit, zerschneide ihn längs einer Breitencurve und
einer Meridiancurve und breite ihn dann in die [formula]-Ebene aus. Ich
setze statt weiterer Erläuterung eine Figur her, welche die
Verticalprojection der Ringfläche von der positiven Z-Axe aus auf die
[formula]-Ebene vorstellt und bei der die Beziehung zur [formula]-Ebene
markirt ist:


                         [Illustration: Fig. 36.]
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Natürlich erblickt man nur die Oberseite der Ringfläche, die auf der
Rückseite abgebildeten Quadranten 3 und 4 werden beziehungsweise von 2 und
1 verdeckt.


Sei nun andererseits bei reellem [formula] [formula] über der Ebene eine
zweiblättrige Fläche mit vier Verzweigungspuncten [formula], [formula]
gegeben:


                         [Illustration: Fig. 37.]
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wobei ich mir (wie es in der Figur angedeutet ist) die beiden Halbblätter,
welche die positive Halbebene überlagern, schraffirt denken will. Dabei
sollen die Verzweigungsschnitte mit den geradlinigen Strecken zwischen
[formula] und [formula] einerseits, und [formula] und [formula]
andererseits zusammenfallen.


Diese zweiblättrige Fläche repräsentirt, wie man weiss, die Verzweigung
von [formula], und zwar können wir, in Anbetracht der Wahl der
Verzweigungsschnitte, die Zuordnung so treffen, dass auf dem oberen Blatte
w durchweg einen positiven reellen Theil besitzt. Wir betrachten nun das
Integral


[formula]


Dasselbe liefert uns in bekannter Weise die Abbildung unserer
zweiblättrigen Fläche ebenfalls auf ein Rechteck, dessen nähere Beziehung
zur zweiblättrigen Fläche durch folgende Figur gegeben ist, auf welcher
man die Schraffirungen und sonstigen Unterscheidungen der Figur (37)
wiederfindet:


                         [Illustration: Fig. 38.]
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Dem oberen Blatte von Figur (37) entspricht die linke Seite dieser Figur.
Man beachte vor Allem, wie sich die Abbildung für die Umgebung der
Verzweigungspuncte der zweiblättrigen Fläche gestaltet. Vielleicht ist es
am einfachsten, die Sache sich so vorzustellen, dass man von (37) zunächst
durch stereographische Projection zu einer zweimal überdeckten Kugelfläche
übergeht, welche auf einem Meridian vier Verzweigungspuncte trägt,—dass
man die so erhaltene Fläche durch einen längs des Meridians verlaufenden
Schnitt in vier Halbkugeln zerlegt, deren einzelne man durch geeignete
Dehnung und Deformirung in der Nähe der vier Verzweigungspuncte in ein
ebenes Rechteck verwandelt,—dass man endlich die so entstehenden vier
Rechtecke entsprechend den Beziehungen zwischen den vier Halbkugeln nach
Art von Figur (38) neben einander legt. Man sieht auf diese Art auch
deutlich, dass in Figur (38) immer zwei (zusammengehörige) Randpuncte
denselben Punct der ursprünglichen Fläche bezeichnen.


Um nun zwischen dem Ringe und der zweiblättrigen Fläche die gewünschte
Beziehung zu erzielen, haben wir nur dafür zu sorgen, dass das Rechteck
der Figur (38) durch passende Wahl des Moduls [formula] mit dem Rechtecke
der Figur (35) ähnlich wird. Eine proportionale Vergrösserung des einen
Rechtecks (welches auch eine conforme Umgestaltung ist) bringt dasselbe
sodann mit dem anderen Rechteck zur Deckung und vermittelt so eine
eindeutig-conforme Abbildung der zweiblättrigen Fläche auf die Ringfläche
(oder der letzteren auf die erstere). Es wird wiederum genügen, das
Sachverhältniss durch eine Figur zu kennzeichnen, dieselbe entspricht
genau der eben gegebenen Figur (36):


                         [Illustration: Fig. 39.]
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Die Schraffirung soll sich dabei nur auf die Vorderseite der Ringfläche
beziehen; auf der Rückseite ist die untere Hälfte der Figur schraffirt zu
denken, die obere frei zu lassen.—


Die conforme Abbildung, welche wir wünschten, ist hiermit thatsächlich
geleistet. Wir wollen jetzt rückwärts die Strömung auf der Ringfläche
bestimmen, durch deren Vermittelung im Sinne des §. 14 die Abbildung zu
Stande kommt. Dieselbe wird an den mit [formula], [formula] bezeichneten
Stellen Kreuzungspuncte besitzen müssen, an den beiden Stellen [formula]
algebraische Unendlichkeitspuncte von einfacher Multiplicität. Man findet
die betreffenden Curven, die Niveaucurven sowohl wie die Strömungscurven,
am besten, wenn man sich des Rechtecks als Zwischenfigur bedient. Offenbar
übertragen sich die Curven [formula] Const., [formula] Const. der
z-Ebene (Figur 37) auf das Rechteck der Figur (38), wie die Figuren
(40), (41) angeben. Ich habe dabei allein den Curven [formula] Const.
Pfeilspitzen zugesetzt, um sie im Gegensatze zu den anderen als
Strömungscurven zu charakterisiren.


                         [Illustration: Fig. 40.]
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Man hat nun einfach diese Zeichnungen in derselben Weise zusammenzubiegen,
wie es bei Figur (35) geschildert wurde, um die Ringfläche und auf ihr die
gewünschten Curvensysteme zu erhalten. Das Resultat ist das folgende:


                         [Illustration: Fig. 42.]
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Dabei erscheinen in Figur (42) die vier Kreuzungspuncte der Strömung
vermöge der gewählten Projectionsart als Berührungspuncte der Niveaucurven
mit der scheinbaren Contour der Ringfläche.


§. 16. Functionen von [formula], welche den untersuchten Strömungen
entsprechen.


Sei [formula], wie in §. 14, eine eindeutige complexe Function des Ortes
auf unserer Fläche mit m algebraischen, einfachen Unendlichkeitspuncten.
Wir verwandeln unsere Fläche nach Anleitung jenes Paragraphen in eine
m-blättrige Fläche über der [formula]-Ebene(28) und legen uns nun die
Frage vor, in welche Functionen des Argumentes [formula] die bisher
untersuchten complexen Functionen des Ortes übergehen mögen. Man erinnere
sich dabei der Entwickelungen des §. 6.


Seizunächst w eine complexe Function des Ortes, welche auf unserer
Fläche, ebenso wie [formula], eindeutig ist. Vermöge der Festsetzungen,
die hinsichtlich der Unendlichkeitspuncte unserer Functionen und
insbesondere der eindeutigen Functionen getroffen worden sind, ergibt sich
sofort, dass w als Function von [formula] nirgendwo einen wesentlich
singulären Punct hat. Ueberdiess ist w auf der m-blättrigen über der
z-Ebene ausgebreiteten Fläche, so gut wie auf der ursprünglichen Fläche,
eindeutig. Daher folgt auf Grund bekannter Sätze: _dass __w__ eine
algebraische Function von __z__ ist_.


Dabei ist die Möglichkeit an sich nicht auszuschliessen, dass die m
Werthe von w, welche demselben z entsprechen, zu je [formula]
übereinstimmen mögen (wobei [formula] natürlich ein Theiler von m sein
muss). Aber jedenfalls können wir solche eindeutige Functionen w
auswählen, bei denen dieses nicht der Fall ist. Wir bestimmten oben (§.
13) die eindeutigen Functionen, indem wir ihre Unendlichkeitspuncte
willkürlich annahmen. Wir haben es daher in der Hand, das erwähnte
Vorkommniss jedenfalls zu vermeiden: wir brauchen nur die
Unendlichkeitspuncte von w so anzunehmen, dass nicht jedesmal [formula]
von ihnen dasselbe z aufweisen. Dann kommt:


_Die irreducibele Gleichung, welche zwischen __w__ und __z__ besteht:_


[formula]


_hat in __w__ die [formula] Ordnung._


Ebensogut wird sie in z natürlich die [formula] Ordnung besitzen, wenn
n die Gesammtmultiplicität der Unendlichkeitspuncte ist, die w
aufweist.


Aber die Beziehung dieser Gleichung [formula] zu unserer Fläche ist noch
eine innigere, als die blosse Uebereinstimmung der Ordnung mit der
Blätterzahl aussagt. Zu jedem Puncte der Fläche gehört nur ein
Werthepaar w, z, das der Gleichung genügt, und umgekehrt gehört zu
jedem solchen Werthepaare im Allgemeinen(29) nur ein Punct der Fläche.
Gleichung und Fläche sind sozusagen eindeutig auf einander bezogen.


Es sei jetzt [formula] eine neue eindeutige Function auf unserer Fläche,
also jedenfalls eine algebraische Function von z. Dann kann man die Art
dieser algebraischen Function, nachdem einmal die Gleichung [formula]
unter der angegebenen Voraussetzung gebildet ist, mit zwei Worten
kennzeichnen. Man zeigt nämlich, dass [formula]_ eine rationale Function
von __w__ und __z__ ist, und dass auch umgekehrt jede rationale Function
von __w__ und __z__ eine Function vom Charakter des [formula] abgibt_.
Das Letztere ist selbstverständlich. Denn eine rationale Function von w
und z ist in unserer Fläche eindeutig; überdiess als analytische
Function von z eine complexe Function des Ortes in der Fläche. Aber auch
das Erstere ist leicht zu beweisen(30). Man bezeichne die m Werthe von
w, die zu einem beliebigen Werthe von z gehören, mit [formula],
[formula], [formula] (allgemein [formula]), die entsprechenden Werthe von
[formula] (die nicht nothwendig alle verschieden zu sein brauchen) mit
[formula], [formula], [formula]. Dann ist die Summe:


[formula]


(wo [formula] eine beliebige, positive oder negative ganze Zahl bedeuten
soll) als symmetrische Function der verschiedenen Werthe [formula] eine
eindeutige Function von z, und also, als algebraische Function, eine
rationale Function von z. Aus m beliebigen der so entstehenden
Gleichungen kann man [formula], [formula], [formula] als linear
vorkommende Unbekannte berechnen, und es zeigt dann eine leichte
Discussion, dass in der That das einzelne [formula] eine rationale
Function des zugehörigen [formula] und des z geworden ist.—


Von diesem Satze ausgehend bestimmt man nun auch sofort den Charakter
derjenigen Functionen von z, welche durch die von uns in Betracht
gezogenen mehrdeutigen Functionen des Ortes geliefert werden. Sei W
eine solche Function. Dann ist W jedenfalls eine analytische Function
von z; man kann also von einem Differentialquotienten [formula]
sprechen und diesen selbst wieder als complexe Function des Ortes auf
unserer Fläche deuten. Derselbe ist nothwendig als Function des Ortes
eindeutig. Denn die Vieldeutigkeit von W bezieht sich ja nur auf
constante Periodicitätsmoduln, welche, in beliebiger Vielfachheit
genommen, dem Anfangswerthe additiv hinzutreten können. Daher ist
[formula] nach dem eben Bewiesenen eine rationale Function von w und
z, _und es stellt sich also __W__ als Integral einer solchen Function
dar:_


[formula]


Der umgekehrte Satz, dass jedes solche Integral eine complexe Function des
Ortes in unserer Fläche abgibt, welche zu der von uns betrachteten
Functionsclasse gehört, ist auf Grund bekannter Entwickelungen
selbstverständlich. Diese Entwickelungen beziehen sich einmal auf das
Unendlichwerden der Integrale, andererseits auf die Werthänderungen,
welche die Integrale durch Wechsel des Integrationsweges erleiden. Ein
näheres Eingehen hierauf scheint an dieser Stelle unnöthig.—


Wir sind, wie wir sehen, zu einem wohlumgränzten Resultate geführt worden.
_Ist erst einmal die algebraische Gleichung bestimmt, welche die
Abhängigkeit zwischen __z__ und dem in hohem Maasse willkürlichen w
definirt, so sind die übrigen Functionen des Ortes der Art nach
wohlbekannt; sie decken sich in ihrer Gesammtheit mit den rationalen
Functionen von __w__ und __z__, und mit den Integralen solcher
Functionen._


Es wird gut sein, dieses Resultat am Falle der wiederholt betrachteten
Ringfläche [formula] zu erläutern. Als Functionen z und w werden wir
dieselben zu Grunde legen, die im vorigen Paragraphen besprochen wurden,
und von denen die erstere durch die Figuren (42), (43) erläutert wird. Die
zwischen ihnen bestehende Gleichung lautet einfach, wie wir wissen:


[formula]


und es verwandeln sich also die Integrale [formula] in diejenigen, die man
als elliptische Integrale zu bezeichnen pflegt. Unter ihnen gibt es,
nach §. 12, ein einziges "überall endliches" Integral. Aus der in Figur
(38) gegebenen Abbildung folgt, dass dieses kein anderes ist, als das dort
betrachtete [formula], das gewöhnlich sogenannte Integral erster
Gattung. Die zugehörigen Niveaucurven und Strömungscurven sind dieselben,
welche in Figur (21) und (22) dargestellt sind. Aber auch diejenigen
Functionen, denen die Figuren (29) und (30), bez. (31) und (32)
entsprechen, sind in der gewöhnlichen Analysis wohlbekannt. Wir haben das
einemal eine Function mit zwei logarithmischen Unstetigkeitspuncten, das
andere Mal eine solche mit nur einem algebraischen Unstetigkeitspuncte.
Als Functionen von z betrachtet geben dieselben solche elliptische
Integrale ab, welche man als Integrale dritter Gattung bez. zweiter
Gattung zu bezeichnen pflegt.


§. 17. Tragweite und Bedeutung unserer Betrachtungen.


Mit den Entwickelungen des vorigen Paragraphen ist der Zielpunct, den wir
uns mit der allgemeinen Fragestellung des §. 7 gesteckt haben,
thatsächlich erreicht. Wir haben auf beliebiger Fläche die allgemeinsten
für uns in Betracht kommenden complexen Functionen des Ortes bestimmt und
nun die analytischen Abhängigkeiten derselben von einander definirt, indem
wir zusahen, wie alle von einer, übrigens beliebig gewählten, eindeutigen
Function des Ortes im Sinne der gewöhnlichen Analysis abhängig sind. Es
bleibt uns also, um unseren Gedankengang abzuschliessen, nur noch ein
Umblick zu halten, was Alles durch unsere Betrachtungen gewonnen sein mag.
Wir haben dann allerdings keineswegs den vollen Inhalt aber doch die
Grundlage der Riemann’schen Theorie gewonnen, und es kann wegen weiterer
Ausführungen auf Riemann’s Originalarbeit sowie die sonstigen
Darstellungen der Theorie verwiesen werden.


Constatiren wir zunächst, dass es in der That die Gesammtheit der
algebraischen Functionen und ihrer Integrale ist, welche durch unsere
Untersuchung umspannt wird. Denn wenn eine beliebige algebraische
Gleichung [formula] gegeben ist, so können wir in der gewöhnlichen Weise
über der z-Ebene eine zugehörige mehrblättrige Riemann’sche Fläche
construiren und nun auf dieser einförmige Strömungen und complexe
Functionen des Ortes studieren (vergl. §. 15).


Wir fragen, ob das Studium dieser Functionen durch unsere Betrachtungen in
der That gefördert sei. Erinnern wir uns zu dem Zwecke, dass es vor allen
Dingen die Vieldeutigkeit der Integrale war, welche so lange einen
Fortschritt in ihrer Theorie verhindert hat. Dass Integrale durch das
Auftreten logarithmischer Unstetigkeitspuncte vieldeutig werden, hatte
schon Cauchy erkannt. Aber erst durch die Riemann’sche Fläche ist die
andere Art von Periodicität, welche in dem Zusammenhange der Fläche
ihren Grund hat und an den Querschnitten der Fläche gemessen wird, uns
völlig deutlich geworden.—Ein anderer Punct ist dieser. Man hat sich von
je bei der Untersuchung der Integrale der Umformung durch Substitution
bedient, ohne sich indess über eine bloss empirische Verwerthung derselben
beträchtlich zu erheben. Bei Riemann’s Theorie ist eine umfangreiche
Classe von Substitutionen von selbst gegeben und in ihrer Wirkung zu
beurtheilen. Die Variabelen w und z sind für uns nur irgend zwei, von
einander unabhängige, eindeutige Functionen des Ortes; wir können statt
ihrer ebensogut zwei andere, [formula] und [formula], zu Grunde legen,
wobei sich [formula] und [formula] als übrigens beliebige rationale
Functionen von w und z und ebensowohl letztere als rationale
Functionen von [formula] und [formula] erweisen. Die Riemann’sche Fläche,
auf der wir operiren, wird von dieser Umänderung durchaus nicht nothwendig
betroffen. Unter der Menge der zufälligen Eigenschaften unserer
Functionen erkennen wir also wesentliche, welche bei eindeutiger
Umformung ungeändert bleiben. Und vor Allem tritt uns in der Zahl p von
vorneherein ein solches invariantes Element entgegen.—Indem die
Riemann’sche Theorie die beiden hiermit bezeichneten Schwierigkeiten,
welche frühere Bearbeiter gehemmt hatten, bei Seite räumt, gelangt sie
unmittelbar zu dem Satze, den wir in §. 10 aufstellten, und der die
Willkürlichkeit der in Betracht zu ziehenden Functionen bestimmt. Ich
meine den Satz, dass man (unter den wiederholt angegebenen
Beschränkungen) die Unendlichkeitspuncte der Function und die
Periodicitätsmoduln ihres reellen Theiles an den Querschnitten als
willkürliche und hinreichende Bestimmungsstücke derselben erachten
darf.—


So etwa stellt sich die Bilanz, wenn man die functionentheoretischen
Interessen, wie es unter Mathematikern zu geschehen pflegt, voranstellt.
Aber vergessen wir nicht, dass die umgekehrte Auffassung im Grunde ebenso
berechtigt ist. Das Studium einförmiger Strömungen auf gegebenen Flächen
kann umsomehr als Selbstzweck betrachtet werden, als es bei zahlreichen
physikalischen Problemen unmittelbar zu Verwerthung gelangt. In der
unendlichen Mannigfaltigkeit dieser Strömungen orientirt uns die
Riemann’sche Theorie, indem sie auf den Zusammenhang hinweist, der
zwischen diesen Strömungen und den algebraischen Functionen der Analysis
statt hat.


Wir können endlich den geometrischen Gesichtspunct hervorkehren, und die
Riemann’sche Theorie als ein Mittel betrachten, um die Lehre von der
conformen Abbildung geschlossener Flächen auf einander der analytischen
Behandlung zugänglich zu machen. Eben diese Auffassung ist es, der ich im
folgenden, dritten Abschnitte meiner Darstellung Ausdruck zu geben bemüht
bin. Es wird nicht nöthig sein, schon an dieser Stelle ausführlicher
hierauf einzugehen.


§. 18. Weiterbildung der Theorie.


In Riemann’s eigenem Gedankengange, wie ich ihn vorstehend zu schildern
versuchte, veranschaulicht die Riemann’sche Fläche nicht nur die in
Betracht kommenden Functionen, sondern sie definirt dieselben. Es
scheint möglich, diese beiden Dinge zu trennen: die Definition der
Functionen von anderer Seite zu nehmen und die Fläche nur als Mittel der
Veranschaulichung beizubehalten. Das ist es in der That, was von der
Mehrzahl der Mathematiker um so lieber geschehen ist, als Riemann’s
Definition der Function bei genauerer Untersuchung beträchtliche
Schwierigkeiten mit sich bringt(31). Man beginnt also etwa mit der
algebraischen Gleichung und der Begriffsbestimmung des Integrals, und
construirt erst hinterher eine zugehörige Riemann’sche Fläche.


Dann aber ist von selbst eine grosse Verallgemeinerung der ursprünglichen
Auffassung gegeben. Bislang galten uns zwei Flächen nur dann als
gleichwerthig, wenn die eine aus der anderen durch eindeutige conforme
Abbildung entstand. Jetzt ist kein Grund mehr, an der Conformität der
Abbildung festzuhalten. _Jede Fläche, welche durch stetige Abbildung
eindeutig__ in die gegebene verwandelt werden kann, überhaupt jedes
geometrische Gebilde, dessen Elemente sich stetig eindeutig auf die
ursprüngliche Fläche beziehen lassen, kann ebensowohl zur Versinnlichung
der in Betracht zu ziehenden Functionen gebraucht werden._ Ich habe diesem
Gedanken, wie ich bei gegenwärtiger Gelegenheit ausführen möchte, in
früheren Arbeiten nach zwei Richtungen hin Ausdruck gegeben.


Einmal operirte ich mit dem Begriffe einer möglichst übersichtlichen,
übrigens verschiedentlich modificirbaren Normalfläche (vergl. §. 8), auf
welcher ich den Verlauf der in Betracht kommenden Functionen durch
verschiedene graphische Hülfsmittel zu illustriren bemüht war(32). Hierher
gehören auch die Polygonnetze, deren ich mich wiederholt bediente(33),
indem ich mir die Riemann’sche Fläche in geeigneter Weise zerschnitten und
dann in die Ebene ausgebreitet dachte. Es bleibe dabei an dieser Stelle
unerörtert, ob nicht den so entstehenden Figuren, die zunächst beliebig
stetig verändert werden dürfen, im Interesse weitergehender
functionentheoretischer Untersuchungen hinterher doch eine gesetzmässige
Gestalt ertheilt werden soll, vermöge deren sich eine Definition der
durch die Figur zu veranschaulichenden Functionen ermöglicht.


Das andere Mal(34) stellte ich mir die Aufgabe, in möglichst anschaulicher
Weise den Zusammenhang darzulegen zwischen der Auffassungsweise der
Functionentheorie und derjenigen der gewöhnlichen analytischen Geometrie,
welch’ letztere eine Gleichung zwischen zwei Variabelen als Curve
deutet. Indem ich von dem Satze ausging, dass jede imaginäre Gerade der
Ebene und also auch jede imaginäre Tangente einer Curve einen und nur
einen reellen Punct besitzt, erhielt ich eine Riemann’sche Fläche, die
sich an den Verlauf der gegebenen Curve auf das Innigste anschmiegt. Ich
habe diese Fläche, wie es mein ursprünglicher Zweck war, bisher nur zur
Veranschaulichung gewisser einfacher Integrale gebraucht(35). Aber es
findet eine ähnliche Bemerkung ihre Stelle, wie oben bei den
Polygonnetzen. Insofern die Fläche gesetzmässig ist, muss auch sie zur
Definition der auf ihr existirenden Functionen dienen können. In der
That kann man für diese Functionen eine partielle Differentialgleichung
bilden, welche den Differentialgleichungen zweiter Ordnung, die wir in §§.
1 und 5 betrachten, in etwa analog ist: nur dass der Differentialausdruck,
an den diese Gleichung anknüpft, nicht unmittelbar als Bogenelement
einer Fläche zu deuten ist.—


Diese wenigen Bemerkungen müssen genügen, um auf Betrachtungen
hinzuweisen, deren Verfolg mir interessant scheint.


ABSCHNITT III. - FOLGERUNGEN.


§. 19. Ueber die Moduln algebraischer Gleichungen.


Es gibt einen wichtigen Punct, in welchem die Riemann’sche Theorie der
algebraischen Functionen nicht nur der Methode sondern auch dem Resultate
nach über die sonst üblichen Darstellungen dieser Theorie hinausgreift.
Sie besagt nämlich _dass zu jeder über der __z__-Ebene ausgebreiteten,
graphisch gegebenen mehrblättrigen Fläche zugehörige algebraische
Functionen construirt werden können_,—wobei man beachten mag, dass diese
Functionen, sofern sie überhaupt existiren, in hohem Maasse willkürlich
sind, da [formula] im Allgemeinen gerade so verzweigt ist, wie w.—Der
genannte Satz ist um so merkwürdiger, als er eine Angabe über eine
interessante Gleichung höheren Grades implicirt. Sind nämlich die
Verzweigungspuncte einer m-blättrigen Fläche gegeben, so existiren noch
eine endliche Zahl von wesentlich verschiedenen Möglichkeiten, dieselben
in die m-Blätter einzuordnen: man wird diese Zahl durch Betrachtungen
auffinden können, die der reinen Analysis situs angehören(36). Aber
dieselbe Zahl hat unserem Satze zufolge ihre algebraische Bedeutung. Man
bezeichne, wie es Riemann thut, alle solche algebraischen Functionen von
z als derselben Classe angehörig, die sich, unter Benutzung von z,
rational durch einander ausdrücken lassen. Dann ist unsere(37)_ Zahl
die Anzahl der verschiedenen__ Classen algebraischer Functionen, welche in
Bezug auf __z__ die gegebenen Verzweigungswerthe besitzen._


Ich wünsche im gegenwärtigen und im folgenden Paragraphen verschiedene
Folgerungen zu ziehen, die sich aus dem vorausgeschickten Satze gewinnen
lassen, und zwar mag zunächst die Frage nach den Moduln der
algebraischen Functionen behandelt werden, d. h. die Frage nach denjenigen
Constanten, welche bei eindeutiger Transformation der Gleichungen
[formula] die Rolle der Invarianten spielen.


Sei zu diesem Zwecke [formula] eine zunächst unbekannte Zahl, welche
angibt, wie vielfach unendlich oft eine Fläche sich eindeutig in sich
transformiren, d. h. conform auf sich selber abbilden lässt. Sodann
erinnere man sich an die Anzahl der Constanten in den eindeutigen
Functionen auf gegebener Fläche (§. 13). Es gab im Allgemeinen [formula]
eindeutige Functionen mit m Unendlichkeitspuncten, und diese Zahl war
jedenfalls genau richtig (wie ohne Beweis angegeben wurde), wenn [formula]
war. Nun bildet jede dieser Functionen die gegebene Fläche auf eine
m-blättrige Fläche über der Ebene eindeutig ab. _Daher ist die
Gesammtheit der __m__-blättrigen Flächen, auf welche man eine gegebene
Fläche conform eindeutig beziehen kann, und also auch der __m__-blättrigen
Flächen, die man einer Gleichung [formula] durch eindeutige
Transformation zuordnen kann, [formula] fach._ Denn jedesmal [formula]
Abbildungen ergeben dieselbe m-blättrige Fläche, weil jede Fläche der
Voraussetzung nach [formula] mal auf sich selber abgebildet werden kann.


Nun gibt es aber überhaupt [formula] m-blättrige Flächen, unter w die
Zahl der Verzweigungspuncte, d. h. [formula] verstanden. Denn durch die
Verzweigungspuncte wird die Fläche, wie oben bemerkt, endlich-deutig
bestimmt, und Verzweigungspunkte höherer Multiplicität entstehen durch
Zusammenrücken einfacher Verzweigungspuncte, wie dieses betreffs der
entsprechenden Kreuzungspuncte bereits in §. 1 erläutert wurde (vergl.
Figur (2) und (3) daselbst). Zu jeder dieser Flächen gehören, wie wir
wissen, algebraische Functionen. Die Anzahl der Moduln ist daher
[formula].


Bemerken wir hierzu, dass die Gesammtheit der m-blättrigen Flächen mit
w Verzweigungspuncten ein Continuum bildet(38), wie das Entsprechende
betreffs der auf gegebener Fläche existirenden eindeutigen Functionen mit
m Unendlichkeitspuncten bereits in §. 13 hervorgehoben wurde. Wir
schliessen dann, _dass die algebraischen Gleichungen eines gegebenen __p__
ebenfalls eine einzige zusammenhängende Mannigfaltigkeit constituiren_
(wobei wir alle Gleichungen, die aus einander durch eindeutige
Transformation hervorgehen, als ein Individuum erachten). Hierdurch erst
gewinnt die angegebene Zahl der Moduln ihre präcise Bedeutung: sie ist
die Zahl der Dimensionen dieser zusammenhängenden Mannigfaltigkeit.


Es kommt jetzt noch darauf an, die Zahl [formula] zu bestimmen. Diess
geschieht durch folgende Sätze:


1. Jede Gleichung [formula] kann [formula] mal eindeutig in sich,
selbst transformirt werden. Denn auf der zugehörigen Riemann’schen Fläche
existiren eindeutige Functionen mit nur je einem Unendlichkeitspunct in
dreifach unendlicher Zahl (§. 13), von denen man, um eine eindeutige
Transformation der Fläche in sich zu haben, nur irgend zwei entsprechend
zu setzen hat.—Des Näheren stellt sich die Sache so. Heisst eine der
genannten Functionen z, so sind alle anderen (nach §. 16) algebraische
eindeutige, d. h. rationale Functionen von z, und, da das Verhältniss
umkehrbar sein muss, lineare Functionen von z. Umgekehrt ist auch jede
lineare Function von z eine eindeutige Function des Ortes in unserer
Fläche, mit nur einem Unendlichkeitspuncte. Daher wird man die
allgemeinste eindeutige Transformation der Gleichung in sich bekommen,
wenn man jedem Puncte z der Riemann’schen Fläche einen anderen durch die
Formel zuordnet:


[formula]


unter [formula] beliebige Constante verstanden.


2) Jede Gleichung [formula] kann einfach unendlich oft eindeutig in
sich transformirt werden. Zum Beweise betrachte man das zugehörige
überall endliche Integral W und insbesondere die Abbildung, welche von
der zweckmässig zerschnittenen Riemann’schen Fläche in der Ebene W
entworfen wird. Wir haben dies in einem besonderen Falle bereits gethan
(§. 15, Figur (38)); eine genaue Ausführung im allgemeinen Falle wird um
so weniger nöthig sein, als es sich um Betrachtungen handelt, die in der
Theorie der elliptischen Functionen ausführlich entwickelt zu werden
pflegen. Das Resultat ist, dass zu jedem Werthe von W ein Punct und
nur ein Punct der betreffenden Riemann’schen Fläche gehört, während sich
die unendlich vielen Werthe von W, die demselben Punkte der
Riemann’schen Fläche entsprechen, aus einem derselben in der Form
zusammensetzen: [formula], unter [formula], [formula] beliebige ganze
Zahlen, unter [formula], [formula] die beiden Perioden des Integrals
verstanden. Bei eindeutiger Umformung wird jedem Puncte W ein Punct
[formula] in der Weise zugeordnet werden müssen, dass jeder Vermehrung von
W um Perioden eine solche von [formula] entspricht, und umgekehrt. Diess
gelingt in der That, aber im Allgemeinen nur in der Weise, dass man


[formula]


setzt. Nur im besonderen Falle (wenn das Periodenverhältniss [formula]
bestimmte zahlentheoretische Eigenschaften hat) kann [formula] auch gleich
[formula], oder [formula] gesetzt werden (unter [formula] eine dritte
Einheitswurzel verstanden)(39). Wie dem auch sei, wir haben in jedem Falle
in den Transformationsformeln nur eine willkürliche Constante und also den
wechselnden Werthen derselben entsprechend in der That einfach unendlich
viele Transformationen, wie behauptet wurde.


3) Gleichungen [formula] können niemals unendlich oft eindeutig in sich
transformirt werden.(40)


Ich verweise, was den analytischen Beweis dieser Behauptung angeht, auf
die Darstellungen von Schwarz (Borchardt’s Journal Bd. 87) und Hettner
(Göttinger Nachrichten, 1880, p. 386). Auf anschauungsmässigem Wege kann
man sich die Richtigkeit der Behauptung folgendermassen verständlich
machen. Sollte es unendlich viele eindeutige Transformationen der
Gleichung in sich geben, so müsste es möglich sein, die zugehörige
Riemann’sche Fläche derart continuirlich über sich hin zu verschieben,
dass jede kleinste Figur mit sich selbst ähnlich bleibt. Die Curven, längs
deren eine solche Verschiebung vor sich ginge, müssten die Fläche
jedenfalls vollständig und zugleich einfach überdecken. Ein
Kreuzungspunct dürfte in diesem Curvensysteme offenbar nicht vorhanden
sein. Man müsste einen solchen Punct nämlich, damit keine Vieldeutigkeit
der Transformation eintritt, als festbleibenden Punct betrachten und also
die Geschwindigkeit der Verschiebung in ihm gleich Null setzen. Dann aber
würde eine kleine Figur, welche bei der Verschiebung auf den
Kreuzungspunct zu rückt, im Sinne der Bewegung nothwendig
zusammengedrückt, senkrecht dazu auseinandergezogen werden; sie könnte
also nicht mit sich selbst ähnlich bleiben, wie es doch durch den Begriff
der conformen Abbildung verlangt wird.—Andererseits müssen aber in jedem
Curvensysteme, das eine Fläche [formula] vollständig und einfach
überdeckt, nothwendig Kreuzungspuncte vorhanden sein. Diess ist derselbe
Satz, den wir, in etwas weniger allgemeiner Form, in §. 11 aufgestellt
haben.—Die ganze Verschiebung der Fläche in sich ist also unmöglich, was
zu beweisen war.


Nach diesen Sätzen ist [formula] für [formula], gleich 1 für [formula],
und gleich Null für alle grösseren p. Die Zahl der Moduln ist also für
[formula] gleich Null, für [formula]_ gleich Eins, für grössere __p__
gleich _[formula].


Es wird gut sein, noch folgende Bemerkungen hinzuzufügen. Um den Punct
eines Raumes von [formula] Dimensionen zu bestimmen, wird man im
Allgemeinen mit [formula] Grössen nicht ausreichen: man wird mehr Grössen
benöthigen, zwischen denen dann algebraische (oder auch transcendente)
Relationen bestehen. Ausserdem mag es aber auch sein, dass man
zweckmässigerweise Bestimmungsstücke einführt, von denen jedesmal
verschiedene Serien denselben Punct der Mannigfaltigkeit bezeichnen.
Welche Verhältnisse bei den [formula] Moduln, die bei [formula] existiren
müssen, in dieser Hinsicht vorliegen, ist nur erst wenig erforscht.
Dagegen ist der Fall [formula] aus der Theorie der elliptischen Functionen
genau bekannt. Ich erwähne die auf ihn bezüglichen Resultate, um mich im
Folgenden bei aller Kürze doch präcise ausdrücken zu können. Sei vor allen
Dingen hervorgehoben, dass für [formula] das algebraische Individuum (um
diesen oben gebrauchten Ausdruck noch einmal zu verwenden) in der That
durch eine (und nur eine) Grösse charakterisirt werden kann: die absolute
Invariante [formula](41). Wenn im Folgenden gesagt wird, dass zur
Ueberführbarkeit zweier Gleichungen [formula] in einander die Gleichheit
des Moduls nicht nur hinreichend, sondern auch erforderlich sei, so ist
stets an die Invariante J gedacht. Statt ihrer verwendet man, wie
bekannt, gewöhnlich das Legendre’sche [formula], welches bei gegebenem
J sechswerthig ist, so dass bei der Formulirung allgemeiner Sätze eine
gewisse Schwerfälligkeit unvermeidbar scheint. In noch höherem Maasse ist
dies der Fall, wenn man das Periodenverhältniss [formula] des elliptischen
Integrals erster Gattung, wie dies in anderer Beziehung vielfach
zweckmässig ist, als Modul einführt. Jedesmal unendlich viele Werthe des
Moduls bezeichnen dann dasselbe algebraische Individuum.


§. 20. Conforme Abbildung geschlossener Flächen auf sich selbst.


In den nun noch folgenden Paragraphen mögen die entwickelten Principien,
wie in Aussicht gestellt, nach der geometrischen Seite verfolgt werden, um
wenigstens die Grundzüge für eine Theorie der conformen Abbildung von
Flächen auf einander zu gewinnen(42) und so den Andeutungen zu
entsprechen, mit denen Riemann, wie bereits in der Vorrede bemerkt, seine
Dissertation abschloss. Ich werde mich dabei, was die Fälle [formula] und
[formula] angeht, um nicht zu weitläufig zu werden, vielfach auf eine
blosse Angabe der Resultate oder eine Andeutung ihres Beweises beschränken
müssen.


Indem wir uns zuvörderst nach conformen Abbildungen einer geschlossenen
Fläche auf sich selbst fragen, haben wir eine Unterscheidung einzuführen,
von der bislang noch nicht die Rede war: die Abbildung kann ohne Umlegung
der Winkel geschehen oder mit Umlegung derselben. Wir haben eine
Abbildung der einen Art, wenn wir eine Kugel durch Drehung um den
Mittelpunct mit sich selbst zur Deckung bringen; wir bekommen die zweite
Art, wenn wir zu demselben Zwecke eine Spiegelung an einer Diametralebene
verwenden. Die analytische Behandlung, wie wir sie bisher benutzten,
entspricht nur den Abbildungen der ersten Art. Sind [formula] und
[formula] zwei complexe Functionen des Ortes auf derselben Fläche, so
liefert [formula], [formula] die allgemeinste Abbildung erster Art (vergl.
§. 6). Aber es ist leicht zu sehen, wie man die Erweiterung zu treffen
hat, um auch Abbildungen zweiter Art zu umfassen. Man hat einfach
[formula], [formula] zu setzen, um eine Abbildung zweiter Art zu
haben.


Entnehmen wir zunächst den Entwickelungen des vorigen Paragraphen, was
sich auf Abbildung der ersten Art bezieht. Indem wir uns möglichst
geometrischer Ausdrucksweise bedienen, formuliren wir die folgenden
Theoreme:


Flächen [formula] oder [formula] können immer, Flächen [formula]
niemals unendlich oft durch Abbildung der ersten Art in sich übergeführt
werden.


Bei den Flächen [formula] ist die einzelne Abbildung der ersten Art
bestimmt, wenn man drei beliebige Puncte der Fläche drei beliebigen
Puncten derselben zugeordnet hat.


Ist [formula], so darf man einen beliebigen Punct der Fläche einem
zweiten nach Willkür zuweisen, und hat dann noch zur Bestimmung der
Abbildung erster Art im Allgemeinen eine zweifache, im besonderen Falle
eine vierfache oder sechsfache Möglichkeit.


Mit diesen Sätzen ist natürlich nicht ausgeschlossen, dass besondere
Flächen [formula] durch getrennte Transformationen der ersten Art in
sich übergehen mögen. Tritt diess ein, so bildet es eine bei beliebiger
conformen Umänderung der Fläche invariante Eigenschaft, nach deren
Vorhandensein und Modalität besonders interessante Flächenclassen aus der
Gesammtheit der übrigen herausgehoben werden können.(43) Doch verfolgen
wir hier diesen Gesichtspunct nicht weiter.


Betreffs der Transformationen zweiter Art mögen wir voranstellen, dass
jede Transformation der zweiten Art in Verbindung mit einer solchen der
ersten Art eine neue Transformation der zweiten Art ergibt. Nun kennen
wir bei den Flächen [formula] und [formula] die Transformationen erster
Art auf Grund der angegebenen Sätze vollständig. Es wird bei ihnen also
genügen, zu untersuchen, ob überhaupt eine Transformation der zweiten
Art existirt. Bei den Flächen [formula] ist diess sofort zu bejahen.
Denn es genügt, eine beliebige der eindeutigen Functionen des Ortes mit
nur einem Unendlichkeitspuncte, [formula], herauszugreifen, und dann
[formula], [formula] zu setzen. Bei den Flächen [formula] ist die Sache
anders. Man findet, dass im Allgemeinen keine Transformation der zweiten
Art existirt. Zum Beweise ist es am einfachsten, die Werthe in Betracht
zu ziehen, welche das überall endliche Integral W auf der Fläche
[formula] annimmt. Man denke sich in der Ebene W die Puncte [formula]
markirt, unter [formula] wie oben beliebige positive oder negative ganze
Zahlen verstanden. Man zeigt dann leicht, dass eine Transformation der
zweiten Art der Fläche [formula] in sich nur dann möglich ist, wenn dieses
Punctsystem eine Symmetrieaxe besitzt. Es ist diess gerade der Fall, in
welchem die oben definirte absolute Invariante J einen reellen Werth
aufweist. Je nachdem dabei [formula] oder [formula], können jene Puncte in
der W-Ebene als die Ecken eines rhombischen oder eines rechteckigen
Systems betrachtet werden.


Sei nun [formula]. Wenn für eine solche Fläche eine Transformation der
zweiten Art existirt, so wird dieselbe im Allgemeinen von keiner weiteren
Transformation derselben Art begleitet sein(44). Denn sonst würde die
Wiederholung oder Combination dieser Transformationen eine von der
Identität verschiedene Transformation der ersten Art liefern. Die
Transformation muss daher nothwendig eine symmetrische sein, d. h. eine
solche, welche die Puncte der Fläche paarweise zusammenordnet. Ich will
dementsprechend die Fläche selbst eine symmetrische nennen.


Uebrigens mögen hinterher unter diesem Namen überhaupt alle Flächen mit
einbegriffen sein, welche Transformationen zweiter Art in sich zulassen,
die zweimal angewandt zur Identität zurückführen. Es gehören dahin, wie
man sofort sieht, die Flächen [formula], sowie auch sämmtliche Flächen
[formula] mit reeller Invariante.


§. 21. Besondere Betrachtung der symmetrischen Flächen.


Für die symmetrischen Flächen, auf die wir hier unser besonderes Augenmerk
richten wollen, ergibt sich sofort eine Eintheilung nach der Zahl und Art
der auf ihr befindlichen Uebergangscurven, d. h. derjenigen Curven,
deren Puncte bei der in Betracht kommenden symmetrischen Umformung
ungeändert bleiben.


Die Zahl dieser Curven kann jedenfalls nicht grösser sein, als
[formula]. Denn wenn man eine Fläche längs aller ihrer Uebergangscurven
mit Ausnahme einer einzigen zerschneidet, so bildet sie, indem ihre
symmetrischen Hälften noch immer in der einen Uebergangscurve
zusammenhängen, nach wie vor ein ungetrenntes Ganze. Es würden sich also,
wenn mehr als [formula] Uebergangscurven vorhanden wären, auf der Fläche
mehr als p nicht zerstückende Rückkehrschnitte ausführen lassen, was ein
Widerspruch gegen die Definition der Zahl p ist.


Dagegen ist unterhalb dieser Gränze jede Zahl von Uebergangscurven
möglich. Es mag hier genügen, in diesem Sinne die Fälle [formula] und
[formula] zu discutiren; für die höheren p ergeben sich dann von selbst
naheliegen de Beispiele.


1) Wenn wir eine Kugel durch Spiegelung an einer Diametralebene mit sich
zur Deckung bringen, so bildet der grösste Kreis, in welchem sie von der
Diametralebene geschnitten wird, eine Uebergangscurve. Wir erhalten eine
Zuordnung der anderen Art indem wir je zwei solche Puncte der Kugel
entsprechend setzen, welche die Endpuncte eines Durchmessers bilden. Beide
Beispiele sind leicht zu generalisiren. Die analytische Darstellung ist
diese. Wenn eine Uebergangscurve existirt, so gibt es eindeutige
Functionen des Ortes mit nur einem Unendlichkeitspuncte, die auf der
Uebergangscurve reelle Werthe annehmen. Heisst eine derselben [formula],
so ist die Umformung, wie oben schon als Beispiel angegeben, durch
[formula], [formula] gegeben.—Im zweiten Falle kann man eine Function
[formula] so wählen, dass ihre Werthe [formula] und 0, sowie [formula]
und [formula] zusammengeordnete Puncte vorstellen. Dann ist


[formula]


die analytische Formel der betreffenden Umänderung.


2) Im Falle [formula] müssen wir die Invariante J, wie wir wissen,
jedenfalls reell nehmen. Sei dieselbe zunächst [formula]. Dann können wir
das zugehörige überall endliche Integral W (durch Zufügung eines
geigneten constanten Factors) so normiren, dass die eine Periode reell,
gleich a, die andere rein imaginär, gleich [formula], wird. Setzen wir
dann (für [formula]):


[formula]


so haben wir eine symmetrische Umformung der Fläche [formula] mit den
zwei Uebergangscurven:


[formula]


schreiben wir dagegen:


[formula]


was wieder eine symmetrische Umformung unserer Fläche ist, so haben wir
den Fall, in welchem keine Uebergangscurve entsteht.—Der Fall mit nur
einer Uebergangscurve tritt ein, wenn wir [formula] nehmen. Wir können
dann W so wählen, dass seine beiden Perioden conjugirt complex werden.
Wir schreiben dann wieder


[formula]


und haben eine symmetrische Umformung mit der einen Uebergangscurve
[formula].


Neben die hiermit erläuterte erste Unterscheidung der symmetrischen
Flächen nach der Zahl der Uebergangscurven stellt sich aber noch eine
zweite. Ich will die Fälle von 0 oder [formula] Uebergangscurven einen
Augenblick ausschliessen. Dann bietet sich von vorneherein eine doppelte
Möglichkeit. Eine Zerschneidung der Fläche längs sämmtlicher
Uebergangscurven mag nämlich entweder ein Zerfallen der Fläche
herbeiführen, oder nicht. Es sei [formula] die Zahl der Uebergangscurven.
Man zeigt dann leicht, dass [formula] ungerade sein muss, wenn ein
Zerfallen eintreten soll. Eine weitere Beschränkung existirt nicht, wie
man an Beispielen beweist. Wir wollen dementsprechend symmetrische Flächen
der einen und der andern Art unterscheiden und den ersteren (den
zerfallenden) Flächen die Fläche mit [formula] Uebergangscurven, den
letzteren die Fläche ohne Uebergangscurve zurechnen.


Diese Sätze besitzen eine gewisse Analogie mit den Resultaten, welche in
der analytischen Geometrie die gestaltliche Untersuchung der Curven von
gegebenen p erzielt hat.(45) Und in der That zeigt sich, dass diese
Analogie eine begründete ist. Die analytische Geometrie beschäftigt sich
bei jenen Untersuchungen (zunächst) nur mit solchen Gleichungen


[formula]


welche reelle Coefficienten besitzen. Beachten wir zunächst, dass jede
solche Gleichung über der z-Ebene in der That eine symmetrische
Riemann’sche Fläche bestimmt, insofern ja die Gleichung und also auch die
Fläche ungeändert bestehen bleibt, wenn man w und z gleichzeitig durch
ihre conjugirten Werthe ersetzt—und dass die Uebergangscurven auf dieser
Fläche den reellen Werthereihen von w und z entsprechen, welche
[formula] befriedigen, d. h. genau den verschiedenen Zügen, welche die
Curve [formula] im Sinne der analytischen Geometrie aufweist.


Aber auch der Rückschluss ist leicht zu machen. Sei eine symmetrische
Fläche und auf ihr eine beliebige complexe Function des Ortes, [formula],
gegeben. Bei der symmetrischen Umformung erfährt unsere Fläche eine
Umlegung der Winkel. Wenn man also jedem Puncte der Fläche solche Werthe
[formula], [formula] beilegt, wie sie, unter der Benennung u, v, sein
symmetrischer Punct aufweist, so wird [formula] eine neue complexe
Function des Ortes sein. Man bilde nun:


[formula]


so hat man einen Ausdruck, der im allgemeinen nicht identisch
verschwindet; es genügt zu dem Zwecke, die Unendlichkeitspuncte von
[formula] in unsymmetrischer Weise anzunehmen. Man hat also eine complexe
Function des Ortes, welche in symmetrisch gelegenen Puncten gleiche reelle
aber entgegengesetzt gleiche imaginäre Werthe aufweist.—Solcher
[formula] mögen nun irgend zwei: W und Z, die überdiess eindeutige
Functionen des Ortes sein sollen, herausgegriffen werden. Die zwischen
diesen bestehende algebraische Gleichung hat dann die Eigenschaft,
ungeändert zu bleiben, wenn man W und Z gleichzeitig durch ihre
conjugirten Werthe ersetzt. Sie ist also eine Gleichung mit reellen
Coefficienten, womit der geforderte Beweis in der That erbracht ist.


Ich knüpfe an diese Ueberlegungen noch Bemerkungen üher die reellen
eindeutigen Transformationen reeller Gleichungen [formula] in sich,
oder, was dasselbe ist, über solche conforme Abbildungen erster Art
symmetrischer Flächen auf sich selbst, bei denen symmetrische Puncte
wieder in symmetrische Puncte übergehen. In unendlicher Zahl können solche
Transformationen nach dem allgemeinen Satze des §. 19 nur für [formula]
und [formula] auftreten; wir beschränken uns also auf diese Fälle. Nehmen
wir zuvörderst [formula]. Dann sehen wir sofort, dass unter den früher
aufgestellten Transformationen nur noch diejenigen


[formula]


in Betracht kommen, bei denen C eine reelle Constante bedeutet.
Analog in dem ersten Falle [formula]. Die Beziehung [formula] bleibt
ungeändert, wenn man [formula] und [formula] gleichzeitig derselben
linearen Transformation:


[formula]


unterwirft, wo die Verhältnissgrössen [formula] reell sind. In dem
zweiten Falle [formula] ist die Sache etwas complicirter. Auch bei ihm
sind lineare Transformationen mit drei reellen Parametern möglich.
Dieselben nehmen aber für das oben eingeführte z die folgende Gestalt
an:


[formula]


wo [formula] die drei reellen Parameter vorstellen. Dieses Resultat ist
implicite in den Untersuchungen enthalten, die sich auf die analytische
Repräsentation der Drehungen der [formula]-Kugel um ihren Mittelpunct
beziehen.(46)


§ 22. Conforme Abbildung verschiedener Flächen auf einander.


Wenn es sich jetzt darum handelt, verschiedene geschlossene Flächen auf
einander abzubilden, so liefern die vorausgeschickten Untersuchungen über
die conforme Abbildung geschlossener Flächen auf sich selbst die nöthigen
Nebenbestimmungen, welche angeben, wie oft sich eine solche Abbildung
gestaltet, sofern eine solche überhaupt möglich ist. Flächen, welche sich
conform aufeinander abbilden lassen, besitzen jedenfalls (wie schon
hervorgehoben) übereinstimmende Transformationen in sich selbst. Man
erhält also alle Abbildungen der einen Fläche auf die zweite, wenn man
eine beliebige Abbildung mit allen solchen verbindet, welche eine der
beiden Flächen in sich selbst überführen. Ich werde hierauf nicht weiter
zurückkommen.


Betrachten wir nun zuvörderst allgemeine, d. h. nicht symmetrische
Flächen. Dann treten die Abzählungen des §. 19 betreffs der Moduln
algebraischer Gleichungen unmittelbar in Geltung. Wir haben zunächst:


Flächen [formula] lassen sich immer conform auf einander abbilden; und
finden übrigens, dass die Flächen [formula] einen, die Flächen [formula]
[formula] bei conformer Abbildung unzerstörbare Moduln besitzen. Jeder
solche Modul ist im Allgemeinen eine complexe Constante. Dem Umstande
entsprechend, dass bei symmetrischen Flächen reelle Parameter in Betracht
gezogen werden müssen, wollen wir ihn in seinen reellen und seinen
imaginären Bestandtheil zerlegt denken. Dann haben wir:


Sollen zwei Flächen [formula] auf einander abbildbar sein, so sind im
Falle [formula] zwei, im Falle [formula] [formula] Gleichungen
zwischen den reellen Constanten der Flächen zu erfüllen.


Indem wir uns jetzt zu den symmetrischen Flächen wenden, haben wir noch
eine kleine Zwischenbetrachtung zu machen. Zunächst ist ersichtlich, dass
zwei solche Flächen nur dann "symmetrisch’’ auf einander bezogen werden
können, wenn sie neben dem gleichen p dieselbe Zahl [formula] der
Uebergangscurven darbieten und überdiess beide entweder der ersten oder
der zweiten Art angehören. Im Uebrigen wiederhole man speciell für die
symmetrischen Flächen die Abzählungen des §. 13 betreffs der Zahl der in
eindeutigen Functionen enthaltenen Constanten unter der Bedingung, dass
nur solche Functionen in Betracht gezogen werden, welche an symmetrischen
Stellen conjugirt imaginäre Werthe aufweisen. Hiermit combinire man sodann
nach dem Muster des §. 19 die Zahl solcher über der Z-Ebene
construirbarer mehrblättriger Flächen, welche in Bezug auf die Axe der
reellen Zahlen symmetrisch sind. Ich will dabei, um das Auftreten
unendlich vieler Transformationen in sich zu vermeiden, zuvörderst
annehmen, dass [formula] sei. Die Sache ist dann so einfach, dass ich sie
nicht speciell durchzuführen brauche. Der Unterschied ist nur, dass die in
Betracht kommenden, früher unbeschränkten Constanten nunmehr gezwungen
sind, entweder einzeln reell oder paarweise conjugirt complex zu sein.
In Folge dessen reduciren sich alle Willkürlichkeiten auf die Hälfte. Wir
mögen folgendermassen sagen:


Zur Abbildbarkeit zweier symmetrischer Flächen [formula] auf einander
ist neben der Uebereinstimmung in den Attributen das Bestehen von
[formula] Gleichungen zwischen den reellen Constanten der Fläche
erforderlich.


Die Fälle [formula] und [formula], welche hierbei ausgeschlossen wurden,
sind implicite bereits im vorigen Paragraphen erledigt. Selbstverständlich
müssen zwei symmetrische Flächen [formula], die sich auf einander sollen
abbilden lassen, die gleiche Invariante J besitzen, was eine Bedingung
für die Constanten der Flächen abgibt, insofern J jedenfalls reell ist.
Im Uebrigen aber findet man sofort, dass die Abbildung sich allemal
ermöglicht, sobald die symmetrischen Flächen, wie dies selbstverständlich
verlangt werden muss, in der Zahl der Uebergangscurven übereinstimmen.


§. 23. Berandete Flächen und Doppelflächen.


Auf Grund der nunmehr gewonnenen Resultate können wir den bisherigen
Untersuchungen über die Abbildung geschlossener Flächen eine scheinbar
bedeutende Verallgemeinerung zu Theil werden lassen, und habe ich eben
desshalb die symmetrischen Flächen so ausführlich betrachtet. Wir können
jetzt nämlich berandete Flächen und Doppelflächen in Betracht ziehen
(mögen nun letztere berandet sein, oder nicht) und mit einem Schlage die
auf sie bezüglichen Fragen erledigen. Hierzu gehört, was die Einführung
der Randcurven angeht, dass wir uns von einer gewissen Beschränkung
befreien, welche wir bisher, allerdings nur implicite, vorausgesetzt
haben. Wir dachten uns die Flächen, auf denen wir operirten, bislang
durchweg als stetig gekrümmt, oder doch nur in einzelnen Puncten (den
Verzweigungspuncten) mit Unstetigkeiten behaftet. Aber nichts hindert uns,
jetzt hinterher auch andere Unstetigkeiten zuzulassen. Wir werden uns z.
B. vorstellen dürfen, dass unsere Fläche aus einer endlichen Anzahl
verschiedener (im Allgemeinen selbst gekrümmter) Stücke, welche unter
endlichen Winkeln zusammenstossen, polyederartig zusammengesetzt sei.
Können wir uns doch auf einer solchen Fläche ebensogut elektrische Ströme
verlaufend denken, wie auf einer stetig gekrümmten! Unter diese Flächen
nun lassen sich die berandeten Flächen subsumiren.(47) Man fasse nämlich
die beiden Seiten der berandeten Fläche als Polyederflächen auf, welche
längs der Randcurve (also durchweg unter einem Winkel von 360 Grad)
zusammenstossen und behandele nunmehr statt der ursprünglichen berandeten
Fläche die aus beiden Seiten zusammengesetzte Gesammtfläche.(48) Diese
Gesammtfläche ist dann in der That eine geschlossene Fläche. Sie ist aber
überdiess eine symmetrische Fläche. Denn wenn man die
übereinanderliegenden Puncte der beiden Flächenseiten vertauscht, so
erfährt die Gesammtfläche eine conforme Abbildung auf sich selbst mit
Umlegung der Winkel. Die Randcurven sind dabei die Uebergangscurven.
Zugleich aber gewinnt unsere Eintheilung der symmetrischen Flächen in
zweierlei Arten eine wichtige und durchschlagende Bedeutung. Die
gewöhnlichen berandeten Flächen, bei denen man zwei Flächenseiten
unterscheiden kann, entsprechen offenbar der ersten Art. Der zweiten Art
aber correspondiren die Doppelflächen, bei denen man von einer
Flächenseite durch continuirliches Fortschreiten über die Fläche hin zur
anderen gelangen kann. Auch der Fall ist nicht auszuschliessen (wie
bereits angedeutet), dass die Doppelfläche überhaupt keine Randcurve
besitzen mag. Wir haben dann eine symmetrische Fläche ohne
Uebergangscurve vor uns.


Ich betrachte nunmehr der Reihe nach die verschiedenen
auseinanderzuhaltenden Fälle.


1) Sei zuvörderst eine einfach berandete, einfach zusammenhängende Fläche
gegeben. Eine solche Fläche erscheint für uns als eine geschlossene
Fläche [formula], welche unter Auftreten einer Uebergangscurve symmetrisch
auf sich selbst bezogen ist. Wir finden also, _dass zwei solche Flächen
sich allemal durch Abbildung der einen oder der anderen Art conform__ auf
einander beziehen lassen, und dass man dabei in jedem der beiden Fälle
noch drei reelle Constanten zur willkürlichen Verfügung hat._ Wir können
die letzteren insbesondere dazu benutzen, um einen beliebigen inneren
Punct der einen Fläche einem entsprechend gelegenen Puncte der anderen
Fläche zuzuweisen und überdiess einen beliebigen Randpunct der einen
Fläche einem beliebigen Randpuncte der anderen. Diese Bestimmungsweise
entspricht dem bekannten Satze, den Riemann betreffs der conformen
Abbildung einer einfach berandeten, einfach zusammenhängenden, ebenen
Fläche auf die Fläche eines Kreises gegeben und in Nro. 21 seiner
Dissertation als Beispiel für die Anwendung seiner Theorie auf Probleme
der conformen Abbildung ausführlich erläutert hat.


2) Wir betrachten ferner Doppelflächen [formula] (ohne Randcurven).
Aus §§. 21, 22 folgt sofort, dass zwei solche Flächen allemal conform auf
einander bezogen werden können, und man dabei, den Schlussformeln des §.
21 entsprechend, noch drei reelle Constanten zu beliebiger Verfügung hat.


3) Die verschiedenen hier in Betracht kommenden Fälle, welche eine
Gesammtfläche [formula] ergeben, betrachten wir gemeinsam. Es gehören
dahin zunächst die zweifach berandeten, zweifach zusammenhängenden
Flächen, also Flächen, die wir uns im einfachsten Falle als geschlossene
Bänder vorstellen dürfen. Es gehören dahin ferner die bekannten
Doppelflächen mit nur einer Randcurve, die man erhält, wenn man die
beiden schmalen Seiten eines rechteckigen Papierstreifens zusammenbiegt,
nachdem man den Streifen um 180 Grad tordirt hat. Es gehören endlich dahin
gewisse unberandete Doppelflächen. Man kann sich von denselben ein Bild
machen, indem man etwa ein Stück eines Kautschukschlauches umstülpt und
nun so sich selbst durchdringen lässt, dass bei Zusammenbiegung der Enden
die Aussenseite mit der Innenseite zusammenkommt. Bezüglich aller dieser
Flächen besagen die früheren Sätze, dass die Abbildbarkeit der einzelnen
Fläche auf eine zweite derselben Art das Bestehen einer aber nur einer
Gleichung zwischen den reellen Constanten der Flächen voraussetzt, dass
aber die Abbildung, wenn überhaupt, in unendlich vielen Weisen geschehen
kann, indem man ein doppeltes Vorzeichen und eine reelle Constante zu
beliebiger Verfügung hat.


4) Wir nehmen nunmehr den allgemeinen Fall einer zweiseitigen Fläche.
Die Fläche soll [formula] Randkurven besitzen und überdiess [formula]
nicht zerstückende Rückkehrschnitte zulassen, wobei entweder [formula]
sein muss oder [formula]. Dann wird die aus Vorder- und Rückseite
gebildete Gesammtfläche [formula] nicht zerstückende Rückkehrschnitte
zulassen. Denn man kann erstens die [formula] nach Voraussetzung auf der
einfachen Flächenseite möglichen Rückkehrschnitte jetzt doppelt benutzen
(sowohl auf der Vorderseite, als der Rückseite), man kann ferner noch
längs [formula] der vorhandenen Randcurven Schnitte anbringen, ohne dass
die Gesammtfläche aufhörte, ein einziges zusammenhängendes Flächenstück zu
bilden. Wir werden also in den Sätzen des vorigen Paragraphen [formula]
setzen und haben:


Zwei Flächen der betrachteten Art lassen sich, wenn überhaupt, nur auf
eine endliche Anzahl von Weisen auf einander abbilden. Die Abbildbarkeit
hängt von [formula] Gleichungen zwischen den reellen Constanten der
Flächen ab.


5) Wir haben endlich den allgemeinen Fall der Doppelfläche mit [formula]
Randcurven und P auf der doppelt gedachten Fläche neben den Randcurven
möglichen Rückkehrschnitten. Indem wir die drei unter 2) und 3)
betrachteten Möglichkeiten ([formula], [formula] oder 1, und [formula],
[formula]) bei Seite lassen, erhalten wir denselben Satz, wie unter 4),
nur dass überall statt [formula] die Summe [formula] zu schreiben ist, wo
P nach Belieben eine gerade oder ungerade Zahl sein kann. Insbesondere
beträgt die Zahl der reellen Constanten einer Doppelfläche, die bei
beliebiger conformer Abbildung ungeändert bleiben, [formula].—


Unter die hiermit gewonnenen Resultate subsumiren sich die allgemeinen
Theoreme und Entwickelungen, welche Herr Schottky in seiner wiederholt
citirten Abhandlung gegeben hat, als specielle Fälle.


§. 24. Schlussbemerkung.


Die Entwickelungen des nunmehr zu Ende geführten letzten Abschnitt’s
dieser Schrift sollten, wie wiederholt gesagt, den Andeutungen
entsprechen, mit denen Riemann seine Dissertation abschloss. Allerdings
haben wir uns auf eindeutige Beziehung zweier Flächen durch conforme
Abbildung beschränkt. Riemann hat, wie er ausspricht, ebensowohl an
mehrdeutige Beziehung gedacht. Man würde sich dementsprechend jede der
beiden in Vergleich kommenden Flächen mit mehreren Blättern überdeckt
vorstellen müssen und erst die so entstehenden mehrblättrigen Flächen
conform eindeutig zu beziehen haben. Die Verzweigungspuncte, welche diese
mehrblättrigen Flächen besitzen mögen, würden ebensoviele neue, zur
Disposition stehende complexe Constante abgeben.—Hierzu ist zu bemerken,
dass wir wenigstens einen Fall einer solchen Beziehung bereits
ausführlich in Betracht gezogen haben. Indem wir eine beliebige Fläche
mehrblättrig über die Ebene ausbreiteten (§. 15), haben wir zwischen
Fläche und Ebene eine Beziehung hergestellt, die von der einen Seite
mehrdeutig ist. Es ist dann weiter hervorzuheben, dass eben dieser
specielle Fall auch zwei beliebige Flächen mehrdeutig auf einander
beziehen lässt. Denn sind erst die beiden Flächen auf die Ebene
abgebildet, so sind sie, durch Vermittelung der Ebene, auch auf einander
bezogen.—Mit diesen Bemerkungen ist die Frage nach der mehrdeutigen
Abbildung natürlich keineswegs erschöpft. Aber es ist doch eine Grundlage
zu ihrer Behandlung gewonnen, indem gezeigt ist, wie sie sich in die
übrigen functionentheoretischen Speculationen Riemann’s, von denen wir
hier Rechenschaft zu geben hatten, einfügt.


FOOTNOTES


    1 Sei insbesondere auf die Darstellung verwiesen, welche Maxwell in
      seinem Treatise on Electricity and Magnetisme (Cambridge 1873)
      gegeben hat. Dieselbe entspricht, was anschauungsmässige Behandlung
      angeht, genau den Gesichtspuncten, die auch ich im Texte verfolge.


    2 Man vergl. den grundlegenden Aufsatz von Kirchhoff im 64. Bande von
      Poggendorff’s Annalen: Ueber den Durchgang eines elektrischen
      Stromes durch eine Ebene (1845).


    3 Die Behauptungen des Textes hängen, wie man weiss, auf das Engste
      mit der Theorie der sogenannten Doppelbelegungen zusammen, wegen
      deren man Helmholtz in Poggendorffs Annalen Bd. 89, p. 224 ff.
      (Ueber einige Gesetze der Vertheilung elektrischer Ströme in
      körperlichen Leitern, 1853) sowie C. Neumann in dessen Buche:
      Untersuchungen über das Logarithmische und Newton’sche Potential
      (Leipzig, Teubner, 1877) vergleichen mag.


    4 Nach dem Vorgänge von C. Neumann, Vorlesungen über Riemann’s Theorie
      der Abel’schen Integrale, Leipzig, 1865.—Die Einführung der
      Kugelfläche läuft sozusagen der Ersetzung von z durch das
      Verhältniss [formula] zweier Variabler parallel, wodurch, wie man
      weiss, die Behandlung unendlich grosser Werthe von z auch formal
      unter die der endlichen Werthe subsumirt wird.


    5 Unter [formula], [formula], [formula] rechtwinklige Coordinaten
      verstanden, sei die Gleichung der Kugel [formula]. Projectionspunct
      sei [formula], [formula], [formula], Projectionsebene
      ([formula]-Ebene) die gegenüberliegende Tangentialebene (die
      [formula]-Ebene). Dann folgt:


      [formula]


      Bezeichnet man mit [formula] das Bogenelement der Ebene, mit
      [formula] das entsprechende Bogenelement der Kugel, so kommt:


      [formula]


      eine Formel, welche für das Folgende insofern besonders wichtig ist,
      als sie die Abbildung als eine conforme charakterisirt.


    6 Man vergleiche hierzu und zu den folgenden Entwickelungen: Beltrami,


      Delle variabili complesse sopra una superficie qualunque; Annali di


      Matematica, ser. 2, t. I, p. 329 ff.—Die besondere Bemerkung, dass


      Oberflächenpotentiale bei conformer Abbildung ebensolche bleiben,


      findet sich in den in der Vorrede citirten Schriften von C. Neumann,


      Kirchhoff und Töpler, dann auch z. B. bei Haton de la Goupillière:


      Méthodes de transformation en Géométrie et en Physique Mathématique,


      Journal de l’Ecole Polytechnique, t. XXV, 1867 (p. 169 ff.).




    7 Es ist übrigens nicht schwer, sich auch ohne alle Formel von der


      Richtigkeit jener Behauptung Rechenschaft zu geben; man sehe die


      wiederholt citirten Arbeiten von C. Neumann und Töpler.




    8 Ein besonders übersichtliches Beispiel von doch nicht zu elementarem


      Charakter gibt die Ikosaedergleichwng (siehe Mathematische


      Annalen, Bd. XII, p. 502 ff.). Dieselbe lautet, wie man weiss:




      [formula]


      ist also (für z) eine Gleichung vom sechszigsten Grade. Die
      Unendlichkeitspunkte von w fallen zu je 5 in 12 Punkte zusammen,
      welche die Ecken eines Ikosaeders sind, das der Kugel, auf welcher
      wir z deuten, einbeschrieben ist. Den 20 Seitenflächen dieses
      Ikosaeders entsprechend zerlegt sich die Kugel in 20 gleichseitige
      sphärische Dreiecke. Die Mittelpunkte dieser Dreiecke sind durch
      [formula] gegeben und stellen ebensoviele Kreuzungspuncte von der
      Multiplicität Zwei für die Function w dar. Hiernach kennt man
      (unter Einrechnung der Unendlichkeitspuncte) von den [formula]
      Kreuzungspuncten bereits [formula]. Die 30 noch fehlenden werden
      durch die Halbirungspuncte der 30 Kanten, die jenen 20 sphärischen
      Dreiecken angehören, geliefert.


                            [Illustration: Fig. 13.]


                                    Fig. 13.


      Die beistehende Figur repräsentirt in schematischer Weise eines
      jener 20 Dreiecke und auf ihm den Verlauf der Strömungscurven; auf
      den 19 übrigen Dreiecken ist die Sache genau ebenso.


    9 Die in diesem Paragraphen gegebene Darstellung weicht von der durch
      Riemann selbst gegebenen zumal dadurch ab, dass Flächen mit
      Randcurven vorab überhaupt nicht in Betracht gezogen werden und also
      statt der Querschnitte, die von einem Randpuncte zu einem zweiten
      laufen, sogenannte Rückkehrschnitte zur Verwendung gelangen (vgl.
      C. Neumann, Vorlesungen über Riemann’s Theorie der Abel’schen
      Integrale, p. 291 ff.).


   10 Es ist immer nur an Umformung durch stetige Functionen gedacht.
      Ueberdies sollen bei den willkürlichen Flächen des Textes bis auf
      Weiteres gewisse besondere Vorkommnisse ausgeschlossen sein. Es ist
      am Besten, sich dieselben ohne alle singuläre Puncte zu denken; erst
      später kommen Verzweigungspuncte und damit Selbstdurchsetzungen der
      Fläche in Betracht (§. 13). Die Flächen dürfen jedenfalls keine
      Doppelflächen sein, bei denen man von einer Flächenseite durch
      continuirliches Fortschreiten auf der Fläche zur anderen
      Flächenseite gelangen kann; man vergleiche indess §. 23. Ueberdiess
      wird vorausgesetzt—wie man es immer thut, wenn man sich eine
      geschlossene Fläche als fertig gegeben denkt—dass die Fläche
      durch eine endliche Zahl von Schnitten in einfach zusammenhängende
      Theile zerlegt werden kann.


   11 Damit soll keineswegs gesagt sein, dass diese Art geometrischer
      Evidenz nicht noch der näheren Untersuchung bedürftig sei. Man
      vergleiche die Erläuterungen von G. Cantor in Borchardt’s Journal,
      Bd. 84, p. 242 ff. Es bleiben inzwischen diese Untersuchungen von
      den Darlegungen des Textes ausgeschlossen, da es für letztere
      Princip ist, auf anschauungsmässige Verhältnisse als letzte
      Begründung zu recurriren.


   12 Man sehe C. Jordan: Sur la déformation des surfaces in Liouville’s


      Journal, ser. 2, Bd. 11 (1866). Einige Puncte, die mir besonderer


      Aufklärung zu bedürfen schienen, sind in den mathematischen Annalen,


      Bd. VII, p. 529, und Bd. IX, p. 476, besprochen.




   13 Die Definition dieser Unendlichkeitspuncte bezog sich zunächst nur
      auf die Ebene, bez. die Kugel. Aber es ist wohl klar, wie dieselbe
      auf beliebige krumme Flächen zu übertragen ist: die
      Verallgemeinerung ist so zu treffen, dass wir auf die alten
      Unendlichkeitspuncte zurückkommen, wenn wir die Fläche und die
      stationären Strömungen auf ihr durch conforme Abbildung auf die
      Ebene übertragen.—In dieser Beschränkung hinsichtlich der Art der
      Unendlichkeitspuncte liegt auch, wie ich hier nicht ausführen kann,
      dass nur eine endliche Zahl von Unendlichkeitspuncten bei unseren
      Strömungen möglich ist. Desgleichen folgt aus unseren Prämissen, wie
      beiläufig hervorgehoben sei, dass von Kreuzungspuncten bei unseren
      Strömungen jedenfalls auch nur eine endliche Zahl auftritt.


   14 Ueber die Periodicität des imaginären Theil’s der Function soll
      hiermit keinerlei Verfügung getroffen sein. In der That ist v bei
      gegebenem u durch die Differentialgleichungen (1) der pag. 1 bis
      auf eine additive Constante vollständig bestimmt und es unterliegen
      also die Periodicitätsmoduln, welche v an den Querschnitten
      [formula], [formula] besitzen mag, keinerlei willkürlicher
      Festsetzung.


   15 Einen anderen Beweis siehe bei C. Jordan: Des contours tracés sur
      les surfaces, in Liouville’s Journal, ser. 2, Bd. 11 (1866).


   16 Wegen dieses Satzes siehe Beltrami, 1. c. p. 354.


   17 Ich will übrigens daran erinnern, dass man auch den Green’schen Satz
      anschauungsmässig begründen kann. Vgl. Tait, On Green’s and allied
      other theorems, Edinburgh Transactions, 1869—70, p. 69 ff.


   18 Eine solche Orientirung ist vermuthlich auch für den praktischen
      Physiker von hohem Werthe.


   19 Derartige Zeichnungen gab ich bereits in dem Aufsatze: Ueber den
      Verlauf der Abel’schen Integrale bei den Curven vierten Grades,
      Mathematische Annalen, Bd. X. Allerdings haben die Riemann’schen
      Flächen daselbst eine etwas andere Bedeutung, so dass bei ihnen nur
      in übertragenem Sinne von einer Flüssigkeitsbewegung die Rede sein
      kann; vergl. die Erläuterungen, welche darüber in §. 17 des
      Nachfolgenden gegeben werden.


   20 Zu einem solchen Beweise scheint vor allen Dingen nothwendig, sich
      über die verschiedenen Möglichkeiten klar zu werden, die betreffs
      der Ueberführung einer gegebenen Fläche in die Normalfläche des §. 8
      vorliegen.


   21 Sind sie es nicht, so ist die nächste Folge, dass die Zahl der in
      m Puncten unendlich werdenden eindeutigen Functionen grösser
      wird als die im Texte angegebene. Man kennt die Untersuchungen,
      welche zumal Roch über diese Möglichkeit angestellt hat (Borchardt’s
      Journal Bd. 64; vergl. auch, was die algebraische Formulirung
      betrifft: Brill und Nöther, über die algebraischen Functionen
      und ihre Verwendung in der Geometrie, Mathematische Annalen, Bd. 7).
      Ich kann diesen Untersuchungen im Texte nicht folgen, obgleich sie
      sich mit Leichtigkeit an die Darstellung des Abel’schen Theorems
      anschliessen lassen, wie sie Riemann in Nr. 14 der Abel’schen
      Functionen giebt,—und will nur, mit Rücksicht auf spätere
      Entwickelungen des Textes (cf. §. 19), darauf hinweisen, dass eine
      lineare Abhängigkeit zwischen den [formula]_ Gleichungen jedenfalls
      nicht eintritt, wenn __m__ die Gränse [formula] überschreitet._


   22 Ich spreche im Folgenden durchweg von der Ebene, statt von der


      Kugel, um mich möglichst an die gewöhnliche Auffassungsweise


      anzuschliessen.




   23 Man vergleiche hierzu, was Riemann in Nr. 12 seiner Abel’schen


      Functionen über die Abbildung durch überall endliche Functionen


      sagt.




   24 Wir haben oben (§. 11) ohne ausgeführten Beweis angegeben, dass die
      Zahl der Kreuzungspuncte von [formula] beträgt. Wie man jetzt sieht,
      ist diese Behauptung eine einfache Umsetzung der bekannten Relation,
      welche die Zahl der Verzweigungspuncte (oder vielmehr die
      Gesammtmultiplicität derselben) mit der Blätterzahl m und dem p
      einer mehrblättrigen Fläche verknüpft [unter p die Maximahlzahl
      der Rückkehrschnitte verstanden, die man auf dieser mehrblättrigen
      Fläche ziehen kann, ohne sie zu zerstücken].


   25 Wegen der expliciten Formulirung dieser Relationen vergleiche man
      die gewöhnlichen Lehrbücher, sodann insbesondere die Schrift von C.
      Neumann: Das Dirichlet’sche Princip in seiner Anwendung auf die
      Riemann’schen Flächen, Leipzig 1865.


   26 Es entsteht hier die interessante Frage, ob es immer möglich ist,
      mehrblättrige Flächen mit beliebigen Verzweigungspuncten conform in
      solche zu verwandeln, die durchaus keine singuläre Stelle besitzen
      Diese Frage greift über die im Texte zu behandelnden Gegenstände
      hinaus, aber ich habe sie immerhin anführen wollen. Gelingt es im
      einzelnen Falle nicht, so haben die vorgängigen Betrachtungen des
      Textes doch noch die Bedeutung, dass sie am einfachsten Beispiele
      die allgemeinen Ideen haben entstehen lassen und dadurch die
      Behandlung auch der complicirteren Vorkommnisse ermöglicht haben.


   27 Vergl. Kirchhoff; Monatsberichte der Berliner Akademie von 1875, l.


      c. (wo übrigens explicite nur die Beziehung zwischen Ringfläche und


      ebenem Rechtecke besprochen wird).




   28 Diese geometrische Umsetzung ist natürlich keineswegs nothwendig;


      wir erreichen durch dieselbe nur den Anschluss an die gewöhnlich


      eingehaltene Darstellungsweise.




   29 Im Besonderen kann diess anders sein. Wenn man w und z als
      Parallel-Coordinaten, die zwischen ihnen bestehende Gleichung durch
      eine Curve deutet, so sind es, wie man weiss, die Doppelpuncte
      dieser Curve, welche jenen besonderen Vorkommnissen entsprechen.


   30 Vergl. die eingehende Beweisführung bei Prym, Borchardt’s Journal,
      Bd. 83, p. 251 ff.: Beweis eines Riemann’schen Satzes.


   31 Vergl. die betreffenden Bemerkungen der Vorrede.


   32 Vergl. meine Arbeiten über elliptische Modulfunctionen in den Bänden
      14, 15, 17 der mathematischen Annalen.


   33 Man sehe insbesondere die dem 14. Annalenbande beigegebene Tafel
      ("Zur Transformation siebenter Ordnung der elliptischen
      Functionen’’) sowie die später noch zu nennende Arbeit von Dyck im
      17. Bande daselbst.


   34 "Ueber eine neue Art von Riemann’schen Flächen’’, mathematische
      Annalen Bd. 7 und 10.


   35 Siehe: Harnack (Ueber die Verwerthung der elliptischen Functionen
      für die Geometrie der Curven dritten Grades) im 9. Bande der
      mathematischen Annalen, siehe ferner meinen schon oben genannten
      Aufsatz: "Ueber den Verlauf der Abel’schen Integrale bei den Curven
      vierten Grades’’ im 10. Bande daselbst.


   36 Solche Bestimmungen machte z. B. Hr. Kasten in seiner
      Inauguraldissertation: Zur Theorie der dreiblättrigen Riemann’schen
      Fläche. Bremen 1876.


   37 Wenn es hier wieder gestattet ist auf eigene Arbeiten zu verweisen,
      so geschehe diess zunächst mit Bezug auf eine Stelle im 12. Bande
      der mathematischen Annalen (p. 173), wo der Schluss begründet wird,
      dass gewisse rationale Functionen durch die Zahl ihrer Verzweigungen
      völlig bestimmt sind, sodann in Bezug auf Bd. 15, p. 533 ebenda, wo
      eine ausführliche Betrachtung lehrt, dass es zehn rationale
      Functionen elften Grades gibt, die gewisse Verzweigungsstellen
      besitzen.


   38 Es folgt diese z. B. aus den Sätzen von Lüroth und Clebsch, die man


      in den Bänden 4 und 6 der mathematischen Annalen abgeleitet findet.




   39 Ich führe dieses Resultat, welches aus der Theorie der elliptischen


      Functionen wohlbekannt ist, im Texte ohne Beweis an.




   40 Es ist bei diesem Satze an eine continuirliche Schaar von
      Transformationen, also an Transformationen mit willkürlich
      veränderlichen Parametern gedacht. Ob eine Fläche [formula] unter
      Umständen nicht durch unendlich viele discrete Transformationen in
      sich übergehen kann, bleibt im Texte unerörtert; doch scheint diess
      bei endlichem p in der That auch unmöglich.


   41 Vergl. die Darstellung im 14. Bande der mathematischen Annalen, p.
      112 ff.


   42 Die im Texte aufzustellenden Sätze finden sich explicite
      grösstentheils in der Literatur nicht vor. Wegen der Flächen
      [formula] vergleiche man den bereits citirten Aufsatz von Schwarz
      (Berliner Monatsberichte 1870). Man sehe ferner eine Arbeit von
      Schottky: Ueber die conforme Abbildung mehrfach zusammenhängender
      Flächen}, die als Berliner Inaugural-Dissertation 1875 erschien und
      später (1877) in umgearbeiteter Form in Borchardts Journal Bd. 83
      abgedruckt wurde. Es handelt sich in derselben um solche p-fach
      zusammenhängende ebene Bereiche, welche von [formula] Randcurven
      begränzt werden.


   43 Solchen Flächen entsprechen algebraische Gleichungen mit einer


      Gruppe eindeutiger Transformationen in sich. Die Bemerkungen des


      Textes zielen also auf solche Untersuchungen ab, wie sie in neuerer


      Zeit von Hrn. Dyck verfolgt worden sind (cf. die bereits citirte


      Arbeit im 17. Bande der Mathematischen Annalen: Aufstellung und


      Untersuchung von Gruppe und Irrationalität regulärer Riemann’scher


      Flächen).




   44 Es gibt natürlich wieder Flächen, welche neben einer Anzahl von
      Transformationen erster Art eine gleiche Anzahl von Transformationen
      zweiter Art zulassen; dieselben entsprechen den
      regulär-symmetrischen Flächen der Dyck’schen Arbeit.


   45 Vergl. Harnack: Ueber die Vieltheiligkeit der ebenen algebraischen
      Curven, in Bd. 10 der Mathematischen Annalen, p. 189 ff.; vergleiche
      ferner p. 415, 416 daselbst, wo ich die Eintheilung jener Curven in
      zweierlei Arten gegeben habe. Vielleicht ist es zweckmässig, bei
      diesen Untersuchungen die Lehre von den symmetrischen Flächen und
      die Riemann’sche Theorie, so wie beide hier im Texte dargestellt
      werden, geradezu als Ausgangspunct zu wählen.


   46 Siehe zumal: Cayley, on the correspondence between homographies and
      rotations, Mathematische Annalen, Bd. 15, p. 238-240.


   47 Ich verdanke diese Auffassung einer gelegentlichen Unterredung mit
      Hrn. Schwarz (Ostern 1881). Man vergl. p. 320 ff. der bereits
      genannten Arbeit von Schottky im 83. Bande von Borchardt’s Journal,
      sowie die Originaluntersuchungen von Schwarz über die Abbildung
      geschlossener Polyederflächen auf die Kugel (Berliner Monatsberichte
      1865 p. 150 ff., Borchardt’s Journal Bd. 70, p. 121—136, Bd. 75, p.
      330.)


   48 Ich drücke mich im Texte der Kürze halber so aus, als wenn die
      ursprüngliche Fläche eine zweiseitige Fläche gewesen wäre, während
      doch nicht ausgeschlossen sein soll, dass sie eine Doppelfläche ist.
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